
VOLUME 76, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 13 MAY 1996

,

sing
sistent
inary

tions
ement

3742
Fluid Mixtures of Parallel Hard Cubes
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The direct correlation function of a fluid mixture of parallel hard cubes is obtained by u
Rosenfeld’s fundamental measure approximation. This approximation is thermodynamically con
(compressibility and virial equations of state are equal) and predicts a spinodal instability of the b
mixture for large-to-small side ratio larger than roughly 10, in qualitative agreement with simula
on the lattice version of the model. In two dimensions the system never demixes, also in agre
with the simulations. [S0031-9007(96)00203-7]

PACS numbers: 61.20.Gy, 64.75.+g
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The theory of liquids is still looking for its “Ising
model,” i.e., an exactly solvable model which provid
detailed information on the mechanisms involved in liqu
behavior, and against which approximate theories co
be tested. Instead the situation is the opposite, and
only analytical knowledge we have about liquid mod
has been obtained within the Percus-Yevick (PY) clos
approximation of the Ornstein-Zernike integral equati
and consists of the direct correlation function (DCF)
a fluid mixture of hard spheres with an arbitrary numb
of component species [1], and that of a one-compon
fluid of adhesive spheres [2]. No other approximat
has provided any new analytical results yet. Recent
very promising approximate scheme has been propo
the fundamental measure theory(FMT) [3], which, as in
the scaled particle theory, is based upon an interpola
between the low and high density limits of the fluid. B
an appropriate choice of geometric measures, the F
provides the following expression for the DCF of a flu
mixture of hard convex particles:

cmnsrd ­ fx0 1 x1Rmnsrd 1 x2Smnsrd 1 x3Vmnsrdg

3 fmnsrd, (1)

whereVmnsrd, Smnsrd, and Rmnsrd are, respectively, the
volume, surface, and mean radius of the overlap reg
of particles of speciesm and n whose center-to-cente
vector isr; fmnsrd is the Mayer function, and thexj ’s are
density-dependent coefficients which can be obtained
means of the scaled particle prescription. When app
to a mixture of hard spheres, Eq. (1) reproduces the
solution; besides, the same scheme can be generaliz
any odd dimension and thus obtain the DCF of mixtu
of hyperspheres (in one dimension it reproduces the e
DCF). In spite of these remarkable results, the FMT
never been applied to any molecular shape other
spheres, and it has recently been shown that, in gen
Eq. (1) cannot be obtained for arbitrary molecular sha
without further approximations [4].

While the one-component hard-sphere model has
vided an excellent starting point for the study of simp
0031-9007y96y76(20)y3742(4)$10.00
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liquids, either as a reference system for perturbation t
ories [5] or as an ingredient for density functionals of i
homogeneous liquids [6], the situation is far poorer f
additive fluid mixtures, due to the fact that the PY DC
predicts stability of a binary mixture of asymmetric ha
spheres for any diameter ratio and any densities of
components [1]. This places the demixing transition o
of the scope of an analytical treatment. Furthermore, t
fact settled the belief that, contrary to what happens
other phase transitions (such as freezing), demixing c
not be driven by a pure entropic mechanism. This conc
sion was questioned by Biben and Hansen [7], who fou
by means of a numeric solution of the Ornstein-Zerni
equation with a more accurate closure relation, that a m
ture of additive hard spheres of diameter ratio larger th
5 and similar concentrations demixes. Further evide
of this fact has subsequently been provided by mean
alternative approximations [8]. The question of wheth
a purely entropic mechanism can account for phase s
aration was affirmatively answered by Frenkel and Lo
[9] by providing the exact solution of a two-dimension
lattice model of two types of particles. For continuo
three-dimensional models the controversy is still op
Simulations cannot yet help because for too asymm
ric mixtures relaxation times are prohibitively large [7
Nevertheless, a recent simulation of a three-dimensio
lattice model of hard cubes [10] provides strong eviden
of phase separation for mixtures of cubes of side ratio
while no such evidence exists when the side ratio is 2
both cases the side of the small cubes is 2 lattice sp
ings). Besides its computational simplicity, this model
interesting on its own because even in the mixed phas
can completely fill the whole space at close packing, a
therefore there is no trivial volume-driven phase sepa
tion. For the continuous version of the model, the fou
order virial expansion of the pair correlation function d
verges at contact when the side ratio goes to infinity [1
thus suggesting the existence of a demixing transition.

In this Letter I will show how the FMT provides an
expression for the DCF of a mixture of parallel ha
© 1996 The American Physical Society
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cubes. By means of this function the free energy of
mixture can be computed, and its concavity requirem
leads to a spinodal instability for a large enough side ra

The starting point of the FMT is the choice of th
geometric measures. This can be easily done if
Fourier transform of the Mayer function can be expres
as a sum of products of single particle functions. In o
case, the Mayer function of two parallel hard cubes
sidessm andsn is simply

fmnsrd ­ 2Qssmn 2 jxjdQssmn 2 jyjdQssmn 2 jzjd ,

(2)
Qsud being the Heaviside step function (­1 for u $ 0
and ­0 otherwise), andsmn ­ ssm 1 sndy2. There-
fore, since the Fourier transform of any of the step fu
tions appearing in (2) isZ `

2`
dx eikxQssmn 2 jxjd ­

1
2

ft̂mskdẑnskd

1 t̂nskdẑmskdg ,

t̂mskd ; 2k21 sinssmky2d and ẑmskd ; 2 cosssmky2d,
then the Fourier transform of the Mayer function can
expressed as

f̂mnskd ­
1
8

fŵs3d
m skdŵs0d

n skd 1 ŵs0d
m skdŵs3d

n skd

1 ŵ s2d
m skd ? ŵ s1d

n skd 1 ŵ s1d
m skd ? ŵ s2d

n skdg ,

(3)

where

ŵs3d
m skd ; t̂mskxdt̂mskydt̂mskzd , (4a)

ŵ s2d
m skd ; sssẑmskxdt̂mskydt̂mskzd, t̂mskxdẑmskydt̂mskzd,

t̂mskxdt̂mskydẑmskzdddd , (4b)

ŵ s1d
m skd ; ssst̂mskxdẑmskydẑmskzd, ẑmskxdt̂mskydẑmskzd,

ẑmskxdẑmskydt̂mskzdddd , (4c)

ŵs0d
m skd ; ẑmskxdẑmskydẑmskzd . (4d)

Now that we have identified the so-called fundamen
measures, the FMT postulates the following excess (o
the ideal one) free energy functional of the set of dens
profiles for each component [3]:

bFexfhrmsrdjg ­
Z

dr Fssshnisrd, njsrdjddd (5)

(b21 ­ kBT ), whereF is assumed to be a function of th
following weighted densities:
e
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n0srd ;
X
m

Z
rmsr0d

1
8

ws0d
m sr 2 r0d dr0, (6a)

n1srd ;
X
m

Z
rmsr0d

1
24

w s1d
m sr 2 r0d dr0, (6b)

n2srd ;
X
m

Z
rmsr0dw s2d

m sr 2 r0d dr0, (6c)

n3srd ;
X
m

Z
rmsr0dws3d

m sr 2 r0d dr0 (6d)

(the numerical coefficients have been chosen for con
nience). The uniform limit ofnisrd is ji (i ­ 0, 3), and
that of njsrd is jjuy3 (j ­ 1, 2), where u ; s1, 1, 1d
and thej’s are the average density, mean radius, surfa
and volume of the cubes:

sj0, j1, j2, j3d ­
X
m

≥
1,

sm

2
, 6s2

m, s3
m

¥
rm . (7)

The ith averaged density (i ­ 0, 1, 2, 3) is a function
with dimensions svolumedsi23dy3; therefore F, whose
dimensions aresvolumed21, can be expanded as

F ­ an0 1 An1n2 1 Bn2n2n2 , (8)

wherea, A, and B are, respectively, a scalar, a 2-ind
tensor, and a 3-index tensor, all dependent onn3. The
scaled-particle prescription imposes onF the following
differential equation [3]:

2F 1
X
m

rm

≠F

≠rm

1 n0 ­
≠F

≠n3
, (9)

which yieldsa ­ a0 2 lns1 2 n3d, A ­ s1 2 n3d21A0,
and B­ s1 2 n3d22B0, with a0, A0, and B0 denoting a
constant scalar, a constant 2-index tensor, and a cons
3-index tensor. The vanishing of the excess free ene
per particle in the zero density limit leads toa0 ­ 0.
On the other hand, the uniform limit of this free energ
imposes a simplified form for the tensors:

sA0dij ­ a1uiuj 1 g1dij , (10a)

sB0dijk ­ a2uiujuk 1 g2uidij , (10b)

a1,2 andg1,2 being numerical coefficients. Then

F ­ 2 n0 lns1 2 n3d 1
a1n1n2 1 g1n1 ? n2

1 2 n3

1
a2n3

2 1 g2n2n2 ? n2

s1 2 n3d2
, (11)

whereni ; ni ? u (i ­ 1, 2).
Now we have two routes to obtain the DCF of the flu

mixture: (i) from Eqs. (5), (6), and (11), as [6]

cmnsr 2 r0d ­ 2b
dFexfhrmsrdjg
drmsrddrnsr0d

Ç
hrmsrdj­hrmj

, (12)

and (ii) from Eq. (1), by explicitly obtaining the involved
functions. This latter expression can easily be compu
3743
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because the overlap region of two parallel cubes of si
sm and sn is a parallelepiped of sidesLmnsxd, Lmns yd,
and Lmnszd [provided they do overlap, i.e.,fmnsrd ­
21], where

Lmnssd ­

Ω
smn 2 lmn if jsj # lmn ,
lsmn 2 jsj if jsj . lmn

(13)

(lmn ; jsm 2 snjy2). Therefore

Vmnsrd ­ LmnsxdLmns ydLmnszd , (14a)

Smnsrd ­ 2hLmnsxdLmns yd 1 LmnsxdLmnszd

1 Lmns ydLmnszdj , (14b)

Rmnsrd ­
1
6

hLmnsxd 1 Lmns yd 1 Lmnszdj . (14c)

By matching both expressions of the DCF it follows th
a1 ­ 0, g1 ­ 3, a2 ­ 5y432, andg2 ­ 21y48. Then

x0 ­
1

1 2 j3
, (15a)

x1 ­
j2

s1 2 j3d2 , (15b)

x2 ­
j1

s1 2 j3d2
1

1
36

j
2
2

s1 2 j3d3
, (15c)

x3 ­
j0

s1 2 j3d2 1
2j1j2

s1 2 j3d3 1
1

36
j

3
2

s1 2 j3d4 , (15d)

and the excess free energy per unit volume turns ou
be, in the uniform limit,

F ­ 2j0 lns1 2 j3d 1
j1j2

1 2 j3
1

1
216

j
3
2

s1 2 j3d2 .

(16)
The compressibility equation of state

b
≠Pc

≠rm

­ 1 2
X
m

rmĉmns0d (17)

leads to

bPc ­
j0

1 2 j3
1

j1j2

s1 2 j3d2
1

1
108

j
3
2

s1 2 j3d3
. (18)

On the other hand, the virial theorem provides
different expression for the pressure:

bPy ­ j0 1
1
6

X
m,n

rmrn

Z
dr r ? =fmnsrdgmnsrd ,

(19)
with gmnsrd the pair correlation function. Straightforwar
manipulations lead to

bPy ­ j0 2 4
X
m,n

rmrnsmn

3
Z smn

0
dy

Z smn

0
dz cmnss2

mn , y, zd , (20)

from which it follows that Py ­ Pc. The expression
found for the DCF of this system has thus the rema
3744
s

o

-

able property of beingthermodynamically consistentwith-
out having imposed such a feature anywhere in the
proximate scheme. Furthermore, this (unique) equa
of state matches the second and third virial coefficie
which can be readily computed to beB2r2 ­ j0j3 1
2
3 j1j2 and B3r3 ­ j0j

2
3 1 2j1j2j3 1 j

3
2y108 (where

r ­
P

m rm ­ j0), but this is implicitly assumed in the
theory [3].

A direct comparison with the simulations of Ref. [10
is meaningless, because the latter are performed o
lattice system with a lattice spacing comparable to
small particle size; moreover, there are no other res
of this kind available for this model, so the accuracy
the result just presented still has to be tested. For
one-component system, however, both the exact v
coefficients and the virial expansion of approxima
theories (such as PY) are known up to seventh or
[11]. From them we can see that the values obtained f
Eq. (18) match neither the exact ones nor those obta
from the PY approximation, from the fourth coefficie
on. Thus we can conclude that the present results a
as expected—approximate, but they differ from the P
approximation, contrary to what happens for hard sphe
(the equivalence for hard spheres might indeed be
exception rather than a rule).

But the most striking consequence which follows fro
the results presented thus far is the prediction of a spino
instability of a binary mixture of hard cubes for larg
enough side ratio. Furthermore, this spinodal can
analytically computed within this approximation. Let u
see how it can be done. The instability is caused
a violation of the concavity of the free energy. Th
concavity of this function can be expressed as the posi
definiteness of the hessian matrix of the free energy
unit volumef ; FyV as a function of the partial densitie
rn . Sincef is given byf ­

P
n rnmn 2 P, with mn the

chemical potential of then component, by using the Gibbs
Duhem relation we can obtain [1]

Mnl ; b
≠2f

≠rn≠rl

­ b
≠mn

≠rl

­
1

rn

dnl 2 ĉnls0d .

(21)
From the expression for the DCF the2 3 2 matrix M
of the binary mixture can be readily computed, and
stability condition follows from the positiveness of i
determinant—since all its elements are positive. By de
ing hn ; s3

nrn, the packing fraction of speciesn; h ;
h1 1 h2 ­ j3, the total packing fraction of the fluid
r ; s1ys2, the large-to-small side ratio (r $ 1); andx ;
h1yh, the relative packing fraction of the large compone
a tedious but straightforward calculation yields

r1r2jMj ­
h2

s1 2 hd4

∑
1 1

4
h

1
1

h2

2
3sr 2 1d2

r
xs1 2 xd

∏
, (22)
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FIG. 1. Demixing phase diagram for a binary mixture
parallel hard cubes:h is the total packing fraction andx the
relative packing fraction of the large cubes. Curves repres
the spinodal lines for side ratios 10, 11, 12, 15, 20, and
(from top to bottom).

and thus the mixture is stable provided the express
within square brackets is positive.

An immediate consequence of this result is that the m
ture is stable if and only if1 # r , 5s1 1

p
1 2 1y25d ø

9.98. Above this threshold there is a region where t
mixture phase separates (see Fig. 1), limited below by
curve

h21 ­ 31y2

∑
1 1

sr 2 1d2

r
xs1 2 xd

∏1y2

2 2 . (23)

Thus we have achieved a qualitative agreement with
simulations of Ref. [10]; however, a direct comparison
the results is, perhaps, too naive. In the simulations
authors find demixing forr $ 3, while these calculations
shift this value up toø10. But the simulations are
performed on a lattice, and then the size of the sm
particle (2 lattice spacings in this case) is also importa
for a larger size with the same size ratio implies
larger number of accessible sites on the lattice for
small particles, with the corresponding gain in entrop
Therefore, if the small particles are larger, it is plausib
that the stability of the mixture increases to larger s
ratios. The results for the continuous model we a
dealing with in this Letter would correspond to the lim
s1 °! ` and s2 °! `, while keepings1ys2 constant,
which explains its larger stability. Some simulatio
could ascertain this conclusion.

The two-dimensional case, i.e., a mixture of ha
squares, is a simple reproduction of the calculatio
presented here. This is unusual in view of what happ
for hard spheres [3], for which the FMT can be appli
only in odd dimensions. For cubes the calculations
be done in a similar way no matter what the dimensi
nt
0
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e

e
f
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e
.

e

s
s

n
.

In two dimensions, for instance, the form of the DC
is that of Eq. (1) except for the volume term, which
logically missing. Again the equation of state reproduc
the three first terms of the virial expansion, as expec
from the FMT. The novelty is that it can be show
that the binary mixture of hard squares isalwaysstable,
whichever the size ratio. It is interesting to note that t
authors of Ref. [10] arrived at the same conclusion in th
simulations. Full details on the hard-square mixture w
be given elsewhere [12].

In summary, I have provided in this Letter the DCF o
a new model, namely, a mixture of hard cubes, obtain
by means of the FMT, an approximation introduced
Rosenfeld and thus far applied only to reproduce t
results of a mixture of hard spheres. Apart from th
importance of having analytical results for new mode
of liquids, the relevance of these calculations reli
on the fact that a spinodal instability is predicted f
the binary mixture, in qualitative agreement with th
simulations performed on an equivalent lattice mod
The calculations may serve as a reference for furt
studies on a related system, for instance, the orientatio
freezing of liquid crystals, if the model is extended to
mixture of parallelepipeds, or the polymer collapse,
which Ref. [10] reports some simulations. Of course
would also be interesting to apply these results to
lattice system in order to see whether they can reprod
the simulations quantitatively.
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