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Quantum Localization Effects on Spin Transport in Semiconductor Quantum Wells
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We have shown that due to weak localization corrections, in the spin-split conduction band of
quantum wells with zinc-blende structure, the electron spin relaxation rate due to the D’yakonov-Perel’
mechanism decreases logarithmically with decreasing frequency. The spin diffusion coefficient also
decreases. This is quite different from antilocalization behavior at large times of the particle diffusion
and conductivity. Possible experimental detection is suggested. [S0031-9007(96)00208-6]

PACS numbers: 72.15.Rn, 72.15.Lh, 73.20.Fz
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It is well known [1] that due to the lack of inversio
symmetry the spin-orbit interaction (SOI) lifts the sp
degeneracy of the conduction band in semiconduc
with zinc-blende structure. The corresponding elect
energy splittingh$k depends on the direction of the wa
vector $k. At higher electron energies,h$k increases as
h$k ~ k3 [2]. The spin splitting is deduced from optic
orientation measurements [1], and is quite small in b
semiconductors. However, sinceh$k is proportional tok3,
it can be rather large in narrower quantum wells due to
confinement of electrons along the growth direction [
For example, a splitting of about 0.4 meV was obser
in Raman scattering from the degenerate electron ga
a AlGaAs quantum well [4]. Even higher values ofh$k
were obtained with Shubnikov–de Haas measurement
InGaAsyInAlAs heterojunctions [5].

The SOI effect on quantum transport has been ex
sively studied since Hikami, Larkin, and Nagaoka
showed that the SOI between electrons and impurities
change the sign of the localization correction to theelec-
tric conductivity in metal films. Similar behavior for elec
tric conductivity was studied later in III-V semiconduct
quantum wells [7–9], using a model in which impuriti
are treated as usual potential scatterers, while the spin-
effect is associated to the intrinsic spin splitting of the c
duction band. This allowed one to explain [8,9] the ne
tive magnetoresistance observed in GaAs quantum w
[10]. The spin splitting can also lead to other quantum p
nomena in disordered systems. For example, a new
of level statistics was found in 1D mesoscopic rings [1
and the Aharonov-Casher effect caused by macrosc
electric fields in disordered conductors [12].

More fundamentally, besides its effect on particle dif
sion, the SOI has a significant effect on a number of ph
cal processes which involve spin related transport. M
0031-9007y96y76(20)y3794(4)$10.00
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of these effects are associated with the particle flux indu
by the spin orientation of electrons such as, for example
the so called anomalous Hall effect [13]. The spin tran
port parameters play an important role in determining
shape of low frequency spin-flip electronic Raman spec
and EPR lines. There are two main transport parame
which dominate the spin response of the system: the s
relaxation time and the spin diffusion coefficient. In II
V semiconductors, the electron spin polarization can re
through elastic scattering with impurities. If the elas
scattering timet is sufficiently short such thatth$k ø 1,
the spin relaxation occurs through the D’yakonov-Per
mechanism [14] with the relaxation rate1yts . tkh2

$k
ldir ,

wherek· · ·ldir is an average over the direction of$k. Since
the spin relaxation rate in the D’yakonov-Perel’ mech
nism is proportional to the elastic scattering time, the as
ciated spin relaxation belongs to the same class of trans
phenomena as conduction or diffusion. With a further e
tension of this analogy, one would expect that localizat
effects due to quantum interference of elastically scatte
waves must result in a change of the spin relaxation r
similar to the case of electric conductivity or particle diffu
sion. Besides spin relaxation, spin diffusion is also mo
fied by weak localization corrections. Within the classic
approach, the spin diffusion coefficient, which determin
the relaxation of an inhomogeneous spin distribution,
the same as the particle diffusion coefficient. Howev
in a system with a spin-split conduction band, such
III-V semiconductors, the corrections to these two co
ficients due to weak localization effects are expected to
different.

Previous works on quantum transport in III-V sem
conductors focused on weak localization effects on el
tric conductance or particle diffusion, while the effec
on spin transport were not elucidiated. In this Letter w
© 1996 The American Physical Society
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investigate weak localization corrections to the spin rel
ation and the spin diffusion of a two-dimensional (2D) d
generate electron gas in a spin-split conduction band.
physical system is a doped quantum well with the grow
direction along thez axis and the interfaces parallel t
the x-y plane. We assume that the amplitude of elect
scattering by a randomd-correlated potential is spin in
dependent, and the corresponding elastic mean free
l is large compared tok21

f , wherekf is the Fermi wave
vector. We will show that due to weak localization co
rections, with decreasing frequency, both longitudinal a
transverse spin relaxation rates as well as the spin diffu
constant decrease. The localization behavior of the s
diffusion constant differs drastically from that of the par
cle diffusion constant, which, as was found previously [
9], first decreases and then increases when the frequ
is comparable to the spin relaxation rate.

We start with the system Hamiltonian

H ­
X
$k,s

E$kc
y
$ks

c$ks 1
X

$k,s,s0

$h$k ? $ss0sc
y
$ks0

c$ks

1
X

$k, $k0 ,s

V$k, $k0c
y
$ks

c $k0s . (1)

The first term inH is the unperturbed Hamiltonian o
electrons in the conduction bandE$k. The spin splitting
of the conduction band is described by the second te
which has the form of coupling between the electr
spin $sa,b ; ssx

a,b , s
y
a,bd and the “magnetic field”$h$k ;

shx
$k
, h

y
$k
d, wheresx and sy are Pauli spin matrices. Th

characteristic functional dependence of$h$k on $k varies with
the width of a quantum well. In a sufficiently narro
-

e

n

th

d
n

in

cy

,

quantum well, $h$k is linear in $k [3], and has the specia
form

hx
$k

­ akx , h
y
$k

­ 2aky (2)

if the growth direction of the quantum well is [001]. O
the other hand, in a wider well or for larger magnitude
$k, the nonlinear terms in$h$k can be important [3]. How-
ever, in our present work, for simplicity, we will conside
a very narrow quantum well for which (2) is valid. Sinc
Eskx ,kyd ­ Eskx ,2kyd, with a proper transformation betwee
cskx ,ky ds andcskx ,2kyds, the second term in (1) can be rewri
ten in a more convenient forma

P
$k,s,s0

$k ? $ss0sc
y
$ks0

c$ks .
The third term in (1) represents the scattering

electrons by a random potential, which is produced
impurities in the well and/or imperfections of the we
The electronic mean elastic scattering time is given by
usual form [15]s2td21 ; G ­ pNsEfd kjV $k,$k0 j2l, where
NsEfd is the density of states at the Fermi level. W
assume that the configuration average of the scatte
potential does not depend on the directions of$k and $k0.
Therefore, we can setkjV$k,$k0 j2l ­ V 2.

We will calculate the density-density correlation fun
tions for both the charge density and the spin dens
For this purpose, we need to calculate the relevant t
particle Green functions. Within the usual perturbati
approach [15], these two-particle Green functions con
both the diffusion propagator (diffuson) which is a su
of ladder diagrams in the particle-hole channel and
Cooperon propagator which is a sum of ladder diagra
in the particle-particle channel. The configuration avera
kGa

abs $k 2 $Q, $k0 2 $Q, v 2 VdGr
nms $k0, $k, vdl of the two-

particle Green function of interest can be expressed as
auli

ch is

, under
kGa
abs $k 2 $Q, $k0 2 $Q, v 2 VdGr

nms$k0, $k, vdl ­ Ga
abs $k 2 $Q, v 2 VdGr

nms$k, vdd$k,$k0

1
X

gg0dd0

Ga
ags $k 2 $Q, v 2 VdGr

nd0s $k0, vd

3 Ugg0d0ds $k, $k0, $Q, VdGa
g0bs $k0 2 $Q, v 2 VdGr

dms$k, vd (3)

in terms of the matrix vertex functionUs $k, $k0, $Q, Vd and the averaged retardedGr s $k, vd and advancedGas $k, vd one-
particle Green functions

Gr ,as $k, vd ­
sv 2 E$k 6 iGd 1 $n ? $sh

sv 2 E$k 6 iGd2 2 h2y4
, (4)

whereh ­ akf and $n ­ $kyk. In (3), all subscripts are spin projections onto thez axis.
It is convenient to expand the matrix vertex functionU in terms of the complete basis set of matrices: the three P

matricessx , sy, sz , ands0 ­ 1y2. In this expansion, the matrix elements are defined asUabnm ­
P

i,j si
ams

j
nbUij .

If in the vertex function only diffusons are taken into account, we arrive at the diffusion approximation whi
equivalent to the classical approach based on the kinetic equation. In our notation,Ud represents the vertex function
calculated in the diffusion approximation. With a summation of the ladder diagrams in the particle-hole channel
the conditionyfQ ø G of our interest, we obtain for the spin-independent propagator

U00
d ­ D0 ­ 4iGyfV 1 iDQ2g , (5)

whereD ­ y
2
fy4G is the particle diffusion constant. For the spin-dependent propagator, we have (i, j ­ x, y, z)

U
ij
d ­

V 2

D s $Qd

"
Dis $Qddij 2 m2s $QdDls $QdD 2

t s $QdQ̂iQ̂j 1 ims $QdDls $QdDts $Qd
X

s
Q̂ssejsdiz 2 eisdjzd

#
, (6)
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where Q̂i ­ QiyQ, msQ̂d ­ hyfQy8G2, and the sum
mation ofs runs overx, y, z. Except forexy ­ 2eyx ­
1, all othere-matrix elements are zero. The various fun
tions in the above equation are defined as

Dns $Qd ­ 4iGyfV 1 iGn 1 iDnQ2g : n ­ t, l , (7)

D s $Qd ­ 1 2 m2s $QdDls $QdDts $Qd , (8)

with Dxs $Qd ­ Dys $Qd ­ Dts $Qd and Dzs $Qd ­ Dls $Qd.
Finally, the mixing elements vanish,Ui0

d ­ U0i
d ­ 0 with

i ­ x, y, z.
In the limit Q ! 0, ms $Qd approaches zero, and so t

matrix Uij becomes diagonal. Its componentsDl andDt

describe relaxation of a homogeneous spin polariza
via the D’yakonov-Perel’ mechanism with the longitud
nal and transverse spin relaxation ratesGl ­ h2y2G and
Gt ­ h2y4G, respectively. At finiteQ the longitudinal
and transverse spin polarization are coupled due to
finite mixing parameterms $Qd. In this case of inhomo
geneous spin distribution, besides the D’yakonov-Pe
spin relaxation mechanism, there occurs an additional
relaxation process. This new process is the spin d
sion with the corresponding bare diffusion coefficie
-
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u
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n
m
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Dl ­ Dt ­ D ­ y
2
fy4G, which appear in (7). The re

laxation of the total electron density, including both up a
down spins, is spin independent as described by the d
sion pole ofU00

d given by (5), in whichD is the particle
diffusion coefficient. Let us remind ourselves the transf
mation previously made in the Hamiltonian withkx ! kx

and ky ! 2ky . To get proper matrix elementsUij we
must return to the initial basis transforming$Q asQx ! Qx

andQy ! 2Qy . This will change the sign ofUxy , Uxz ,
andUyz.

To find the quantum corrections to the above results
classic theory, we need to calculate the contribution of
Cooperon propagator to the matrixU. The dominating
contribution comes from the region of small$S ­ $k 1 $k0

[16]. In the regionyfS ø G of our interest, we find
(i, j ­ x, y, z, 0)

Uij
c ­

V 2

D s $Sd
fCis $Sddij 1 m2s $SdDls $SdD 2

t s $SdŜi Ŝj

2 ms $SdDls $SdDts $Sd sŜidj0 1 Ŝjdi0dg ,
(9)

where
Cxs $Sd ­ Cys $Sd

­ fD s $SdDts $Sd 1 D s $SdD0s $Sd 2 Dts $Sd 1 Dls $Sdgy2 ,

Czs $Sd ­ fD s $SdDts $Sd 2 D s $SdDls $Sd 1 Dts $Sd 1 D0s $Sdgy2 ,
(10)

C0s $Sd ­ fD s $SdDts $Sd 2 D s $SdD0s $Sd 1 Dts $Sd 1 Dls $Sdgy2 .
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Now we can derive the localization corrections follow
ing the standard perturbation theory for systems with w
disorder [15,16]. In order to ensure the particle num
conservation, besides diffusons and Cooperons, the ve
function also includes diagrams with an additional imp
rity line embracing a Cooperon. We then pick up all d
grams irreducible with respect to the diffuson ladder a
finally obtain the diffusion propagator of the same for
as (6), but with the renormalized parametersG

0
l,t , D0

l,t , D0,
andm0. Under the conditionsV ø Gt andGt ø G, these
parameters are given by

D0yD 2 1 ­ flnsGyVd 2 3 lnsGyGtdgy4pEft , (11)

D0
l,tyDl,t 2 1 ­ G0

l,tyGl,t 2 1 ­ m0ym 2 1

­ 2flnsGyVd 1 lnsGyGtdgy4pEft . (12)

Since in the main logarithmic approximation lnsGyGtd
is assumed to be much larger than lnsGlyGtd ­ ln2, in
the above equations we have neglected the terms of
order s4pEftd21 lnsGlyGtd, which is small compared to
lnsGyGtd.

The correction factor to the particle diffusion given b
(11) is the same as that obtained in Refs. [7–9], and
very low frequency becomes positive, while the correct
k
r

tex
-
-
d

he
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n

factor in (12) is negative. As the frequency increases to
regionGt ø V ø G, in the poles of diffusons given by
(7), the frequencyV becomes the largest parameter a
so determines the cutoff frequency when the integrat
over Q is performed in the Cooperon propagator (9). A
a result, on the right hand side of (11) and (12),Gt is re-
placed byV. In this case the corrections to all transpo
parameters are given by the same negative factor2sln G

V dy
s2pEftd. Therefore, at this frequency region the transp
parameters are renormalized with the same factors as th
of the usual diffusion of spinless particles [16].

We have shown that due to weak localization both t
longitudinal and transverse spin relaxation rates as w
as spin diffusion decrease with lowering frequency. T
behavior of spin diffusion is very different from that o
the particle diffusion which, as the frequency decreas
first decreases and then increases with the turning p
around the spin relaxation rate. The change of sign
the right hand side of (11) whenV varies fromV ø Gt

to V ¿ Gt is due to the spin dependence of the quantu
amplitude of a particle passing along closed trajectori
In the high frequency regionV ¿ Gt , the lengths of these
trajectories are of the order ofsVyDd21y2, which are not
sufficiently long. Therefore, when a particle passes alo
one such trajectory, the probability of flipping its spi
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is small. As a result, the localization correction to sp
diffusion has the same form as that found previously
a spinless particle [6,15]. In the other region ofV ø

Gt , when a particle passes through a closed traject
the amplitude of its wave function depends strongly
its spin. This dependence leads to the spin-depen
interference of these amplitudes, and consequently
the corresponding change of the sign of localizat
correction to the particle diffusion, as well as to th
different behaviors of the spin and the particle diffusi
coefficient.

The antilocalization behavior of particle diffusion
quite similar to that discovered in systems with spin-or
scattering (SOS) of particles from randomly distribut
impurities [6], where the increase of diffusion at lo
frequency was also found. However, there is an esse
difference between these two cases. For the SOS,
logarithmic increase of the diffusion coefficient was fou
in films with thicknessd ø l andd . k21

f , but not in pure
2D system whered ø k21

f . On the other hand, for III-V
semiconductor quantum wells where the electron mot
is two dimensional, the electron mobility increases up
inelastic dephasing times. Because of this difference
remains uncertain whether the antilocalization behav
predicted by the perturbation theory to the first logarithm
order implies a similar universal behavior of films wi
SOS and of 2D systems with a spin-split conducti
band. Nevertheless, this is certainly not the case in
mesoscopic rings with spin-split electron energy wher
new type of electron level statistics was found [11].

The scaling behavior of films with the SOS is dominat
by the singlet component of the Cooperon [6], while t
triplet component (total spin 1) in the two-particle prop
gator is unimportant at large scales because this tri
channel decays due to the spin relaxation. This sin
gives rise to destructive interference between the clockw
and the counterclockwise closed path, and so results in
antilocalization. If particle diffusion is the only scalin
parameter in the renormalization group analysis [17],
conductance increases with the scale continuously, w
seems unphysical. One might expect the same scaling
pendence in 2D systems with a spin-split conduction ba
However, we found that the spin diffusion and spin rela
ation rate decrease at large time, and hence at large sc
Therefore, the contribution of the triplet component
Cooperon to the renormalization of transport parame
increases with increasing scale. Such competition betw
the singlet and the triplet channel can show up in hig
order terms of the perturbation expansion, which were
considered in the present work.

The quantum localization effects on spin transport inv
tigated in this Letter can be observed when the D’yakon
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Perel’ mechanism of spin relaxation is effective. This w
be the situation if (1) the spin splitting is much less th
the electronic elastic relaxation rate, (2) the dephasing t
is long, and (3) other spin relaxation effects are weak co
pared to the D’yakonov-Perel’ relaxation. We then exp
these effects to show up in transport of spin oriented e
trons, in EPR measurements under a weak magnetic fi
in low frequency spin-flip Raman scattering, and in far
frared optics.
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