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Fluid Mixtures of Parallel Hard Cubes
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The direct correlation function of a fluid mixture of parallel hard cubes is obtained by using
Rosenfeld’s fundamental measure approximation. This approximation is thermodynamically consistent
(compressibility and virial equations of state are equal) and predicts a spinodal instability of the binary
mixture for large-to-small side ratio larger than roughly 10, in qualitative agreement with simulations
on the lattice version of the model. In two dimensions the system never demixes, also in agreement
with the simulations. [S0031-9007(96)00203-7]

PACS numbers: 61.20.Gy, 64.75.+g

The theory of liquids is still looking for its “Ising liquids, either as a reference system for perturbation the-
model,” i.e., an exactly solvable model which providesories [5] or as an ingredient for density functionals of in-
detailed information on the mechanisms involved in liguidhomogeneous liquids [6], the situation is far poorer for
behavior, and against which approximate theories coulddditive fluid mixtures, due to the fact that the PY DCF
be tested. Instead the situation is the opposite, and th@redicts stability of a binary mixture of asymmetric hard
only analytical knowledge we have about liquid modelsspheres for any diameter ratio and any densities of the
has been obtained within the Percus-Yevick (PY) closureomponents [1]. This places the demixing transition out
approximation of the Ornstein-Zernike integral equation,of the scope of an analytical treatment. Furthermore, this
and consists of the direct correlation function (DCF) offact settled the belief that, contrary to what happens in
a fluid mixture of hard spheres with an arbitrary numberother phase transitions (such as freezing), demixing can-
of component species [1], and that of a one-componemiot be driven by a pure entropic mechanism. This conclu-
fluid of adhesive spheres [2]. No other approximationsion was questioned by Biben and Hansen [7], who found,
has provided any new analytical results yet. Recently &y means of a numeric solution of the Ornstein-Zernike
very promising approximate scheme has been proposedguation with a more accurate closure relation, that a mix-
the fundamental measure theo(MT) [3], which, as in  ture of additive hard spheres of diameter ratio larger than
the scaled particle theory, is based upon an interpolatioB and similar concentrations demixes. Further evidence
between the low and high density limits of the fluid. By of this fact has subsequently been provided by means of
an appropriate choice of geometric measures, the FMalternative approximations [8]. The question of whether
provides the following expression for the DCF of a fluid a purely entropic mechanism can account for phase sep-

mixture of hard convex particles: aration was affirmatively answered by Frenkel and Louis
Cuv(®) = [xo + X1Ru(X) + 28,0, (0) + x3V,u,(r)] [9] by providing the exact solution of a two-dimensional
lattice model of two types of particles. For continuous

X fur(r), (1) three-dimensional models the controversy is still open.

whereV,,(r), S,,(r), andR,,(r) are, respectively, the Simulations cannot yet help because for too asymmet-
volume, surface, and mean radius of the overlap regionic mixtures relaxation times are prohibitively large [7].
of particles of speciex. and » whose center-to-center Nevertheless, a recent simulation of a three-dimensional
vector isr; f,,(r) is the Mayer function, and thg;’s are  lattice model of hard cubes [10] provides strong evidence
density-dependent coefficients which can be obtained bgf phase separation for mixtures of cubes of side ratio 3,
means of the scaled particle prescription. When appliegvhile no such evidence exists when the side ratio is 2 (in
to a mixture of hard spheres, Eq. (1) reproduces the PYoth cases the side of the small cubes is 2 lattice spac-
solution; besides, the same scheme can be generalizeditmgs). Besides its computational simplicity, this model is
any odd dimension and thus obtain the DCF of mixturesnteresting on its own because even in the mixed phase it
of hyperspheres (in one dimension it reproduces the exactan completely fill the whole space at close packing, and
DCF). In spite of these remarkable results, the FMT hasherefore there is no trivial volume-driven phase separa-
never been applied to any molecular shape other thation. For the continuous version of the model, the fourth
spheres, and it has recently been shown that, in generairder virial expansion of the pair correlation function di-
Eqg. (1) cannot be obtained for arbitrary molecular shapeserges at contact when the side ratio goes to infinity [10],
without further approximations [4]. thus suggesting the existence of a demixing transition.
While the one-component hard-sphere model has pro- In this Letter | will show how the FMT provides an
vided an excellent starting point for the study of simpleexpression for the DCF of a mixture of parallel hard
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cubes. By means of this function the free energy of the — f N O dr’ 6
mixture can be computed, and its concavity requirement o(r) %- pu(r) g n (r = r)dr,  (63)
leads to a spinodal instability for a large enough side ratio. 1

The starting point of the FMT is the choice of the ni(r) =) f pu(l‘/)ﬂwﬁ)(l‘ —r')dr’, (6b)
geometric measures. This can be easily done if the ©
Fourier transform of the Mayer function can be expressed — f N — ) dr' 6
as a sum of products of single particle functions. In our na(r) % pulr)w, (r = r)dr, (6c)
case, the Mayer function of two parallel hard cubes of
sideso, ando, is simply ny(r) = f puwd(x —r)dr’ (6d)

M

fur(®) = =0(ouy = lDO(ouy = IyDO(0 = I2D), (the numerical coefficients have been chosen for conve-

(2) nience). The uniform limit ofz;(r) is &; (i = 0,3), and
O(u) being the Heaviside step functior=( for x = 0  that of n;(r) is &u/3 (j = 1,2), whereu = (1,1,1)
and =0 otherwise), ando,, = (o, + 0,)/2. There- and the¢’s are the average density, mean radius, surface,
fore, since the Fourier transform of any of the step func-and volume of the cubes:
tions appearing in (2) is o
(0. €1, 62, 63) = Z(l, %,60,%,0',3‘)/)#- (7)
o

o] ) 1 R
| axet 0, — 1) = 05 ® _ | |
e The ith averaged densityi = 0,1,2,3) is a function

+ 2,k 2, (K)], with dimensions (volume!~)/3; therefore ®, whose
A dimensions arévolume !, can be expanded as
#u(k) = 2k~ 'sin(o,k/2) and (k) = 2codo,k/2), _
then the Fourier transform of the Mayer function can be © = ang + Anny + Bnonon,, (8)
expressed as wherea, A, and B are, respectively, a scalar, a 2-index
. tensor, and a 3-index tensor, all dependentngn The
7, = —[WPK)WwOK) + v Q)3 (k scaled-particle prescription imposes dnthe following
Fur () 8[W“( Py ) i () (k) differential equation [3]:
+ wOm) - v + wOK) - wO(k
W, (k) - W (k) + W, (k) - WP (k)] _(I)JFZW@JF”O:@’ ©)
(3) m 9P u onj
where which yieldsa = ag — In(1 — n3), A= (1 — n3) Ao,
) and B= (1 — n3) 2By, with ay, A, and B, denoting a
W (k) = 7, (k)7 (ky)7u(ks), (4a)  constant scalar, a constant 2-index tensor, and a constant
3-index tensor. The vanishing of the excess free energy
per particle in the zero density limit leads tp = 0.
Wff)(k) = (& (k) (k)70 (ko) 70 (k) (k)7 (), On the othe.r ha.n_d, the uniform limit of t.h|s free energy
s ()rs (Ve (k) (4b) imposes a simplified form for the tensors:
Tulke)T ,
# TR (Ao)ij = aju;u; + y16;j, (10a)
W,(,,l)(k) = (%M(kx)Z;L(ky)Z/L(kz)’ Z,u(kx)%y,(ky)z,u(kz)» (BO)ijk = au;u;uy + ’)/211,'5,']', (10b)
Lu(k) (k)7 (k2)) (4c)  ay, andy,, being numerical coefficients. Then
+ .
® = — noIn(1 — n3) + amlnzl ying - mp
2OK) = 7 (k)G (k)7 - m
W, (k) g,u(kx)g,u(ky)g,u(kz)- (4d) . a2n% + yamoms - Mo (11)
Now that we have identified the so-called fundamental (1 — n3)? ’

measures, the FMT postulates the following excess (OV&[ e, = n. - u (i =102
the ideal one) free energy functional of the set of density Now (/ve haive WO rouEes.to obtain the DCF of the fluid

profiles for each component [3]: mixture: (i) from Eqs. (5). (6), and (11), as [6]
BF*[{pu(r)}] = f dr ®(n;(r),n;()})  (5) N _ g OFTHpu()i]
© n;i(r),n; cw(r—r)——ﬁm{ . (12)
I v Pplt)i=1Pp

(B! = kgT), whered is assumed to be a function of the and (ii) from Eq. (1), by explicitly obtaining the involved
following weighted densities: functions. This latter expression can easily be computed
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because the overlap region of two parallel cubes of sideable property of beinthermodynamically consistenith-
o, and o, is a parallelepiped of sides,,(x), L,,(y), out having imposed such a feature anywhere in the ap-

and L,,(z) [provided they do overlap, i.ef,,(r) =  proximate scheme. Furthermore, this (unique) equation
—1], where of state matches the second and third virial coefficients,
— Ay sl = Ay, which can be readily computed to & p? = &&; +

_ | Oupr
Luv(s) = {la'#,, — sl it lsl > A, BB 3618 and Bap? = &8 + 261626 + £/108 (where
(A = o — @,1/2). Therefore p = Z# pu = &o), but this is implicitly assumed in the

theory [3].
Viur(r) = Ly (X)L (y)Luy(2), (14a) A direct comparison with the simulations of Ref. [10]

is meaningless, because the latter are performed on a
Suv(r) = 2{L 4 (X)L, (y) + Luy (X)L (2) lattice system with a lattice spacing comparable to the

small particle size; moreover, there are no other results
of this kind available for this model, so the accuracy of

1 the result just presented still has to be tested. For the
Ry (r) = _{Lf“’(x) t Luy(y) + L@} (40) e component system, however, both the exact virial

By matching both expressions of the DCF it follows thatcoefficients and the virial expansion of approximate
a; =0,y =3, a, = 5/432, andy, = —1/48. Then theories (such as PY) are known up to seventh order

+ Luy(y)Lu(2)}, (14b)

1 [11]. From them we can see that the values obtained from
X0 = , (15a) Eqg. (18) match neither the exact ones nor those obtained
I =& from the PY approximation, from the fourth coefficient
& on. Thus we can conclude that the present results are—
X1 = m (15b) s expected—approximate, but they differ from the PY
» approximation, contrary to what happens for hard spheres
X2 = _ & + LL, (15¢) (the equivalence for hard spheres might indeed be an
(I —&)2 36— &) exception rather than a rule).
& 2816, 1 53 But the most striking consequence which follows from

X3= 7ot o ua t a7 (15d)  the results presented thus far is the prediction of a spinodal
(1 = &) (1= &) 36 (1 ~ £3) instability of a binary mixture of hard cubes for large
enough side ratio. Furthermore, this spinodal can be
3 analytically computed within this approximation. Let us
b = —¢&lIn(l — &) + 5152 R & ) see how it can be done. The instability is caused by
— & 216 (1 — &) a violation of the concavity of the free energy. The
(16) concavity of this function can be expressed as the positive
definiteness of the hessian matrix of the free energy per
unit volumef = F/V as a function of the partial densities

and the excess free energy per unit volume turns out tQ
be, in the uniform limit,

The compressibility equation of state

8 P _ . ZP#EI-W(O) 17) P Sincef is given byf = >, p,u, — P, with u, the
9pu m chemical potential of the component, by using the Gibbs-
leads to Duhem relation we can obtain [1]
2
&o b6 1 s Moo= g S gy Lo
pc = + + 18 va =B B Sua — €2(0).
P 1 — & (1 — &) 108 (1 — &) (18) p,IpA aipr Py
On the other hand, the virial theorem provides a (21)
different expression for the pressure: From the expression for the DCF thleX 2 matrix M
v 1 _ of the binary mixture can be readily computed, and the
BP" =&+ + %p“p”fd” VS ur®)g v (r). stability condition follows from the positiveness of its

determinant—since all its elements are positive. By defin-

) ) i ) . (19) ing m, = o3 p,, the packing fraction of specieg n =
with _g,w(r.) the pair correlation function. Straightforward m + m = &, the total packing fraction of the fluid;
manipulations lead to r = o/0», the large-to-small side ratie (= 1); andx =

v s 11/, the relative packing fraction of the large component,
BP" = &o 4;’)“’)”0’” a tedious but straightforward calculation yields
Tun T 2 4 1
X f dy[ dz cyp(oy,,.y,2), (20) p1p2IM| = n—[l + — + =
0 0 mv uvr o > (1 _ 77)4 n nz
from which it follows that P = P¢. The expression 3(r — 1)?
found for the DCF of this system has thus the remark- - , (1=, (22
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1.0 — In two dimensions, for instance, the form of the DCF
\/ is that of Eq. (1) except for the volume term, which is
logically missing. Again the equation of state reproduces
the three first terms of the virial expansion, as expected
from the FMT. The novelty is that it can be shown
that the binary mixture of hard squaresalsvaysstable,
whichever the size ratio. It is interesting to note that the
authors of Ref. [10] arrived at the same conclusion in their
simulations. Full details on the hard-square mixture will
be given elsewhere [12].
In summary, | have provided in this Letter the DCF of
a new model, namely, a mixture of hard cubes, obtained
by means of the FMT, an approximation introduced by
0.0 . Rosenfeld and thus far applied only to reproduce the
0.0 05 1.0 results of a mixture of hard spheres. Apart from the
X importance of having analytical results for new models
FIG. 1. Demixing phase diagram for a binary mixture of of liquids, the relevance of these calculations relies
pe:re:]lel haf?(_cut:‘es‘r}t, is thf6ttt10t6|ll paCking fracgon and the r&n the fact that a spinodal instability is predicted for
relative packing fraction ot ine largeé cubes. LUIvVes représeithe hinary mixture, in qualitative agreement with the
E?r%nfﬁ'(?()dal lines for side ratios 10, 11, 12, 15, 20, and Simulations performed on an equivalent lattice model.
p to bottom). )
The calculations may serve as a reference for further
._studies on a related system, for instance, the orientational
Iﬂeezing of liquid crystals, if the model is extended to a

W'T'n. squa(;t_—:- ?rackets IS posmvfet.h_ itis that the mi mixture of parallelepipeds, or the polymer collapse, of
nimmediate consequence ot this resutIs that th€ MiXy, picy Ref. [10] reports some simulations. Of course it

tureis stableifand only if = r <'5(1 + 1 = 1/25) = would also be interesting to apply these results to the

9.98. Above this threshold there Is a_re_gion where thejice system in order to see whether they can reproduce
mixture phase separates (see Fig. 1), limited below by thg . < lations quantitatively.

curve

_ /
al— 31/2[1 + gx(l - x)}1 L 2. (23)
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