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Nianzheng Cad? Shiyi Chen!? and Zhen-Su Shé
'IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
>Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
3Department of Mathematics, University of Arizona, Tuscon, Arizona 85721
“Department of Mathematics, University of California, Los Angeles, California 90095
(Received 28 August 1995; revised manuscript received 6 March)1996

High-resolution direct numerical simulations of 3D Navier-Stokes turbulence with normal viscosity
and hyperviscosity are carried out. It is found that the inertial-range statistics, both the scalings and the
probability density functions, are independent of the dissipation mechanism, while the near-dissipation-
range fluctuations show significant structural differences. Nevertheless, the relative scalings expressing
the dependence of the moments at different orders are universal, and show unambiguous departure
from the Kolmogorov 1941 description, including tB¢3 law for the kinetic energy. Implications for
numerical modeling of turbulence are discussed. [S0031-9007(96)00251-7]

PACS numbers: 47.27.Gs

The Kolmogorov 1941 similarity theory (K41) [1] of cascade of energy to larger wave-number shells, which are
fully developed turbulence assumes the existence of uneharacterized by anomalous scaling behavior [9] similar
versal statistics of fluctuations at so-called inertial-rangdo what is observed in real turbulence [10]. It is shown
scalesty > ¢ > {,, where{, and{, are the character- [5] that the scaling of the inertial range in the GOY shell
istic length scale of the kinetic energy and dissipationmodel (over 2 decades) depends on a hyperviscosity index
respectively. This hypothesis has a series of implications; (see below), whereas other features such as relative
including the prediction of the independence of the inertiakcaling (see below) remain universal. The hyperviscosity
range on the dissipation mechanism, and2jig@ law for  has also been applied to 3D Navier-Stokes turbulence
the kinetic energy fluctuationsu?) ~ €*/3. Physically, by Borue and Orszag [4]. There is speculation that this
the inertial range is defined by the condition that the meanlependence of the inertial range behavior on dissipation
energy flux is constant. It is known that a constant energynight also survive in the 3D Navier-Stokes turbulence [6].
flux range may exist with anomalous scaling behavior, thdf so, the traditional concept of universality of the inertial
so-called intermittency effects [2—4]. However, accuraterange would be challenged. Since most scaling theories
numerical determination of the inertial-range scaling ex-are based on K41, it is extremely important to resolve this
ponents has been a great challenge due to the finite-ranggsue.
size effects and statistical convergence. In the present study, we have carried out a detailed com-

Recently, the question has been raised as to wheth@arison of the statistics of isotropic turbulence generated
or not the observed large-scale statistical features depery the Navier-Stokes equations with normal and hypervis-
on the mechanism of the energy dissipation [5,6]. An-cous damping. Particular emphasis was given to the scal-
swering this question has significant impact on the nuing dynamics. The hyperviscous damping is expressed in
merical modeling of turbulence and the understanding ofhe wave-number space by |k|**. Whenh = 1, this is
fundamental physics in fluid turbulence. For nearly allthe normal damping for a Newtonian fluid. As— oo
flows of practical and engineering interest, it is impos-and v, = vok;" — 0, the hyperviscous term introduces
sible in the foreseeable future to numerically resolve alinfinite dissipation above the wave numligr and almost
scales from{, to €, using the Navier-Stokes equations. none below. In physical space, such hyperviscous damp-
In one way or another, some artificial damping mechaing corresponds to a coupling which diffuses excitations in
nism must be introduced at a length scale of the nuan undulatory way. The specific questions to be addressed
merical resolutionf,. Whether and how such modeling include to what extent does a hyperviscous field represent a
affects the large-scale dynamicé > ¢,) is a key issue high-Reynolds-number turbulent field? What are the prop-
to the success of the numerical modeling. The existencerties that are independent of the viscous damping mecha-
of universality was often assumed in previous studiesiisms in the 3D Navier-Stokes dynamics?
without documented evidence [4,7]. The main results are as follows: (1) The statistics at

Leveque and She [5] have recently examined this issugear-dissipation-range scaléé ~ ¢,;) are considerably
using a model system of fully developed turbulence, thenodified by the presence of the hyperviscous damping,
so-called GOY (Gledzer-Ohkitani-Yamata) shell modelbut at inertial-range scales there seem to be little affected
[8]. This model is a dynamical system with a chainin the 3D Navier-Stokes dynamics (this result is to be
interaction linking fluctuations at various scales. Incontrasted to the shell model case). (2) While the normal
the statistically stationary state, the system displays &iscous damping is unable to provide a clear inertial range

0031-900796/76(20)/3711(4)$10.00 © 1996 The American Physical Society 3711



VOLUME 76, NUMBER 20 PHYSICAL REVIEW LETTERS 13 My 1996

even with today’s highest Reynolds number achievable 6
(Re, = 210), the hyperviscous damping: > 1) does
display an inertial range which exhibits clear departure
from the K41 description. (3) There appears to be 5
universal relative scaling independent of the damping
mechanism, which deviates also unambiguously from
the K41 description. (4) The energy spectra in the
Fourier spacet (k) for normal viscous fields are affected
through the whole range by so-called “bottleneck” effects,
whereas the hyperviscous fields show a finite inertial
range with exponents which cannot be directly related to 3
the ones obtained from the second-order velocity structure
functions in the physical space. Further investigations
are needed to assess the impact on the measured scaling oL . + 1111 el :

exponents (see [11]). _ . . 005 01 02 05 1 2
The 3D incompressible Navier-Stokes equations with a I

hyperviscous damping, written as FIG. 1. Flatness of velocity increment as a function of
ou/at + V- (uu) = —Vp + (—=1)"1p,V?'u, separationf, for h = 1, h = 2, andh = 8.
V-u=0,

are solved numerically for the periodic boundary condi-
tions. Herep is the pressure. A pseudospectral codepieces. The fragmented field has a more gentle varia-
has been developed using a second-order time-integratidgion, and therefore appears less intermittent. Nevertheless,
scheme [12]. Simulations are carried out with resoluthis fragmentation does not seem to affect the large-scale
tions of 256° and 5123 on the CM-5 at Los Alamos coarse-grained structures, as evidenced by the agreement
National Laboratory and the SP machines at IBM T. Jof the flatness factors &t> 0.2.
Watson Research Center. To obtain a statistically steady This observation may not be surprising, but it provides
state, a forcing is applied to the first wave-number shelh solid ground for large-eddy numerical modeling of tur-
0.5 < k < 1.5 so that at each time step the total energybulent flows. It confirms that the effects of a hyperviscous
of that shell is constant. Time integration up to 60 large-damping on the form of PDFs do not propagate very far
eddy turnover times is performed to collect data for thebeyond the dissipation length scale in 3D incompressible
analysis of the statistical steady state. fluids. The sharp difference from the GOY shell model

The statistics of turbulent fields in the physical spacemay stem from the fact that the number of modes in each
are commonly characterized by the velocity structure funcwave-number octave increaseg /&8, so that many possi-
tions (VSF)U, (€) = (|6u¢|?), wheredu, is the velocity  ble backward propagation events interfere with each other
increment across a distan€e The velocity structure func- and cancel the effects. Similar ideas are suggested by
tions are moments ofu, evaluated from the probability Kraichnan [13].
density functions (PDFsP(6u¢). A somewhat different A further characterization of the statistical state is the
measure of the behavior dt(du¢) is the so-called flat- local rate of change of the velocity structure function, or
ness factorF4(€) = U4(€)/U,(€)?, which indicates how the local scaling exponent, () = d log(8u})/d log .
“flat” the tails of the PDFs are. The higher the flatness facNumerically, {,(£) can be obtained by a least-squares
tor, the flatter the PDFs and more large amplitude eventBt over a small range oft’s, approximating the local
are observed. In Fig. 1, we compaFg({) for a normal slope in the log-log coordinate. In Fig. 2, we report
viscous dampings = 1) with that fork = 2 andh = 8 H(€) and &(€) for the whole range oft for A = 2.
at all length scales. It can be clearly seen that, at larg&he data are obtained using a particularly large number
scalest > 0.2, the three cases approximately agree. Thef samples {60 large-eddy turnover times). Here, we
same result has also been obtained from hyperflatness fagay particular attention to the convergence issue, plotting
tors Fg(¢), indicating that the shape of the PDFs does{,(€) with an increasing number of averaging frames.
not sensitively depend oh at large scales. On the other From this figure, we may easily identify a range where
hand, at¢ < 0.2, we observe a systematic decrease of thehe local scaling exponent is constant. We believe that
flatness factors as increases, implying that, with a hy- this is a legitimate definition of the inertial range. It
perviscous damping, the small-scale field becomes leds remarkable that, over this finite range converges to
intermittent. Our interpretation of this reduction of in- a value below2/3 with little uncertainty, as evidenced
termittency with hyperviscosity is as follows: Becauseby the small difference between the values at 100, 150,
the hyperviscous damping is more oscillatory, small-scal@and 200 frames. To our knowledge, this is the first solid
structures, such as vortices, are broken down into smallerumerical evidence supporting the intermittent scaling
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FIG. 2. Local scaling exponent,,(€) = d log(u;)/d log€  FIG. 3. Local relative scaling exponed({)/(() at p =

(for p =2 and3), as a function of separation () with an 2,4, and6, as a function of separation,(, for different i’s.

increasing number of samples for= 2. The solid lines are  The solid lines are from Ref. [15].

from the K41 theory, and the dashed lines connect the final

results obtained witl200 frames of256° field data collected

over 60 large-eddy turnover times. interaction, since it represents the relation between the
fluctuations of different amplitudes through the variation
of PDF as a function of spatial separation. Using rela-

correction for the second-order structure function. It ist've scaling exponents in experimental measurement was

also clear that; converges to a value below unity. Note first suggested by Benxit al. [10.]’ and it tums out to be_
that what we examine here is the local scaling of th useful measure, and has stimulated many discussions
velocity structure function taking thebsolutevalue of the Jr-14]I.I Le(\j/e:qu::; andl $he [5]|_rep0rted .thdat, n dthe GfO E
velocity increments, so that the third-order moments doo €l Moael, the relative scalings are independent of the

not necessarily scale linearly with the separation distancéi.'s's'pat'on mechanlsm. .
Very similar results are obtained fdr = 8 at the same We have carried out measurements of the local relative

range scaling exponents and the results are shown in Fig. 3. It

One may ask whether this range is asymptotic to infinitea" beh(_:lﬁa;l]y S\?gg tgart] there exists an ?xtgn?hed Iran?e
Reynolds number. We cannot provide a definite answer tgVer whic € ehave as a power law, the loca

this question numerically, nor any finite Reynolds numbels'c"’lIIng exponents are constant. Here, we have collected

real-life experiments, but we must remark that this range‘,]Iatal for several Reyno'lds n_u'mbers at nor'ma_l viscosities,
nd for several hyperviscosities. The solid lines are the

although finite, is physically very relevant because the? . 2
energy flux is remarkably constant [4]. It may also betheoretlcal predictions of the She-Leveque model [15]. It

asked whether the scaling deviation from &) law is is remarkable that the scaling exponents are universal and

due to the use of hyperviscosity. We have examined thi§ImOSt independent of the dissipation mec_hanisms. The
issue carefully. Due to the absence of an inertial range foy_alues.tof these exrt)oggnt_? ftc;lr er_”}gl W'th. normal d
the normal-viscous fields (even with the highest Reynoldé.’ISCOSI y are presented in 1able 1. 1hey are in very goo
number Rg = 210), a firm conclusion for the scaling

exponents cannot be reached directly. On the other handABLE I. Relative scaling exponent numerically calculated
through the relat_lve scaling exponen_ts Sho"Y” below, w or h = 1 Re, = 181, compared with theoretical results of
do see strong evidence that the relative scaling exponeni& 1 and she and Leveque (SL) [11].

for second- and third-order structure functions depart from

K41 in a similar way, regardless of theindex, implying ~ Orderp {p/ {5 (numerical) K41 SL model
that the simulation results presented here are not the effect 1 0.362 + 0.003 0.333 0.364
of hyperviscosity. 2 0.695 = 0.003 0.667 0.696
It is important to look for wuniversal features 3 1.000 1.000 1.000
which are independent of the dissipation mecha- 4 1.279 + 0.004 1.333 1.280
nisms. In fact, the relative scaling exponent, such as ° 1.536 = 0.010 1.667 1.538
{p/ G = d log(dup)/d log(du;), might be more fun- 6 1.772 = 0.015 2.000 1778
damental than the scaling exponent itself in describing ! 1.989 = 0.021 2.333 2.001
8 2.188 * 0.027 2.667 2.211

the properties of the cascade dynamics under nonlineast
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agreement with the prediction of the She-Leveque modetrend of largera can be also extracted from existing high
[15]. We emphasize that the deviation from the K41Reynolds number experiments [17], consistent with our
prediction is quite clear, beyond numerical uncertainty humerical observation. It is our belief that an even higher
even for second order (the kinetic energy). In othemReynolds number is required to obtain the “true” inertial
words, the relative scaling exponerdty &3 # 2/3. range for normal viscosity.
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