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Lyapunov spectra are obtained numerically for the Lennard-Jones liquid for a range of temperatu
An approximation scheme for calculating the Lyapunov spectrum is described, assuming knowledg
(i) the instantaneous normal mode spectrum which characterizes the local potential energy lands
and (ii) a decorrelation time. The adaptation, for this purpose, of an analytical relation by Newm
is described. The temperature dependence of the maximum Lyapunov exponent, calculated wit
ansatz for the decorrelation time, is shown to be in excellent agreement with simulation resu
[S0031-9007(96)00182-2]

PACS numbers: 61.20.–p, 05.45.+b
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Chaotic dynamics in classical many body systems h
increasingly come under study in research aimed at ch
acterizing macroscopic behavior in terms of fundamen
microscopic dynamics [1–3]. In particular, considerab
progress has recently been made in calculating transp
coefficients by analyzing the chaotic dynamics in classic
fluids [1,2]. Among the principal quantities of interest i
studying chaotic dynamics are the Lyapunov exponen
which quantify the exponential separation of nearby tr
jectories in a chaotic system. For systems with many d
grees of freedom, however, the calculation of Lyapun
exponents is challenging, both analytically and in simul
tion. Few analytical schemes exist for such calculation
Although reliable simulation methods exist, the comp
tational expense is by no means trivial if one wishes
calculate all the Lyapunov exponents, i.e., the Lyapun
spectrum, in a many body system. Methods for calc
lating the Lyapunov spectrum by means other than
rect simulation are thus of considerable interest. Suc
method is presented in this Letter, wherein the Lyapun
spectrum for the Lennard-Jones liquid is calculated fro
the knowledge of its average potential energy landsca
The Lyapunov spectra calculated thus are compared w
spectra obtained from simulations.

The multidimensional potential energy landscape h
recently been studied for a variety of systems [4–7], wi
the aim of elucidating a range of macroscopic dynam
cal phenomena. Thelocal potential energy landscape i
characterized by the “instantaneous normal mode” (INM
spectrum [5,6]. The average potential energy landsca
and hence the INM spectrum, depends on the equilibriu
sampling of configurations, which is determined by sy
tem parameters such as temperature and density.
INM spectrum is obtained as the equilibrium ensemb
average over configurations of the square roots of cur
tures of the potential energy surface [i.e., eigenvalues
the matrix of potential energy second derivatives (He
sian)] defined at a given configuration. Thus, the IN
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spectrum is anequilibrium property of the system, which
may be calculated in principle by the methods of eq
librium statistical mechanics. Indeed, such a calculatio
starting from the interaction potential, has substantia
been accomplished for simple liquids [6]. The INM spe
trum of a liquid in general has both real and imagina
frequencies, since typical configurations of a liquid a
not in mechanical equilibrium.

The time evolution of infinitesimal displacements from
the reference trajectory, from which Lyapunov exponen
are calculated, is governed by the Hessian matrix eva
ated along the reference trajectory. The full spectrum
Lyapunov exponents may be calculated from the eig
values of the6N 3 6N (N is the number of atoms) dy-
namical matrixSstd, whose time evolution is given by

ÙSstd ­

µ
0 1

2V 00std 0

∂
Sstd, V 00std ­

√
≠2V

≠qi≠qj

!
,

(1)
whereV 00std is the time dependent Hessian matrix,1 and
0 represent3N 3 3N unit and null matrices. The first
(second)3N rows of Sstd contain position (momentum)
coordinatesq (p). Note thatSstd depends nontrivially
only on V 00std. If sjstd, j ­ h1, 2, . . . , 6Nj are the eigen-
values offSstdT ?Sstdg1y2, the Lyapunov exponentslj are
given bylj ­ limt!`s1ytd lnsj.

I first calculate Lyapunov spectra in standard classi
molecular dynamics simulations [8], using the nume
cal procedure suggested by Eckmann and Ruelle [9]
a system of 32 atoms interacting via the Lennard-Jon
potential, at reduced densityrp ­ 1, for a range of tem-
peratures fromTp ­ 0.401 to 6.808. Plottingjy6N as a
function of lj (arranged in increasing order) one gets t
cumulative Lyapunov spectrumHsld, dHsldydl ; Lsld
being the spectral density or the Lyapunov spectrum.
conservative Hamiltonian systems, the Lyapunov exp
nents come in conjugate pairs, each of which add
zero [10], and thusHsld ­ 1 2 Hs2ld. The cumulative
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spectrum is shown forT p ­ 1.271 in Fig. 1 (the spectrum
is shown only for negative exponents exploiting the abo
mentioned symmetry). For the entire range of tempe
tures studied, I find thatHsld can be fit very well by the
form

Hsld ­
1
2

√
1 1

arctansuld
arctansulmaxd

!
, (2)

corresponding to a Lorenzian Lyapunov spectrumLsld in
the scaled variablesuld, for 2lmax # l # lmax. The
temperature dependence oflmax is shown in Fig. 2 (the
theoretical calculation shown in Fig. 2 is discussed lat
The inverse width of the Lorenzian,u, is a decreasing
function of temperature, varying roughly asTp21 (data
not shown). This generic form of the spectra is differe
from those proposed in, e.g., [11]. A detailed discuss
of the form of Lyapunov spectra is deferred to a futu
publication.

I now develop an approximation scheme (along sim
lar lines to Ref. [12]) for calculating the Lyapunov spe
trum in terms of the INM spectrum. For largeN, the
eigenvalues ofV 00std may be expected (and assumed fro
here on) not to change witht. The eigenvectors, how
ever, do change and contain all the nontrivial informat
regarding the time dependence ofSstd if the INM spec-
trum is known. If it is assumed that a time scalet can be
identified over which the eigenvectors become comple
decorrelated from their initial state (i.e., assume a sim
relaxation behavior), then with the specific model of th
relaxation which assumes that the eigenvectors (i) rem

FIG. 1. Cumulative Lyapunov spectra forTp ­ 1.271 (a)
obtained in simulation. (b) Fit [Eq. (2)] to simulation spectru
in (a). (c) Spectral density from fit (b). Cumulative spec
in the random matrix approximation witht ­ 0.225: (d)
Numerical evaluation. (e) Calculated from Eq. (5) witho
scaling sp, qd vector elements. (Note that the Lyapuno
exponent values in this case have been divided by 3 to b
them into the same range as the rest.) (f ) calculated fr
Eq. (5) after scalingsp, qd vector elements with scale factorh
[Eq. (9)].
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fixed for intervalsfsi 2 1dt, itg, i ­ 1, 2, . . ., and (ii) are
uncorrelated between successive intervals, the expres
in Eq. (1) forSstd at t ­ nt simplifies to

Ssntd ­
nY

i­0

Si , (3)

whereSi are obtained by integrating Eq. (1) betweent ­
si 2 1dt and t ­ it. Let gj be the eigenvalues ofV 00

and vj ­ jgjj
s1y2d. Defining Csvj , td ; cossvjtd and

Ssvj , td ; sinsvjtd if gj . 0, Csvj , td ; coshsvjtd
and Ssvj , td ; sinhsvjtd if gj , 0, integrating Eq. (1)
betweent ­ si 2 1dt and t ­ it leads to the explicit
expression ofSi ,

Si ­

µ
Ni 0
0 Ni

∂ µ
CCC SSS 1
SSS 2 CCC

∂ µ
NT

i 0
0 NT

i

∂
, (4)

where Ni is the random3N 3 3N orthogonal matrix
defining the basis ofV 00 for fsi 2 1dt, itg, CCC k,l ­
Csvk , tddk,l, SSS 1k,l ­ s1yvkdSsvk , tddk,l, and SSS 2k,l ­
7vkSsvk , tddk,l [where the 2 s1d applies when
gk . s,d 0). The model of relaxation for the eigen
vectors is crude, but it allowsSsn td to be calculated in
terms of (i) the INM spectrum, (ii) the decorrelation tim
t, and (iii) a statistical description of the eigenvectors.

Under these assumptions, I first calculate Lyapun
spectra numerically, by (i) using INM spectra obtain
from simulations to define a fixed set of eigenvalu
of V 00, (ii) generating random “eigenvectors” ofV 00

[13] for successive time intervals, and (iii) specifying
decorrelation timet. For all studied values ofT and
t (above a lower cutoff), Eq. (2) describes the resulti
Hsld well, with u andlmax increasing witht. Hsld for
T p ­ 1.271 and t ­ 0.225 is shown in Fig. 1. While
lmax is seen to be close to the simulation value, t

FIG. 2. The maximum Lyapunov exponent as a functi
of temperature from simulation, and as calculated from
empirical form for the INM spectrum and theansatzfor the
decorrelation time,t ­ 1.79yjvusT dj.
3739
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inverse widthu is higher. In general, while a choic
of t can be found (for a givenT p) which leads to a
reasonable approximation to the simulation spectrum
lmax, u individually), exact agreement for bothlmax and
u is not found for anyt.

Under the assumptions made above forSstd, and
the assumption that vectors̃xj ; xjyjxjj (where xj ­Qj

i­0 Six0, for arbitrary x0) have an invariant uniform
distribution, Eckmann and Wayne [12] argued that
analytical result due to Newman [14] for calculating t
Lyapunov spectrum of a product of random matrices m
be applied to Hamiltonian systems. Considering matri
Ai such thatAT

i Ai is equidistributed withOD2OT (where
D is diagonal andO are orthogonal matrices whos
columns are uniformly distributed) and assuming tha
nonrandom asymptotic (as matrix size! `) spectrum
Kssd of eigenvalues ofsAT

i Aids1y2d exists, Newman [14]
showed thatHsld is given byZ s2Kssd ds

Hsld exps2ld 1 f1 2 Hsldgs2 ­ 1 , (5)

for l # lmax, where

lmax ­
1
2

log

µZ
s2Kssd ds

∂
. (6)

The eigenvalues ofsST
i Sid, with Si as in Eq. (4), are

s2
j6 ­ E svj , td 6 fE svj , td2 2 1gs1y2d, (7)

where E sv, td ­ Csv, td2 1 AsvdSsv, td2 and
Asvd ­ sv22 1 v2d. Kssd is the distribution of
sj ’s. If applicable, Eq. (5) provides an analytical e
pression for the cumulative Lyapunov spectrum in ter
of the INM spectrum, under the stated approximatio
However, when Eq. (5) is used to calculateHsld, the
result is in glaring disagreement with both the simulati
and the numerical random matrix calculation, in both t
shape of the spectrum and the range ofl values. An ex-
ample is shown in Fig. 1 forTp ­ 1.271 andt ­ 0.225
(note thatl values for this case have been divided by
in the graph). Such disagreement is found for all theTp

and t values studied. Hence the applicability of Eq. (
to the present problem needs reexamination.

The assumption of a uniform, invariant distribution f
x̃j turns out not to be valid for Hamiltonian system
as was suspected in [12]. This can be demonstrated
considering the distribution of elements of vectorsx̃j. For
large N , if x̃j has a uniform distribution, the individua
elements ofx̃j have a Gaussian distribution with mea
zero and a variance that is the same for all elements [
Calculating distributions for variousq andp elements of
vectorsx̃j during the numerical evaluation of Lyapuno
spectra, I find that for a given vector the distributions f
q elements are different from those ofp elements, but all
q elements (and, allp elements) have the sameGaussian
distribution. An example is shown in the inset of Fig.
3740
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The standard deviation ofq elementssq (and sp) is a
function of bothTp andt. Figure 3 shows the variation
of sq with t for Tp ­ 1.271.

The calculation ofHsld can be recast in a form tha
makes Eq. (5) applicable by using a metric that impo
different scales (proportional tosq and sp) on the q
and p subspaces. This is equivalent to reexpressing
matricesSi by changingSSS 1 to h21SSS 1 and SSS 2 to hSSS 2
in Eq. (4), whereh ­ sqysp. The eigenvalues ofSi

are still given by Eq. (7), but withAsvd ­ shvd22 1

shvd2.
I calculate the scale factorh as follows. Consider-

ing normalized vectors̃xj ­ xjyjxjj, xj ­
Qj

i­0 Six0, and
writing x̃j ­ s

qj
pj d, we have

jxjj

jxj21j

µ
qj

pj

∂
­ Sj

µ
qj21
pj21

∂
, (8)

where q and p are vectors of length3N, and Sj is
given by Eq. (4). ForN ! `, the elements ofq, p, and
Nj can be written asqjk

­ sqj
ns0, 1d, pjk

­ spj
ns0, 1d

[with the constraints3Nd ss2
qj

1 s2
pj

d ­ 1], and Njk,l ­

s1y
p

3Ndns0, 1d, where ns0, 1d is a Gaussian random
number with zero mean and unit variance. Demand
then thatsqj ­ sqj21 ; sq, andspj ­ spj21 ; sp (so
that the distribution of̃xj is invariant withj) in Eq. (8),
one obtains coupled quadratic equations fors2

q and s2
p.

The resultingsq is shown in Fig. 3. The calculated
values match the numerical results quite well, and
differences are within the expected deviation for the fin
matrix size. The ratio ofsq andsp is

h ;
sq

sp
­

√P
k v

22
k Ssvk , td2P

k v
2
kSsvk , td2

!
1y4. (9)

FIG. 3. Variation ofsq with t for T p ­ 1.271. The solid
line shows the numerical values. The dashed curve shows
calculated result. The inset shows normalized histograms
values of position and momentum elements forT p ­ 1.271 and
t ­ 0.225.
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Note thath defines an inverse frequency. The cumulati
spectrum obtained with the scaled eigenvalues is show
Fig. 1 and is seen to be in vastly better agreement with
numerical random matrix spectrum.

It is now possible, within the above framework, t
calculate good approximations to the Lyapunov spec
for a liquid, given the INM spectrum and a meaningf
estimate of the decorrelation time. I now calculate t
maximum Lyapunov exponent, assuming a simple fo
for the INM spectrum and anansatzfor the decorrelation
time. The INM spectrum is expressed as

rsvd ­ rusvd 1 rssvd , (10)

where ru (rs) refers to the imaginary (real) frequen
cies. Both ru and rs are chosen to depend onjvj

as jvj2 exps2cjvj2d, and are normalized tofusT d and
1 2 fusT d, respectively, wherefusT d is the fraction of
imaginary frequencies. The coefficients in the expon
cu, cs (for ru and rs) are chosen to make the mean fr
quenciesjvuj and vs calculated from the form above
equal those obtained in simulation. I use the tempera
dependence offusT d, jvuj, and vs as obtained directly
from the simulation results and a simple interpolation b
tween simulation data points.

An obvious guess for the decorrelation timet is that
this time scale is set by the mean imaginary frequen
in the INM spectrum, since imaginary frequency mod
cause exponential “runaway” motion away from th
region where the harmonic approximation of the poten
around the initial point is valid. Thus, I chooset to be
inversely proportional to the mean imaginary frequen
i.e., t ­ kyjvusT dj; k is a free parameter. With thes
empirical forms, and with Eq. (7) for the eigenvalues
the S0 matrices, the temperature dependence oflmax is
calculated from Eq. (6). The result is shown along w
the simulation result in Fig. 2, with the choicek ­ 1.79.
The agreement between the calculated and simula
values is excellent except for small deviations at t
lowest temperatures, indicating both the validity of t
ansatzfor t and that the simple form chosen for the INM
spectrum is adequate.

Results presented here demonstrate that the Lyapu
spectrum in many body systems can feasibly be cal
lated in terms of a local description of the potential e
ergy landscape, the INM spectrum. A direct relationsh
can often be demonstrated for simple low dimensional
namical systems between Lyapunov exponents and lo
rates of separation of trajectories. The results presen
here show that analogous relations can be obtained
higher dimensional systems as well. While some aspe
of the calculations here need further examination, ma
interesting questions, such as the temperature and de
dependence of the shape of the Lyapunov spectra, ca
addressed following this approach.
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