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Nonequilibrium Brittle Fracture Propagation: Steady State, Oscillations, and Intermittency
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A minimal model is constructed for two-dimensional fracture propagation. The heterogeneous
process zone is presumed to suppress stress relaxation rate, leading to non-quasistatic behavior.
Using the Yoffe solution, | construct and solve a dynamical equation for the tip stress. | dicuss a
generic tip-velocity response to local stress and find that noise-free propagation is either at steady
state or oscillatory, depening only on one material parameter. Noise gives rise to intermittency and
quasiperiodicity. The theory explains the velocity oscillations and the complicated behavior seen in
polymeric and amorphous brittle materials. | suggest experimental verifications and new connections
between velocity measurements and material properties. [S0031-9007(96)00162-7]

PACS numbers: 46.30.Nz, 62.20.Mk, 81.40.Np

The dynamics of cracks propagating in amorphous brit- It has been conjectured [5,6] that the reason for the
tle media focused extensive study since the forties, mostlgomplicated short-range behavior is the heterogeneous
through quasistatic approaches and energetic argumentmd fluid structure of the PZ. This conjecture may be
In spite of recently renewed interest there are several fursupported by observations of extremely slow relaxation
damental issues that seem difficult to resolve in any simrates of the stress at the tip after arrest [7], rates that are an
ple way. For example, the limiting crack velocity, pre- order of magnitude below expectation had the relaxation
dicted to be the Rayleigh wave speed (RWS) in the bulkaken place at the bulk speed of sound. This implies that
[1], is observed to be only about half of that; the mechathe waves that re-establish the stress field in the PZ travel
nism for crack initiation and arrest is poorly understood;at a speedg, that is much lowerthan the bulk SWS,
and the occurrence of velocity oscillations [2] is still a probably due to scattering from microvoids.
puzzle. At the heart of the problem is the fact that the The model proposed here concerns the short-range dy-
system’s behavior depends on the length scale. While mamics and takes on board several ingredients: the low
is evident that the atomistic behavior differs from the con-value ofcin the PZ, the occurrence of different stresses for
tinuous, it is this author’s opinion that even on the con-crack initiation and arrest [5,8], and, based on existing ob-
tinuum scale the physics near the tip is distinct from thaservations, an assumed velocity response to the tip stress.
far away and therefore should be treated differently. ThisThese suffice to construct and solve a dynamic equation.
may explain an apparent discrepancy: On the one handhe explicit form of the velocity-stress relation is not re-
since the bulk shear wave speed (SWS) is higher than thguired for most of the results obtained here, only its qual-
crack velocity, it is clear that far from the crack quasistaticitative behavior. The model leads to either a steady-state
arguments should work well because the field relaxes tpropagation at a limiting velocity or an oscillatory behav-
its static form,o.p = Kfp(0)/~/27r, sufficiently fast. ior, with the selection between the two modes dependent
Here o, is the stress tensor,is the distance from the on the location of the suppressed speesh the velocity
crack tip, f,g depends only on the azimuthal angle  response function. Introduction of noise due to microvoid
andK is the (time-dependent) stress intensity factor. Ordistribution is shown to give rise to an intermittent propa-
the other hand, the inability of quasistatic theories to acgation that can turn into a quasiperiodic behavior.
count for the above phenomena suggests that much of the Consider a line crack (not necessarily straight) in a two-
behavior is determined by thecal dynamics at the tip dimensional material. The PZ in front of the tip is modeled
and hence that the propagation is a far-from-equilibriumas an effective continuous medium with a reduced SWS,
process, indescribable by approaches that appeal to ea- The dependence of the crack dynamics on material
ergy balancing. In the two-scale picture the nonequilibproperties enters through a velocity response function,
rium dynamics act, in effect, to dress the tip singularity asv (o) [9], whereo is the local stress at the tip in the forward
seen from afar. The matching of the near and far fieldslirection. As the crack propagates, the field near the tip
at the crossover scale then yields the far-away behavior @fdjusts to the changing boundary at a rate that corresponds
K. A reasonable guess would be that the crossover scate c. Observations that steady-state propagation is at about
is of the order of the size of the process zone (PZ) in fronhalf the bulk RWS, combined with the fact thats much
of the propagating crack. While the far quasistatic fieldlower than the bulk (homogeneous) RWS, implies that the
is well understood within linear elasticity, there is little tip velocity canmomentarily exceethe local value of.
understanding of the short-range physics, although a fevhis is a basic assumption in what follows. | comment
phenomenological dynamic equations have been advancdiiat this does not violate the energy balance which holds
[3,4] to explain the limiting tip velocity. for scales away from the PZ, because near the tip the

0031-9007 96/ 76(20)/3703(4)$10.00  © 1996 The American Physical Society 3703



VOLUME 76, NUMBER 20 PHYSICAL REVIEW LETTERS 13 My 1996

dynamic response (o) is swifter than the global energy derivative of (1), we have

equilibration process. The measured behavior ) . sy 3/2

is hysteric with two material-dependent thresholds; ¢ = ~a/l{(d + 2a)F2. 2
above which propagation initiates, aogd < o7, to which  Using (1), we can invert relation (2):

the stress has to drop for the crack to arrest [5,8]. For S0 3/2

o > o, the velocity is also known to increase very slowly {/a=—a/(o” = D)7 (3)
with stress [10,11]. Figure 1 shows a qualitative forme define/ = (v — ¢) as¢ = cu, whereu is a reduced

of v(o) that is consistent with experimental observationsyelocity. Upon substitution in (3), we can readily solve
This local nonmonotonic respond differs from that in [4]

which depends on energy equilibration far from the tip. t—ty = _ifg(t) L_ (4)
Its locality allows one to find the dynamics without further ¢ Joay (s2 = 1)32u(s)
assumptions. A local two-branch velocity can be derivedrhe kinetics are thus determined by the response function
from atomistic models [12]. through the stress dependence:6f). Relation (4) is the

To derive the equation of motion of the tip, let us pare result of this Letter. It is an exact derivation from
start from the Yoffe solution for the forward field of a the Yoffe solution. It gives the general time dependence
propagating crack of lengta[13], of the stress at the crack tip. Once the stress history

. is found from this relation, one substitutes ittfo) to
_ 7= Uﬁ"[({ T AN+ Z_a)]’ _ @) obtain the velocity history. We now proceed to analyze

where { is the distance from the tip and-. is the the consequences of this result, assuming the qualitative
tensile stress applied perpendicular to the propagatiofesponse shown in Fig. 1. It is convenient to classify the
axis far away from the crack. In what follows, the hehavior in terms of the ratia = ¢/v;. The reason is
stress is measured in units of., and ¢ — o/0= iS  that, as is shown below, the mode of propagation depends
dimensionless and>1. This solution assumes that the only on this ratio.
singularity of the field is always at the tip, which is ) > 7 —The point(c(c), ¢) is on the upper branch
consistent with a quasistatic picture. Consider, howevelgf 4 (). Suppose that initiallyr < o,. The velocity is
a situation wherein the dynamic response constrains thﬁlomentarily zero (or very low), and the tip stress builds
tip to overtake the density waves that adjust the fieldup tooy,. At this stage the system “jumps” to the upper
In this situation the Singularity in the stress fialihes branch and fast motion ensues. From relation (4) we
not coincide with the location qf the tip, and th_e tip’s see that foro), > o(c) [<a(c)] the stress will decrease
stress drops to below the static value. The d'ﬁerenCTincrease] untilo converges tar(c), whereafter the tip
between the static and dynamic stresses at the tip depenggpagates at a velocity and a fixed distance ahead of
on the tip's velocity v = dl/dt and the propagation the density waves. Thugr(c), ¢) is afixed pointof the
history. The dynamic stress is found from (1) by puttingequation of motion. The behavior at the vicinity of this

{=( = ct)®( — cr), wherel is the tip's position point can be found by linearization of relation (4):
and the step functior® ensures that, when the shear

wave catches up, the tip stress stays at the static value. lo = a(c)| =~ Ce™ ",
When ® = 0 the tip stress diverges as expected and [o(c)? — 1772 (dv
traditional quasistatic solutions apply [14]. Focusing on Y=, do a(c)- (5)

nonquasistatic propagation, | assu®e= 1 during the

entire growth. Wher® alternates between 0 and 1 one Sincewv (o) nearo(c) is smooth and positive is regular
simply pieces the solutions together. Taking the timeand positive and the fixed point &able namely, steady-
state propagation at a limiting velocity is a stable
fixed point of the dynamics. A typical such history of

v is shown in Fig. 2. An interesting implication of this
result is that the experimentally observed limiting crack
velocities give, in fact, the value of and hence the
local stress relaxation rate. This suggests a check of this
model by comparing the limiting velocity to the speed
v [ | of sound in the PZ. It is intriguing to note that even in
the absence of a global energy balance criterion the crack
velocity converges to the SWS, albeit the local valce,
Observations that increases very slowly witk [15] in

Velocity

') ] this regime indicate a small value a@fv/do along the
) . ‘ . upper branch. In view of_ the present a}nalysis', this agrees
S 9, Tip Str with the reported velocity behavior immediately after
1P Stress crack initiation [5,8,10]. Another check of this picture
FIG. 1. A generic plot ofv(o). can be suggested: In some experiments a drop in the
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1 : : : . where 7y >t is a constant. Now the propagation rate
converges ta as apower lawrather than exponentially.
It should be noted that this propagation mode is sensitive
to small fluctuations that can easily flip the system to the
lower branch. A small noise in this case will give rise to
a quasiperiodic motion similar to that discussed below.
Intermittency and quasiperiodicity-Since the PZis in-
homogeneous, one expects fluctuations in the local prop-
erties which may well go beyond the effective medium
assumption. For simplicity, let us restrict the discussion
only to fluctuations in the tip stress during propagation,
o = oo(t) — n(t), whereo is the stress in the absence of
, . . . noise. This corresponds to a situation where the crack en-
0 2 4 .. 6 8 10 counters microvoids of varying sizes along its path. Upon
Time association of a microvoid to the crack, the tip stress drops
FIG. 2. Typical velocity histories in the steady-state (solid) momentarily with the drop depending on the microvoid’s
and periodic (dashed) regimes. size. The fluctuations in microvoid sizes give rise then to
noise in the tip stress. A fluctuation during steady-state
o propagation that reduces by more thans = o(c) — oy
stress has been measured after crack initiation [16]. Thl&ee Fig. 1) flips the system to the lower branch. The sys-
suggests that in those systeméc) < o, @ conclusion  tem then has to go through the process of stress increase to
that can bg checked by independent methods as a test 91“ jump to the upper branch, and convergerte) again.
this analysis. The time that this process takes depends on the original

A < I.—To analyze this case, let us assume again thaf,cyation,» > &, and can be found by applying (4) to
initially the tip stress is lower thaa;. From relation (4)  the motion along the two branches:

the stress will increase until it reaches, whereupon the o (s)-'d o (5)-'d
crack will start propagating as for > 1. The velocity — 7(5) =< {f HuplS) 4§ _[ M}
and the stress will then gradually decrease. Sinee v, ¢ [ Jow 2=132 Jo@ey—n (2= 1)%2

is not a point on the upper branch, the system cannot (9)
settle into a steady state as before and-atit flips back

to the lower branch. There the crack halts momentarily
the stress at the tip builds up againdg, and the cycle

It is the occurrence frequency of the flips between
the branches which determines to a large extent the
repeats itself. This is eelaxation cyclewhose period is ob_servable beh:_;\vi_or. This frequency depends on bOFh the
found from (4): noise characte.rlstlcs and the yaluea)f The stochagtlc
o velocity behavior can be obtained from the statistics of
;= if Vuap(s) = 1/uip(s) ds (6) m by using relation (9). For example, the probability
¢ Ja (s2 — 1)%2 ' density of 7, P(T), can be found from that of), Py(n),
whereu,, > 0 andu;, < 0 are, respectively, the values by inverting relation (9) to obtaim(7) and substituting in
of u along the upper and lower branches. When the _
velocity vanishes along the lower branah, = —1. A P(T) = Po(n(T))dn/dT . (10)
typical velocity history in this case is also shown in Fig. 2.From (9) one can also find the effects of various forms of
A = 1.—This marginal case is sensitive to the value ofthe noise temporal correlatioqg(s)n(¢')) on the velocity
dv/do atoy. If the derivative is regular, one can easily history. A detailed analysis of the statistics, including
see that the analysis is the same asXor 1. The only the explicit dependence on the distribution of microvoid
difference is thaio can only approactr(c) = o; from  Sizes, will be reported shortly. Here I only point out a few
above because far < o the only motion is up the lower intriguing consequences for>1 and o (c) < o: First,
branch. Ifov/do diverges ato;, the behavior depends @ low occurrence frequency (i.e1/7) of > & leads
on the detailed form of the divergence. For illustration,to anintermittentbehavior, wherein the tip is “knocked”

consider the form occasionally from the steady state and then returns to it
o v only to be knocked out of it again at a later time. A

v = ex;{a(— - 1) }—» u ~ const plot of such a history is shown in Fig. 3. Second, a

71 very high occurrence frequency of fluctuations of size

+ (o0 — oy), (7) n>o0,— o, gives rise to a quasiperiodic behavior as

with 0 < » < 1. The behavior near the fixed point is follows: ~As the tip stress builds up along the lower
found by using (7) in Eq. (4), branch too, the system flips to the upper branch. A
B _ /(-v) _ /(-1 fluctuation then immediately knocks the system back to

o— o)~ (1o — 1) s u~ (19— 1) ,

the lower branch, not allowing it to settle into the steady
(8) state. The mean period will then be close to the time spent
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1 : : : : distributions is currently under way and will be reported

shortly. Finally, many ramifications of this model remain

to be explored: the effects of noise correlatign$:) n(¢'))

on the dynamics, the effects of realistic distribution of void

sizes, and the implications of the statistics and velocity
history on the surface roughness, to name a few.
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