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Lyapunov Spectra, Instantaneous Normal Mode Spectra, and Relaxation
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Lyapunov spectra are obtained numerically for the Lennard-Jones liquid for a range of temperatures.
An approximation scheme for calculating the Lyapunov spectrum is described, assuming knowledge of
(i) the instantaneous normal mode spectrum which characterizes the local potential energy landscape,
and (ii) a decorrelation time. The adaptation, for this purpose, of an analytical relation by Newman
is described. The temperature dependence of the maximum Lyapunov exponent, calculated with an
ansatzfor the decorrelation time, is shown to be in excellent agreement with simulation results.
[S0031-9007(96)00182-2]

PACS numbers: 61.20.—p, 05.45.+b

Chaotic dynamics in classical many body systems haspectrum is arequilibrium property of the system, which
increasingly come under study in research aimed at chamay be calculated in principle by the methods of equi-
acterizing macroscopic behavior in terms of fundamentalibrium statistical mechanics. Indeed, such a calculation,
microscopic dynamics [1-3]. In particular, considerablestarting from the interaction potential, has substantially
progress has recently been made in calculating transpdseen accomplished for simple liquids [6]. The INM spec-
coefficients by analyzing the chaotic dynamics in classicatrum of a liquid in general has both real and imaginary
fluids [1,2]. Among the principal quantities of interest in frequencies, since typical configurations of a liquid are
studying chaotic dynamics are the Lyapunov exponentsjot in mechanical equilibrium.
which quantify the exponential separation of nearby tra- The time evolution of infinitesimal displacements from
jectories in a chaotic system. For systems with many dethe reference trajectory, from which Lyapunov exponents
grees of freedom, however, the calculation of Lyapunoware calculated, is governed by the Hessian matrix evalu-
exponents is challenging, both analytically and in simula-ated along the reference trajectory. The full spectrum of
tion. Few analytical schemes exist for such calculationsLyapunov exponents may be calculated from the eigen-
Although reliable simulation methods exist, the compu-values of the6N X 6N (N is the number of atoms) dy-
tational expense is by no means trivial if one wishes tmamical matrixS(r), whose time evolution is given by
calculate all the Lyapunov exponents, i.e., the Lyapunov 0 1 92y
spectrum, in a many body system. Methods for calcu- S(¢r) = <—V”(l) 0>S(r), V(1) = ( )
lating the Lyapunov spectrum by means other than di- 9qi09;
rect simulation are thus of considerable interest. Such a ()
method is presented in this Letter, wherein the LyapunowhereV’(r) is the time dependent Hessian matrixand
spectrum for the Lennard-Jones liquid is calculated frond) represenBN X 3N unit and null matrices. The first
the knowledge of its average potential energy landscapésecond)3N rows of S(7) contain position (momentum)
The Lyapunov spectra calculated thus are compared witboordinatesg (p). Note thatS(z) depends nontrivially
spectra obtained from simulations. only onV”"(¢). If oj(r),j ={1,2,...,6N} are the eigen-

The multidimensional potential energy landscape hasalues of[S(r)"-S(z)]'/2, the Lyapunov exponents; are
recently been studied for a variety of systems [4—7], withgiven by A; = lim,—.(1/1)Ino;.
the aim of elucidating a range of macroscopic dynami- | first calculate Lyapunov spectra in standard classical
cal phenomena. Thiecal potential energy landscape is molecular dynamics simulations [8], using the numeri-
characterized by the “instantaneous normal mode” (INM)cal procedure suggested by Eckmann and Ruelle [9] for
spectrum [5,6]. The average potential energy landscape, system of 32 atoms interacting via the Lennard-Jones
and hence the INM spectrum, depends on the equilibriunpotential, at reduced densig/ = 1, for a range of tem-
sampling of configurations, which is determined by sys-peratures fron7* = 0.401 to 6.808. Plotting;j/6N as a
tem parameters such as temperature and density. THenction of A; (arranged in increasing order) one gets the
INM spectrum is obtained as the equilibrium ensemblecumulative Lyapunov spectrui(A), dH(A)/dA = L(X)
average over configurations of the square roots of curvabeing the spectral density or the Lyapunov spectrum. In
tures of the potential energy surface [i.e., eigenvalues ofonservative Hamiltonian systems, the Lyapunov expo-
the matrix of potential energy second derivatives (Heshents come in conjugate pairs, each of which add to
sian)] defined at a given configuration. Thus, the INMzero [10], and thug/(A) = 1 — H(—A). The cumulative
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spectrum is shown faf* = 1.271 in Fig. 1 (the spectrum fixed for intervals[(i — 1)7,i7],i = 1,2,..., and (ii) are
is shown only for negative exponents exploiting the aboveincorrelated between successive intervals, the expression
mentioned symmetry). For the entire range of temperain Eq. (1) forS(z) att = n7 simplifies to
tures studied, | find thakZ(A) can be fit very well by the n
s(r) =[]si, (3)
i=0

form
1 arctarf@ 1)
HA) = |1+ , whereS; are obtained by integrating Eq. (1) betwees

Aretand (2)
2 arctanf Amax :
corresponding to a Lorenzian L r:l un0\3 spectrin) in (i = 1)7 and: = ir. Lety; be the eigenvalues oV
P g yap P and w; = |y,;|1/?. Defining C(w;, 7) = codw;r) and

the scaled variabl€¢d ), for —Apax = A < Apax. The L . i
temperature dependence bf.x is shown in Fig. 2 (the S(‘SJS:T) = sin(w;7) if yf.f> 0, Céw.f’ m) = .COS[I(E‘”J‘T)l
theoretical calculation shown in Fig. 2 is discussed Iater)an (wf’? P sinf(@; 7) | 72 < , Integrating Eq. ( )
The inverse width of the Lorenziam, is a decreasing betweens = (i — I)7 and¢ = i leads to the explicit
function of temperature, varying roughly &' (data expression of;,
not shown). This generic form of the spectra is.differe.nt (N0 C S{\(N' o
from those proposed in, e.g., [11]. A detailed discussion Si = < 0 N; )(52 C >< 0 N,T> @
of the form of Lyapunov spectra is deferred to a future
publication. where N; is the random3N X 3N orthogonal matrix
| now develop an approximation scheme (along simi-defining the basis ofV” for [(i — D7, it], Cis =
lar lines to Ref. [12]) for calculating the Lyapunov spec- C(@k. )8k, S, = (1/wi)S(wr, 7)0ks, and Sy, =
trum in terms of the INM spectrum. For large, the F@iS(@k, 7)8; [where the — (+) applies when
eigenvalues oV’ (¢) may be expected (and assumed from¥x > (<) 0). The model of relaxation for the eigen-
here On) not to Change with The eigenvectors' how- vectors iS. CrUde, but it a”OV\/S(I’l“T) to be CalCUla..ted -in
ever, do change and contain all the nontrivial informationterms of (i) the INM spectrum, (i) the decorrelation time
regarding the time dependence $ff) if the INM spec- T and (iii) a statistical description of the eigenvectors.
trum is known. If it is assumed that a time scalean be Under these assumptions, | first calculate Lyapunov
identified over which the eigenvectors become completelypPectra numerically, by (i) using INM spectra obtained
decorrelated from their initial state (i.e., assume a simplé'om simulations to define a fixed set of eigenvalues
relaxation behavior), then with the specific model of thisof V", (i) generating random *“eigenvectors” ov”

relaxation which assumes that the eigenvectors (i) remailt3] for successive time intervals, and (iii) specifying a
decorrelation timer. For all studied values of" and

0.50 ! ! ' P T (above a lower cutoff), Eq. (2) describes the resulting
* :g; ﬁi'tmt:';‘i';zlaﬁon €a.2) e H(A) well, with @ and A,,x increasing withr. H(A) for
- (c) Simulation: Spectral Density /,/ / T" = 1271 and 7 = 0.225 is shown in Fig. 1. While
5 === (d) Random Matrix: Numerical ‘ i Amax IS Seen to be close to the simulation value, the
E —=-— (e) Random Matrix: No Scaling yal l,//
% m==- (ff Random Matrix: Scaled Vi l,/ 12.0 |
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FIG. 1. Cumulative Lyapunov spectra fdf* = 1.271 (a) 2.0 y ]
obtained in simulation. (b) Fit [Eq. (2)] to simulation spectrum
in (@). (c) Spectral density from fit (b). Cumulative spectra ‘ . ‘
in the random matrix approximation withr = 0.225: (d) 005 20 a0 60 5.0

Numerical evaluation. (e) Calculated from Eq. (5) without
scaling (p,q) vector elements. (Note that the Lyapunov
exponent values in this case have been divided by 3 to brin§lG. 2. The maximum Lyapunov exponent as a function
them into the same range as the rest.) (f) calculated fronof temperature from simulation, and as calculated from the
Eqg. (5) after scalind p, ¢) vector elements with scale factgr  empirical form for the INM spectrum and thensatzfor the
[Eqg. (9)]. decorrelation timey = 1.79/|w,(T)I.

Temperature
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inverse widthé is higher. In general, while a choice The standard deviation of elementso, (and o)) is a
of 7 can be found (for a giverT*) which leads to a function of bothT* and7. Figure 3 shows the variation
reasonable approximation to the simulation spectrum (oof o, with 7 for 7* = 1.271.

Amax, @ individually), exact agreement for bothy,,, and The calculation ofH(A) can be recast in a form that

6 is not found for anyr. makes Eq. (5) applicable by using a metric that imposes
Under the assumptions made above ®f), and different scales (proportional to-, and o,) on the g

the assumption that vectors; = x;/|x;| (wherex; =  andp subspaces. This is equivalent to reexpressing the

[T/—o Sixo, for arbitrary xo) have an invariant uniform matricesS; by changingS; to 7'Sy and S» to 15>

distribution, Eckmann and Wayne [12] argued that ari" Ed. (4), wheren = o,/0,. The eigenvalues o$;

analytical result due to Newman [14] for calculating theare still given by Eq. (7), but withi(o) = (ne)~* +

Lyapunov spectrum of a product of random matrices ma;fﬂw)2- _

be applied to Hamiltonian systems. Considering matrices | calculate the scale facton as follows. Consider-
A; such thatt! A; is equidistributed wittoD207 (where  ing normalized vectors; = x;/|x;|,x; = [Ti= Sixo, and
D is diagonal andO are orthogonal matrices whose writing ¥; = (gj.),we have

columns are uniformly distributed) and assuming that a

nonrandom asymptotic (as matrix size o) spectrum /| <‘Ij> - S(‘lj—l) 8)
K (o) of eigenvalues ofA! A;)(1/? exists, Newman [14] lxj— 11\ Pj APpj-1

showed thati(}) is given by where q and p are vectors of lengtl8N, and S; is

a*K(o)do given by Eq. (4). Folv — o, the elements o, p, and

] HO)exp2h) + [ — HNJo? I, (8 N;j can be written asy;, = o,n(0,1), p;, = 7,,n(0,1)

[with the constraint(3N) (o'gf + af,j) = 1], andN;,, =
(1/+/3N)n(0,1), where n(0,1) is a Gaussian random
1 ’ number with zero mean and unit variance. Demanding
Amax = 5'09]([ 7 K<U)d”>' ©)  then thato,, = o, , = 0y, ando,, = o, = 7, (SO
that the distribution of¢; is invariant with j) in Eq. (8),
one obtains coupled quadratic equations (ﬁjrand 0,2,.
o2 = Flw;,7) = [Ew;, 7)* — 11072, @) The resultingo, is shown in Fig. 3. The calculated
/= values match the numerical results quite well, and the
where FE(w,7) = Clw,7)? + A(w)S(w, 7)? and differences are within the expected deviation for the finite

Aw) = (w2 + w?). K(o) is the distribution of matrix size. The ratio ofr, ando, is

for A = Apax, Where

The eigenvalues dS! S;), with S; as in Eq. (4), are

o;'s. If applicable, Eq. (5) provides an analytical ex- o S W 2S( 2
pression for the cumulative Lyapunov spectrum in terms n=—L— ( k “’k2 Wk, T )1/4. 9)
of the INM spectrum, under the stated approximations. Op 2 @i S(wp, 7)

However, when Eq. (5) is used to calculatd 1), the
result is in glaring disagreement with both the simulation
and the numerical random matrix calculation, in both the
shape of the spectrum and the rangerofalues. An ex- 0.010
ample is shown in Fig. 1 for* = 1.271 and 7 = 0.225
(note thati values for this case have been divided by 3
in the graph). Such disagreement is found for all THe 0.008 L
and 7 values studied. Hence the applicability of Eq. (5) A
to the present problem needs reexamination. © I
The assumption of a uniform, invariant distribution for 0.006 -
X; turns out not to be valid for Hamiltonian systems,
as was suspected in [12]. This can be demonstrated t 0 b
considering the distribution of elements of vectdys For 0.004 ] /,H\\
large N, if %; has a uniform distribution, the individual / 07 o2 oo o2 ok
elements oft; have a Gaussian distribution with mean VECTOR ELEMENT VALUES
zero and a variance that is the same for all elements [15  o.002 ' '
Calculating distributions for varioug and p elements of 00 05 T 10 18
vectorsx; during the numerical evaluation of Lyapunov
spectra, | find th&}t for a given vector the distributions forIine shows the numerical values. The dashed curve shows the
q elements are different from those pfelements, but all calculated result. The inset shows normalized histograms of

q elements (and, ajp elements) have the san@aussian  values of position and momentum elements®r= 1.271 and
distribution. An example is shown in the inset of Fig. 3. 7 = 0.225.

0.012

—— Numerical
——= Theory

e —

—— POSITION

— — MOMENTUM

20

FREQUENCY

FIG. 3. Variation ofo, with 7 for 7% = 1.271. The solid
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Note thaty defines an inverse frequency. The cumulativeNossal, Dr. S. Pajevic, Dr. H. H. Strey, Dr. G.H. Weiss,
spectrum obtained with the scaled eigenvalues is shown iand in particular, A. Botero, Dr. J.D. Bryngelson, Dr. S.
Fig. 1 and is seen to be in vastly better agreement with thElach, and Dr. B.S. Madan for useful discussions and
numerical random matrix spectrum. comments on the manuscript.

It is now possible, within the above framework, to
calculate good approximations to the Lyapunov spectra
for a liquid, given the INM spectrum and a meaningful
estimate of the decorrelation time. | now calculate the  «prasent address: Department of Chemical Engineering,

maximum Lyapunov exponent, assuming a simple form  princeton  University, Princeton, NJ  08544-5263.

for the INM spectrum and aansatzfor the decorrelation Electronic address: sastry@eyor.princeton.edu
time. The INM spectrum is expressed as [1] P. Gaspard and G. Nicolis, Phys. Rev. Lef6, 1693
1990); J.R. Dorfman and P. Gaspard, Phys. Re®&l]
p(@) = pu(@) + ps(@), (10) (28 (13)95); P. Gaspard and J.R. Igorfman,yPhys. REV. E
where p, (p,) refers to the imaginary (real) frequen- 52, 3525 (1995).
cies. Bothp, and p, are chosen to depend o] [2] E.G.D. Cohen, Physica (Amsterdara)3A, 293 (1995);
as |o|? eXp(—cla)Iz), and are normalized t¢f,(T) and HQ&Posch and W.G. Hoover, Phys. Rev. 38, 473

o tesbncs e oo o ponen ) %3 Hinde .. sery. 3 Chem. 137
g9 ; y Ireq g o ch e th P ‘ (1992); R.J. Hinde, R. S. Berry, and D. J. Wales, J. Chem.
cu, ¢s (for p, and py) are chosen to make the mean fre- Phys.99, 2942 (1993).

guencies|w,| and w; calculated from the form above [4] R.S. Berry, Chem. Re\d3, 2379 (1993), and references
equal those obtained in simulation. | use the temperature therein; R. S. Berry and R. Breitengraser-KunZ, Phys Rev.

dependence of,(T), |w,|, and w; as obtained directly Lett. 74, 3951 (1995).
from the simulation results and a simple interpolation be- [5] T. Keyes, J. Chem. Phy401, 5081 (1994), and references
tween simulation data points. therein.

An obvious guess for the decorrelation timeis that ~ [6] Y. Wan and R.M. Stratt, J. Chem. Phyi)Q, 5123 (1994),
this time scale is set by the mean imaginary frequency _ and references therein. _ _
in the INM spectrum, since imaginary frequency modes [7] J.E. Straub and D. Thirumalai, Proc. Natl. Acad. Sci.
cause exponential ‘runaway” motion away from the [8] I\L/JI.%AA?Ignggzc}lggf).Tildesle Computer Simulation of
region where the harmonic approximation of the potential Liduids (Oxford Un.ivérsity Pre)s/s, Oxgord, 1089).
ground the |n|t|al_ point is valid. Thl_Js, I phooeeto be [9] See pp. 650, 651 in J.-P. Eckmann and D. Ruelle, Rev.
inversely proportional to the mean imaginary frequency, " * \jod. Phys57, 617, (1985).

i.e., 7 = k/lo,T)|; k is a free parameter. With these [10] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn,
empirical forms, and with Eq. (7) for the eigenvalues of Meccanical5, 9 (1980).

the S’ matrices, the temperature dependencergf; is  [11] H.A. Posch and W.G. Hoover, Phys. Rev.39, 2175
calculated from Eq. (6). The result is shown along with (1989).

the simulation result in Fig. 2, with the choige= 1.79.  [12] J.-P. Eckmann and C.E. Wayne, J. Stat. PI86.853
The agreement between the calculated and simulation  (1988). o _ .
values is excellent except for small deviations at thd13] These vectors are distributed uniformly over B unit
lowest temperatures, indicating both the validity of the sphere. Such a distribution (and equivalent distributions

. whose projection onto the unit sphere have this property)
ggzittrztfj?\: ?szr(]jigl]gt;he simple form chosen for the INM will henceforth be referred to simply as a “uniform

distribution.”
Results presented here demonstrate that the Lyapungys) c. M. Newman, inRandom Matrices and Their Applica-

spectrum in many body systems can feasibly be calcu- tions, edited by J.E. Cohen, H. Kesten, and C.M. New-
lated in terms of a local description of the potential en- man (AMS, Providence, Rhode Island, 1986), p. 121.

ergy landscape, the INM spectrum. A direct relationshig15] More precisely, vectory; of length M constructed with
can often be demonstrated for simple low dimensional dy- ~ Gaussian random numbers with zero mean and variance
namical systems between Lyapunov exponents and local 1/M are uniformly distributed (as defined in [13]), with
rates of separation of trajectories. The results presented Vi'Vi qual to oneplusdeviations distributed with variance
here show that analogous relations can be obtained for /M. The scalar product of two such vectors is zptos
higher dimensional systems as well. While some aspects ~d€viations distributed with varianck/M. The latter two
of the calculations here need further examination, many results are easily derived by evaluating the mean and vari-

. ; . ) ance ofv;v; andv;-v;. The first statement follows from
interesting questions, such as the temperature and density noting that the joint distribution for the elements ofis

dependence of the shape of the Lyapunov spectra, can be  the multivariate normal distribution with a diagonal co-

addressed following this approach. _ variance matrix with identical elements. This distribution
I thank Professor J.R. Dorfman, Dr. V. di Francesco, s invariant under an orthogonal transformation of vari-

Professor T. Keyes, Dr. A. Latz, Dr. P. Munson, Dr. R. ables.
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