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Scalings and Relative Scalings in the Navier-Stokes Turbulence
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High-resolution direct numerical simulations of 3D Navier-Stokes turbulence with normal viscosity
and hyperviscosity are carried out. It is found that the inertial-range statistics, both the scalings and the
probability density functions, are independent of the dissipation mechanism, while the near-dissipation-
range fluctuations show significant structural differences. Nevertheless, the relative scalings expressing
the dependence of the moments at different orders are universal, and show unambiguous departure
from the Kolmogorov 1941 description, including the2y3 law for the kinetic energy. Implications for
numerical modeling of turbulence are discussed. [S0031-9007(96)00251-7]
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The Kolmogorov 1941 similarity theory (K41) [1] o
fully developed turbulence assumes the existence of
versal statistics of fluctuations at so-called inertial-ran
scales,0 ¿ , ¿ ,d , where,0 and,d are the character
istic length scale of the kinetic energy and dissipati
respectively. This hypothesis has a series of implicatio
including the prediction of the independence of the iner
range on the dissipation mechanism, and the2y3 law for
the kinetic energy fluctuationskdu2

,l , ,2y3. Physically,
the inertial range is defined by the condition that the m
energy flux is constant. It is known that a constant ene
flux range may exist with anomalous scaling behavior,
so-called intermittency effects [2–4]. However, accur
numerical determination of the inertial-range scaling
ponents has been a great challenge due to the finite-r
size effects and statistical convergence.

Recently, the question has been raised as to whe
or not the observed large-scale statistical features de
on the mechanism of the energy dissipation [5,6]. A
swering this question has significant impact on the
merical modeling of turbulence and the understanding
fundamental physics in fluid turbulence. For nearly
flows of practical and engineering interest, it is impo
sible in the foreseeable future to numerically resolve
scales from,0 to ,d using the Navier-Stokes equation
In one way or another, some artificial damping mec
nism must be introduced at a length scale of the
merical resolution,g. Whether and how such modelin
affects the large-scale dynamicss, . ,gd is a key issue
to the success of the numerical modeling. The existe
of universality was often assumed in previous stud
without documented evidence [4,7].

Leveque and She [5] have recently examined this is
using a model system of fully developed turbulence,
so-called GOY (Gledzer-Ohkitani-Yamata) shell mod
[8]. This model is a dynamical system with a cha
interaction linking fluctuations at various scales.
the statistically stationary state, the system display
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cascade of energy to larger wave-number shells, which
characterized by anomalous scaling behavior [9] sim
to what is observed in real turbulence [10]. It is show
[5] that the scaling of the inertial range in the GOY sh
model (over 2 decades) depends on a hyperviscosity in
h (see below), whereas other features such as rela
scaling (see below) remain universal. The hypervisco
has also been applied to 3D Navier-Stokes turbule
by Borue and Orszag [4]. There is speculation that t
dependence of the inertial range behavior on dissipa
might also survive in the 3D Navier-Stokes turbulence [
If so, the traditional concept of universality of the inerti
range would be challenged. Since most scaling theo
are based on K41, it is extremely important to resolve t
issue.

In the present study, we have carried out a detailed c
parison of the statistics of isotropic turbulence genera
by the Navier-Stokes equations with normal and hyperv
cous damping. Particular emphasis was given to the s
ing dynamics. The hyperviscous damping is expresse
the wave-number space bynhjkj2h. Whenh  1, this is
the normal damping for a Newtonian fluid. Ash ! `

and nh  n0k2h
d ! 0, the hyperviscous term introduce

infinite dissipation above the wave numberkd, and almost
none below. In physical space, such hyperviscous da
ing corresponds to a coupling which diffuses excitations
an undulatory way. The specific questions to be addres
include to what extent does a hyperviscous field represe
high-Reynolds-number turbulent field? What are the pr
erties that are independent of the viscous damping me
nisms in the 3D Navier-Stokes dynamics?

The main results are as follows: (1) The statistics
near-dissipation-range scaless, ø ,dd are considerably
modified by the presence of the hyperviscous damp
but at inertial-range scales there seem to be little affec
in the 3D Navier-Stokes dynamics (this result is to
contrasted to the shell model case). (2) While the nor
viscous damping is unable to provide a clear inertial ran
© 1996 The American Physical Society 3711
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even with today’s highest Reynolds number achieva
sRel ø 210d, the hyperviscous dampingsh . 1d does
display an inertial range which exhibits clear departu
from the K41 description. (3) There appears to
universal relative scaling independent of the damp
mechanism, which deviates also unambiguously fr
the K41 description. (4) The energy spectra in t
Fourier spaceEskd for normal viscous fields are affecte
through the whole range by so-called “bottleneck” effec
whereas the hyperviscous fields show a finite iner
range with exponents which cannot be directly related
the ones obtained from the second-order velocity struc
functions in the physical space. Further investigatio
are needed to assess the impact on the measured sc
exponents (see [11]).

The 3D incompressible Navier-Stokes equations wit
hyperviscous damping, written as

≠uy≠t 1 = ? suud  2=p 1 s21dh11nh=2hu ,

= ? u  0 ,

are solved numerically for the periodic boundary con
tions. Herep is the pressure. A pseudospectral co
has been developed using a second-order time-integra
scheme [12]. Simulations are carried out with reso
tions of 2563 and 5123 on the CM-5 at Los Alamos
National Laboratory and the SP machines at IBM T
Watson Research Center. To obtain a statistically ste
state, a forcing is applied to the first wave-number sh
0.5 , k , 1.5 so that at each time step the total ener
of that shell is constant. Time integration up to 60 larg
eddy turnover times is performed to collect data for t
analysis of the statistical steady state.

The statistics of turbulent fields in the physical spa
are commonly characterized by the velocity structure fu
tions (VSF)Ups,d  kjdu,j

pl, wheredu, is the velocity
increment across a distance,. The velocity structure func-
tions are moments ofdu, evaluated from the probability
density functions (PDFs),Psdu,d. A somewhat different
measure of the behavior ofPsdu,d is the so-called flat-
ness factor,F4s,d  U4s,dyU2s,d2, which indicates how
“flat” the tails of the PDFs are. The higher the flatness f
tor, the flatter the PDFs and more large amplitude eve
are observed. In Fig. 1, we compareF4s,d for a normal
viscous dampingsh  1d with that for h  2 andh  8
at all length scales. It can be clearly seen that, at la
scales, . 0.2, the three cases approximately agree. T
same result has also been obtained from hyperflatness
tors F6s,d, indicating that the shape of the PDFs do
not sensitively depend onh at large scales. On the othe
hand, at, , 0.2, we observe a systematic decrease of
flatness factors ash increases, implying that, with a hy
perviscous damping, the small-scale field becomes
intermittent. Our interpretation of this reduction of in
termittency with hyperviscosity is as follows: Becau
the hyperviscous damping is more oscillatory, small-sc
structures, such as vortices, are broken down into sma
3712
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FIG. 1. Flatness of velocity increment as a function
separation,,, for h  1, h  2, andh  8.

pieces. The fragmented field has a more gentle va
tion, and therefore appears less intermittent. Neverthel
this fragmentation does not seem to affect the large-sc
coarse-grained structures, as evidenced by the agreem
of the flatness factors at, . 0.2.

This observation may not be surprising, but it provid
a solid ground for large-eddy numerical modeling of tu
bulent flows. It confirms that the effects of a hypervisco
damping on the form of PDFs do not propagate very
beyond the dissipation length scale in 3D incompressi
fluids. The sharp difference from the GOY shell mod
may stem from the fact that the number of modes in ea
wave-number octave increases asjkj3, so that many possi-
ble backward propagation events interfere with each ot
and cancel the effects. Similar ideas are suggested
Kraichnan [13].

A further characterization of the statistical state is t
local rate of change of the velocity structure function,
the local scaling exponentzps,d  d logkdu

p
, lyd log,.

Numerically, zps,d can be obtained by a least-squar
fit over a small range of,’s, approximating the local
slope in the log-log coordinate. In Fig. 2, we repo
z2s,d and z3s,d for the whole range of, for h  2.
The data are obtained using a particularly large num
of samples (,60 large-eddy turnover times). Here, w
pay particular attention to the convergence issue, plott
zps,d with an increasing number of averaging frame
From this figure, we may easily identify a range whe
the local scaling exponent is constant. We believe t
this is a legitimate definition of the inertial range.
is remarkable thatz2 over this finite range converges t
a value below2y3 with little uncertainty, as evidenced
by the small difference between the values at 100, 1
and 200 frames. To our knowledge, this is the first so
numerical evidence supporting the intermittent scali
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FIG. 2. Local scaling exponent,zps,d  d logkdu
p
, lyd log,

(for p  2 and 3), as a function of separation lns,d with an
increasing number of samples forh  2. The solid lines are
from the K41 theory, and the dashed lines connect the fi
results obtained with200 frames of2563 field data collected
over 60 large-eddy turnover times.

correction for the second-order structure function. It
also clear thatz3 converges to a value below unity. No
that what we examine here is the local scaling of
velocity structure function taking theabsolutevalue of the
velocity increments, so that the third-order moments
not necessarily scale linearly with the separation distan
Very similar results are obtained forh  8 at the same
range.

One may ask whether this range is asymptotic to infin
Reynolds number. We cannot provide a definite answe
this question numerically, nor any finite Reynolds numb
real-life experiments, but we must remark that this ran
although finite, is physically very relevant because
energy flux is remarkably constant [4]. It may also
asked whether the scaling deviation from the2y3 law is
due to the use of hyperviscosity. We have examined
issue carefully. Due to the absence of an inertial range
the normal-viscous fields (even with the highest Reyno
number Rel ø 210), a firm conclusion for the scaling
exponents cannot be reached directly. On the other h
through the relative scaling exponents shown below,
do see strong evidence that the relative scaling expon
for second- and third-order structure functions depart fr
K41 in a similar way, regardless of theh index, implying
that the simulation results presented here are not the e
of hyperviscosity.

It is important to look for universal feature
which are independent of the dissipation mech
nisms. In fact, the relative scaling exponent, such
zpyz3  d logkdu

p
, lyd logkdu3

,l, might be more fun-
damental than the scaling exponent itself in describ
the properties of the cascade dynamics under nonlin
l
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FIG. 3. Local relative scaling exponentzps,dyz3s,d at p 
2, 4, and 6, as a function of separation, lns,d, for different h’s.
The solid lines are from Ref. [15].

interaction, since it represents the relation between
fluctuations of different amplitudes through the variati
of PDF as a function of spatial separation. Using re
tive scaling exponents in experimental measurement
first suggested by Benziet al. [10], and it turns out to be
a useful measure, and has stimulated many discuss
[14]. Leveque and She [5] reported that, in the GO
shell model, the relative scalings are independent of
dissipation mechanism.

We have carried out measurements of the local rela
scaling exponents and the results are shown in Fig. 3
can be clearly seen that there exists an extended ra
over which the VSF behave as a power law; the lo
scaling exponents are constant. Here, we have colle
data for several Reynolds numbers at normal viscosit
and for several hyperviscosities. The solid lines are
theoretical predictions of the She-Leveque model [15].
is remarkable that the scaling exponents are universal
almost independent of the dissipation mechanisms.
values of these exponents for Rel  181 with normal
viscosity are presented in Table I. They are in very go

TABLE I. Relative scaling exponent numerically calculat
for h  1, Rel  181, compared with theoretical results o
K41 and She and Leveque (SL) [11].

Orderp zpyz3 (numerical) K41 SL model

1 0.362 6 0.003 0.333 0.364
2 0.695 6 0.003 0.667 0.696
3 1.000 1.000 1.000
4 1.279 6 0.004 1.333 1.280
5 1.536 6 0.010 1.667 1.538
6 1.772 6 0.015 2.000 1.778
7 1.989 6 0.021 2.333 2.001
8 2.188 6 0.027 2.667 2.211
3713
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agreement with the prediction of the She-Leveque mo
[15]. We emphasize that the deviation from the K4
prediction is quite clear, beyond numerical uncertain
even for second order (the kinetic energy). In oth
words, the relative scaling exponentsz2yz3 fi 2y3.

Finally, we have examined the behavior of the ener
spectrum in the Fourier space. In Fig. 4, we pres
compensated spectra for three cases withh  1 (Rel 
101 and 181) and h  8. We have chosen to plo
k5y3Eskd [1] for h  1 and k2Eskd for h  8, to reveal
a flat region at low wave number withk , 20. In order
to judge the significance of the exponents, we plot, in
inset of Fig. 4, the local scaling exponent,askd, defined
by Eskd , kaskd, or askd  d logEsKdyd logk. It then
becomes clear that no obvious constantaskd range is
present forh  1; the exponent25y3 stands for just a
local averaged exponent over a finite range. Forh  8,
there is a finite range near the dissipation falloff with
exponentaskd ø 21. This range is commonly identified
as the bottleneck range [16]. We believe that this ran
is formed by a reflection of the excitations from th
dissipation cutoff. The difference between the GOY sh
model and the 3D Navier-Stokes results is that this ran
extends to the whole inertial range in the former ca
Indeed, it is observed that the bottleneck range beco
flatter ash increases, similar to the GOY shell mod
[5]. For h  8, a new scaling range seems to appear
k , 10, where the local exponent varies between21.8
and 22 [4]. It is not clear, however, if the value is
asymptotic. On the other hand, for the data withh  1
and Rel ø 181, the whole large-scale spectrums3 , k ,

20d seems to be influenced by the bottleneck effect,
evidenced by the characteristic hump inaskd. This is
consistent with the fact that no good power-law range
observed inkdu2

,l for h  1 in the physical space. The

FIG. 4. Compensated energy spectra forh  1 and h  8.
The inset shows the local scaling exponent of the energy spe
askd for the same runs. The solid lines in the inset are
askd  25y3 and22, respectively.
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trend of largera can be also extracted from existing hig
Reynolds number experiments [17], consistent with o
numerical observation. It is our belief that an even high
Reynolds number is required to obtain the “true” inert
range for normal viscosity.

We thank V. Borue, G. Doolen, R. Kraichnan
D. Lohse, D. Martinez, M. Nelkin, E. Pytte, and L. P
Wang for useful discussions. Part of this work w
supported by the U.S. Department of Energy at L
Alamos National Laboratory. Numerical simulation
were carried out at the Advanced Computing Laborato
at Los Alamos National Laboratory using the Connecti
Machine-5, and the Center for Scalable Computi
Solution at IBM T. J. Watson Research Center using
SP machines. Z.-S. S. is partially supported by the Cen
for Fluid Dynamics at Princeton University, the IBM T. J
Watson Research Center, the Sloan Foundation, and
ONR under Contract 95431-0055.

[1] A. N. Kolmogorov, C. R. Acad. Sci. RUSS30, 301 (1941).
[2] A. Y. S. Kuo and S. Corrsin, J. Fluid Mech.50,

285 (1971); P. Kailasnath, K. R. Screenivasan, a
G. Stolovitzky, Phys. Rev. Lett.68, 2766 (1992);
A. Vincent and M. Meneguzzi, J. Fluid Mech.225, 1
(1991).

[3] Z.-S. She, S. Chen, G. Doolen, R. H. Kraichnan, and S.
Orszag, Phys. Rev. Lett.70, 3251 (1993).

[4] V. Borue and S. A. Orszag, Europhys. Lett.29, 687
(1995).

[5] E. Leveque and Z.-S. She, Phys. Rev. Lett.75, 2690
(1995).

[6] L. P. Kadanoff, Phys. Today 11–13 (1995).
[7] J. Smagorinsky, Mon. Weather Rev.91, 99 (1963).
[8] E. B. Gledzer, Soc. Phys. Dokl.18, 216 (1973);

M. Yamada and K. Ohkitani, J. Phys. Soc. Jpn.56, 4210
(1987); Phys. Rev. Lett.60, 983 (1988).

[9] E. Leveque and Z.-S. She (to be published).
[10] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baude

E. Massaioli, and S. Succi, Phys. Rev. E48, 29 (1993);
M. Briscolini, P. Santangelo, S. Succi, and R. Ben
Phys. Rev. E50, R1745 (1994); R. Benzi, S. Ciliberto
C. Baudet, G. Ruiz Chavaria, and R. Tripiccione, Eur
phys. Lett.24, 275 (1993).

[11] L. Kadanoff, D. Lohse, and J. Wang, Phys. Fluids7, 617
(1995).

[12] S. Chen, G. D. Doolen, R. H. Kraichnan, and Z.-S. Sh
Phys. Fluids A5, 458 (1993).

[13] N. Cao, S. Chen, and Z.-S. She (unpublished); R.
Kraichnan (private communication).

[14] G. Stolovitzky and K. R. Sreenivasan, Phys. Rev. E48,
R33 (1993); R. Benzi (private communication).

[15] Z.-S. She and E. Leveque, Phys. Rev. Lett.72, 336 (1994).
[16] D. Lohse and A. Müller-Groeling, Phys. Rev. Lett.74,

1747 (1995); G. Falkovich, Phys. Fluids6, 1411 (1994);
S. Grossman and D. Lohse, Phys. Rev. E49, 4044 (1994).

[17] C. W. Van Atta and W. Y. Chen, J. Fluid Mech.44, 145
(1970); S. G. Saddoughi and S. V. Veeravalli, J. Flu
Mech. 268, 333 (1993).


