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We have shown that due to weak localization corrections, in the spin-split conduction band of
guantum wells with zinc-blende structure, the electron spin relaxation rate due to the D’yakonov-Perel’
mechanism decreases logarithmically with decreasing frequency. The spin diffusion coefficient also
decreases. This is quite different from antilocalization behavior at large times of the particle diffusion
and conductivity. Possible experimental detection is suggested. [S0031-9007(96)00208-6]
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It is well known [1] that due to the lack of inversion of these effects are associated with the particle flux induced
symmetry the spin-orbit interaction (SOI) lifts the spin by the spin orientation of electrons such as, for example, in
degeneracy of the conduction band in semiconductorthe so called anomalous Hall effect [13]. The spin trans-
with zinc-blende structure. The corresponding electrorport parameters play an important role in determining the
energy spllttlnghk depends on the direction of the wave shape of low frequency spin-flip electronic Raman spectra
vector k. At higher electron energleézk increases as and EPR lines. There are two main transport parameters
h; « k3 [2]. The spin splitting is deduced from optical Which dominate the spin response of the system: the spin
orlentat|on measurements [1], and is quite small in bulk€laxation time and the spin diffusion coefficient. In Ill-
semiconductors. However, sinag is proportional tok®, vV semiconductors, the electron spin polarization can relax
it can be rather large in narrower quantum wells due to théhrough elastic scattering with impurities.  If the elastic
confinement of electrons along the growth direction [3].scattering timer is sufficiently short such thath; < 1,

For example, a splitting of about 0.4 meV was observedhe spin relaxation occurs through the Dyakonov Perel
in Raman scattering from the degenerate electron gas imechanism [14] with the relaxation rat¢r, = 7<h )dir
a AlGaAs quantum well [4]. Even higher values bf  where(---)q;, is an average over the direction fof Slnce
were obtained with Shubnikov—de Haas measurements ahe spin relaxation rate in the D’yakonov-Perel’ mecha-
InGaAs/InAlAs heterojunctions [5]. nism is proportional to the elastic scattering time, the asso-

The SOI effect on quantum transport has been exterciated spin relaxation belongs to the same class of transport
sively studied since Hikami, Larkin, and Nagaoka [6] phenomena as conduction or diffusion. With a further ex-
showed that the SOI between electrons and impurities ca@nsion of this analogy, one would expect that localization
change the sign of the localization correction to #hec-  effects due to quantum interference of elastically scattered
tric conductivity in metal films. Similar behavior for elec- waves must result in a change of the spin relaxation rate,
tric conductivity was studied later in Ill-V semiconductor similar to the case of electric conductivity or particle diffu-
quantum wells [7-9], using a model in which impurities sion. Besides spin relaxation, spin diffusion is also modi-
are treated as usual potential scatterers, while the spin-ortfitd by weak localization corrections. Within the classical
effect is associated to the intrinsic spin splitting of the con-approach, the spin diffusion coefficient, which determines
duction band. This allowed one to explain [8,9] the negathe relaxation of an inhomogeneous spin distribution, is
tive magnetoresistance observed in GaAs quantum wellhe same as the particle diffusion coefficient. However,
[10]. The spin splitting can also lead to other quantum phein a system with a spin-split conduction band, such as
nomena in disordered systems. For example, a new typ#l-V semiconductors, the corrections to these two coef-
of level statistics was found in 1D mesoscopic rings [11] ficients due to weak localization effects are expected to be
and the Aharonov-Casher effect caused by macroscopifferent.
electric fields in disordered conductors [12]. Previous works on quantum transport in IlI-V semi-

More fundamentally, besides its effect on particle diffu-conductors focused on weak localization effects on elec-
sion, the SOI has a significant effect on a number of physitric conductance or particle diffusion, while the effects
cal processes which involve spin related transport. Manyn spin transport were not elucidiated. In this Letter we
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investigate weak localization corrections to the spin relaxguantum well,fl,; is linear ink [3], and has the special
ation and the spin diffusion of a two-dimensional (2D) de-form

generate electron gas in a spin-split conduction band. The . v

physical system is a doped quantum well with the growth hy = ak,, hy = —aky ()
direction along thez axis and the interfaces parallel to
the x-y plane. We assume that the amplitude of electrony, her hand, in a wider well o for larger magnitude of
scattering by a randomi-correlated potential is spin in- -

) . the nonlinear terms in; can be important [3]. How-
dependent, and the corresponding elastic mean free path ™. S ; .
- -1 : . ever, in our present work, for simplicity, we will consider
[ is large compared ta; ', wherek, is the Fermi wave

vector. We will show that due to weak localization cor- 2, V€'Y NaToW quantum well for which (2) is valid. Since
rections, with decreasing frequency, both longitudinal and k) = %("X”k-v)’ Wltu a propedr trans_forrlnatlonbbetwegn
transverse spin relaxation rates as well as the spin diffusioff)” andee, ko t_ e second term in ( 2 canT & rewrit-
constant decrease. The localization behavior of the spifen in @ more convenient fori 2ivo k  Soocy Cig
diffusion constant differs drastically from that of the parti- _ 1h€ third term in (1) represents the scattering of
cle diffusion constant, which, as was found previously [7-€lectrons by a random potential, which is produced by

9], first decreases and then increases when the frequenffjJPurities in the well and/or imperfections of the well.
is comparable to the spin relaxation rate. e electronic mean elastic scattering time is given by the

-1 — — S )
We start with the system Hamiltonian usual form [15](27)~" = T' = wN(E;){|V; 1), where
N(Ey) is the density of states at the Fermi level. We
— N P T assume that the configuration average of the scattering
H = Eic: c;, + hi - SgigC: ,C o <
% ¥ ko ke Z ¥ 0 ke ke potential does not depend on the directionskadnd k'

if the growth direction of the quantum well is [001]. On

k’ s !
+ 77 Therefore, we can sélV; i, |?) = V2.
+ Z VikCiyCiro - 1) We will calculate the density-density correlation func-
kKo tions for both the charge density and the spin density.

The first term inH is the unperturbed Hamiltonian of For this purpose, we need to calculate the relevant two-
electrons in the conduction barft. The spin splitting particle Green functions. Within the usual perturbation
of the conduction band is described by the second terngpproach [15], these two-particle Green functions contain
which has the form of coupling between the electronboth the diffusion propagator (diffuson) which is a sum
Spins, p = (g'z’ﬁ,g'ﬁ’ﬁ) and the “magnetic field’fz,; =  of ladder diagrams in thg pqrticle—hole channel gnd the
(hi,hf), whereo* and o are Pauli spin matrices. The Cooperon propagator which is a sum of ladder diagrams

characteristic functional dependenceﬁ@fonfc varieswith N the particle-particle channel. The configuration average

the width of a quantum well. In a sufficiently narr0\1v <Gg_ﬁ(k - 0.k - Q"" __Q)G;u(lz/’]z""» of the two-
particle Green function of interest can be expressed as

(Gaglk = 0.k = 0.0 — DG}, (K .k, 0)) = Gaglk = Q.00 — DG}, (k. )81}

+ > Gi k- 0.0 — Q)G K, )
yy'6s8’ N . . R
X Uy'y’S’S(k, kl’ Qa Q)G'l)l/’ﬂ(k/ - Qaw - Q)Gg,u,(k’w) (3)

in terms of the matrix vertex functioU(lz,l?, Q,Q) and the averaged retardéd(l?, w) and advancetd}”(l;, w) one-
particle Green functions

(w — E; =il') + n - sh

(w — E; =il')? — h%/4°

whereh = ak; andn = lz/k. In (3), all subscripts are spin projections onto thaxis.
It is convenient to expand the matrix vertex functionn terms of the complete basis set of matrices: the three Pauli

matriceso™, o, %, anda® = 1/2. In this expansion, the matrix elements are definetiag,, = X ; o\, o5 U".

If in the vertex function only diffusons are taken into account, we arrive at the diffusion approximation which is

equivalent to the classical approach based on the kinetic equation. In our notatioepresents the vertex function

calculated in the diffusion approximation. With a summation of the ladder diagrams in the particle-hole channel, under
the conditionv,Q < T’ of our interest, we obtain for the spin-independent propagator

G”“(lz, w) = 4)

U® = D, = 4iT/[Q + iDQ?], (5)
whereD = v}/41’ is the particle diffusion constant. For the spin-dependent propagator, weihave (,y, z)
ii V2 N .. > > > A oA . pd > pd As s QI is J
Ui = DG [Di(Q)B” — m*(Q)D(Q)DXH0)Q' 07 + im(Q)Di(Q)D,(Q) > O ("8 — € 611)}, (6)
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where 0 = 0'/Q, m(Q) = hv;Q/8T2, and the sum- D; = D, = D = v7/4T, which appear in (7). The re-

mation of s runs overx,y,z. Except fore®” = —e* =  laxation of the total electron density, including both up and
1, all othere-matrix elements are zero. The various func-down spins, is spin independent as described by the diffu-
tions in the above equation are defined as sion pole ofUY given by (5), in whichD is the particle

R _ . . s diffusion coefficient. Let us remind ourselves the transfor-
D,(Q) = 4I'/[Q +il', +iD,Q7]: » =11, (7)  mation previously made in the Hamiltonian with — k.
D) =1 — m20)D,(0)D,(0). 8 and k, — —k,. To get proper matrix elemenﬁ’f we
© mADHODAQ) ®) must return to the initial basis transformiggasQ, — Oy
with D,(Q) = D,(0) = D,(Q) and D,(Q) = Dy(Q). andQ, — —Q,. This will change the sign of/*’, U™,

Finally, the mixing elements vanisb) = U9 = 0 with and Uylz- ]
i=xy,z. To find the quantum corrections to the above results of

In the limit 0 — 0, m@) approaches zero, and so the classic theory, we need to calculate the contribu_tion of the
matrix U/ becomes diagonal. Its componefi®s andD, ~ COOPeron propagator to the matrdx. The dominating
describe relaxation of a homogeneous spin polarizatiogontribution comes from the region of small= k + &’
via the D’yakonov-Perel’ mechanism with the longitudi- [16]. In the regionv,S < I' of our interest, we find
nal and transverse spin relaxation rafes= #2/2T and ~ (i»J = x,¥,2,0)

I, = h?/4T, respectively. At finiteQ the longitudinal V2

and transverse spin polarization are coupled due to theU’ = ——[C;($)8" + m*($)Dy(S)D2(8)3'5
finite mixing parametem(Q). In this case of inhomo- S)

geneous spin distribution, besides the D’yakonov-Perel — m(S)Di(S)D.(S) (87670 + §75)],
spin relaxation mechanism, there occurs an additional spin (9)

relaxation process. This new process is the spin diffu-
sion with the corresponding bare diffusion coefficieqtswhere

Ci(8) = C,(S)

= [D(S)Di(S) + D(S)Do(S) — Dy(S) + Dy(S)]/2,
C.(S) = [D(S)D,(S) — D(S)Dy(S) + D,(S) + Do($)]/2,
Co(S) = [D(S)Di(S) — DS)Dy(S) + D,(S) + Dy(S)]/2.

(10)

Now we can derive the localization corrections follow- factor in (12) is negative. As the frequency increases to the
ing the standard perturbation theory for systems with weakegionI'; < ) < I, in the poles of diffusons given by
disorder [15,16]. In order to ensure the particle numbe(7), the frequency) becomes the largest parameter and
conservation, besides diffusons and Cooperons, the verteso determines the cutoff frequency when the integration
function also includes diagrams with an additional impu-over Q is performed in the Cooperon propagator (9). As
rity line embracing a Cooperon. We then pick up all dia-a result, on the right hand side of (11) and (1R),is re-
grams irreducible with respect to the diffuson ladder ancblaced by(Q). In this case the corrections to all transport
finally obtain the diffusion propagator of the same form parameters are given by the same negative fae(tn'%)/
as (6), but with the renormalized parametgfs, D;,, D',  (2wE;7). Therefore, at this frequency region the transport
andm’. Under the condition§) < I'; andI'; < I', these  parameters are renormalized with the same factors as those
parameters are given by of the usual diffusion of spinless particles [16].

, We have shown that due to weak localization both the

D'/D — 1 =[In(l'/Q) = 3In(T'/T)]/4mEs7, (11) |ongitudinal and transverse spin relaxation rates as well

as spin diffusion decrease with lowering frequency. The
Diy/Diy = 1 =T1,/Ti = 1 =m'/m — 1 behavior of spin diffusion is very different from that of
= —[In(T/Q) + In(T'/T,)]/4mEs7. (12)  the particle diffusion which, as the frequency decreases,
first decreases and then increases with the turning point
Since in the main logarithmic approximation(ItyI';)  around the spin relaxation rate. The change of sign on
is assumed to be much larger tharfllfyT;) = In2, in  the right hand side of (11) whe@} varies fromQ <« T,
the above equations we have neglected the terms of the () > T, is due to the spin dependence of the quantum
order (47w E;7)~'In(I';/T,), which is small compared to amplitude of a particle passing along closed trajectories.
In(l'/T)). In the high frequency regiof > I';, the lengths of these

The correction factor to the particle diffusion given by trajectories are of the order ¢f/D)~'/2, which are not
(11) is the same as that obtained in Refs. [7—9], and atufficiently long. Therefore, when a particle passes along
very low frequency becomes positive, while the correctionrone such trajectory, the probability of flipping its spin
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is small. As a result, the localization correction to spinPerel’ mechanism of spin relaxation is effective. This will
diffusion has the same form as that found previously forbe the situation if (1) the spin splitting is much less than
a spinless particle [6,15]. In the other region @f <  the electronic elastic relaxation rate, (2) the dephasing time
I';, when a particle passes through a closed trajectorys long, and (3) other spin relaxation effects are weak com-
the amplitude of its wave function depends strongly ornpared to the D’yakonov-Perel’ relaxation. We then expect
its spin. This dependence leads to the spin-dependetitese effects to show up in transport of spin oriented elec-
interference of these amplitudes, and consequently ttrons, in EPR measurements under a weak magnetic field,
the corresponding change of the sign of localizationin low frequency spin-flip Raman scattering, and in far in-
correction to the particle diffusion, as well as to thefrared optics.
different behaviors of the spin and the particle diffusion
coefficient.
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