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Nonequilibrium Brittle Fracture Propagation: Steady State, Oscillations, and Intermittency
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(Received 26 September 1995)

A minimal model is constructed for two-dimensional fracture propagation. The heterogeneous
process zone is presumed to suppress stress relaxation rate, leading to non-quasistatic behavior.
Using the Yoffe solution, I construct and solve a dynamical equation for the tip stress. I dicuss a
generic tip-velocity response to local stress and find that noise-free propagation is either at steady
state or oscillatory, depening only on one material parameter. Noise gives rise to intermittency and
quasiperiodicity. The theory explains the velocity oscillations and the complicated behavior seen in
polymeric and amorphous brittle materials. I suggest experimental verifications and new connections
between velocity measurements and material properties. [S0031-9007(96)00162-7]

PACS numbers: 46.30.Nz, 62.20.Mk, 81.40.Np
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The dynamics of cracks propagating in amorphous b
tle media focused extensive study since the forties, mo
through quasistatic approaches and energetic argum
In spite of recently renewed interest there are several
damental issues that seem difficult to resolve in any s
ple way. For example, the limiting crack velocity, pr
dicted to be the Rayleigh wave speed (RWS) in the b
[1], is observed to be only about half of that; the mech
nism for crack initiation and arrest is poorly understoo
and the occurrence of velocity oscillations [2] is still
puzzle. At the heart of the problem is the fact that t
system’s behavior depends on the length scale. Whi
is evident that the atomistic behavior differs from the co
tinuous, it is this author’s opinion that even on the co
tinuum scale the physics near the tip is distinct from t
far away and therefore should be treated differently. T
may explain an apparent discrepancy: On the one ha
since the bulk shear wave speed (SWS) is higher than
crack velocity, it is clear that far from the crack quasista
arguments should work well because the field relaxes
its static form,sab ­ Kfabsudy

p
2pr, sufficiently fast.

Here sab is the stress tensor,r is the distance from the
crack tip, fab depends only on the azimuthal angleu,
andK is the (time-dependent) stress intensity factor.
the other hand, the inability of quasistatic theories to
count for the above phenomena suggests that much o
behavior is determined by thelocal dynamics at the tip
and hence that the propagation is a far-from-equilibri
process, indescribable by approaches that appeal to
ergy balancing. In the two-scale picture the nonequi
rium dynamics act, in effect, to dress the tip singularity
seen from afar. The matching of the near and far fie
at the crossover scale then yields the far-away behavio
K. A reasonable guess would be that the crossover s
is of the order of the size of the process zone (PZ) in fr
of the propagating crack. While the far quasistatic fie
is well understood within linear elasticity, there is litt
understanding of the short-range physics, although a
phenomenological dynamic equations have been adva
[3,4] to explain the limiting tip velocity.
0031-9007y96y76(20)y3703(4)$10.00
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It has been conjectured [5,6] that the reason for
complicated short-range behavior is the heterogene
and fluid structure of the PZ. This conjecture may
supported by observations of extremely slow relaxat
rates of the stress at the tip after arrest [7], rates that ar
order of magnitude below expectation had the relaxat
taken place at the bulk speed of sound. This implies t
the waves that re-establish the stress field in the PZ tra
at a speed,c, that is much lower than the bulk SWS,
probably due to scattering from microvoids.

The model proposed here concerns the short-range
namics and takes on board several ingredients: the
value ofc in the PZ, the occurrence of different stresses
crack initiation and arrest [5,8], and, based on existing
servations, an assumed velocity response to the tip str
These suffice to construct and solve a dynamic equat
The explicit form of the velocity-stress relation is not r
quired for most of the results obtained here, only its qu
itative behavior. The model leads to either a steady-s
propagation at a limiting velocity or an oscillatory beha
ior, with the selection between the two modes depend
on the location of the suppressed speedc on the velocity
response function. Introduction of noise due to microvo
distribution is shown to give rise to an intermittent prop
gation that can turn into a quasiperiodic behavior.

Consider a line crack (not necessarily straight) in a tw
dimensional material. The PZ in front of the tip is model
as an effective continuous medium with a reduced SW
c. The dependence of the crack dynamics on mate
properties enters through a velocity response functi
yssd [9], wheres is the local stress at the tip in the forwar
direction. As the crack propagates, the field near the
adjusts to the changing boundary at a rate that correspo
to c. Observations that steady-state propagation is at ab
half the bulk RWS, combined with the fact thatc is much
lower than the bulk (homogeneous) RWS, implies that
tip velocity canmomentarily exceedthe local value ofc.
This is a basic assumption in what follows. I comme
that this does not violate the energy balance which ho
for scales away from the PZ, because near the tip
© 1996 The American Physical Society 3703
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dynamic responseyssd is swifter than the global energ
equilibration process. The measured behavior ofyssd
is hysteric with two material-dependent thresholds:sh,
above which propagation initiates, andsl , sh, to which
the stress has to drop for the crack to arrest [5,8].
s . sh the velocity is also known to increase very slow
with stress [10,11]. Figure 1 shows a qualitative fo
of yssd that is consistent with experimental observatio
This local nonmonotonic respond differs from that in [
which depends on energy equilibration far from the t
Its locality allows one to find the dynamics without furth
assumptions. A local two-branch velocity can be deriv
from atomistic models [12].

To derive the equation of motion of the tip, let u
start from the Yoffe solution for the forward field of
propagating crack of lengtha [13],

s ­ s`fsz 1 ady
q

z sz 1 2adg , (1)

where z is the distance from the tip ands` is the
tensile stress applied perpendicular to the propaga
axis far away from the crack. In what follows, th
stress is measured in units ofs`, and s ! sys` is
dimensionless and.1. This solution assumes that th
singularity of the field is always at the tip, which
consistent with a quasistatic picture. Consider, howev
a situation wherein the dynamic response constrains
tip to overtake the density waves that adjust the fie
In this situation the singularity in the stress fielddoes
not coincide with the location of the tip, and the tip
stress drops to below the static value. The differen
between the static and dynamic stresses at the tip dep
on the tip’s velocity y ­ dlydt and the propagation
history. The dynamic stress is found from (1) by putti
z ­ sl 2 ctdFsl 2 ctd, where l is the tip’s position
and the step functionQ ensures that, when the she
wave catches up, the tip stress stays at the static va
When Q ­ 0 the tip stress diverges as expected a
traditional quasistatic solutions apply [14]. Focusing
nonquasistatic propagation, I assumeQ ­ 1 during the
entire growth. WhenQ alternates between 0 and 1 on
simply pieces the solutions together. Taking the tim

FIG. 1. A generic plot ofyssd.
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derivative of (1), we have

Ùs ­ 2 Ùz a2yfz sz 1 2adg3y2. (2)

Using (1), we can invert relation (2):

Ùz ya ­ 2 Ùsyss2 2 1d3y2. (3)

We defineÙz ­ sy 2 cd as Ùz ; cu, whereu is a reduced
velocity. Upon substitution in (3), we can readily solve

t 2 t0 ­ 2
a
c

Z sstd

sst0d

ds
ss2 2 1d3y2ussd

. (4)

The kinetics are thus determined by the response func
through the stress dependence ofussd. Relation (4) is the
bare result of this Letter. It is an exact derivation fro
the Yoffe solution. It gives the general time dependen
of the stress at the crack tip. Once the stress hist
is found from this relation, one substitutes it inyssd to
obtain the velocity history. We now proceed to analy
the consequences of this result, assuming the qualita
response shown in Fig. 1. It is convenient to classify t
behavior in terms of the ratiol ­ cyyl. The reason is
that, as is shown below, the mode of propagation depe
only on this ratio.

l . 1.—The point ssssscd, cddd is on the upper branch
of yssd. Suppose that initiallys , sl. The velocity is
momentarily zero (or very low), and the tip stress buil
up to sh. At this stage the system “jumps” to the upp
branch and fast motion ensues. From relation (4)
see that forsh . sscd f,sscdg the stress will decrease
[increase] untils converges tosscd, whereafter the tip
propagates at a velocityc and a fixed distance ahead o
the density waves. Thusssssscd, cddd is a fixed pointof the
equation of motion. The behavior at the vicinity of th
point can be found by linearization of relation (4):

js 2 sscdj ø Ce2gt ,

g ;
fsscd2 2 1g3y2

a

√
dy

ds

!
sscd

. (5)

Sinceyssd nearsscd is smooth and positiveg is regular
and positive and the fixed point isstable, namely, steady-
state propagation at a limiting velocityc is a stable
fixed point of the dynamics. A typical such history o
y is shown in Fig. 2. An interesting implication of thi
result is that the experimentally observed limiting cra
velocities give, in fact, the value ofc and hence the
local stress relaxation rate. This suggests a check of
model by comparing the limiting velocity to the spee
of sound in the PZ. It is intriguing to note that even
the absence of a global energy balance criterion the cr
velocity converges to the SWS, albeit the local value,c.
Observations thaty increases very slowly withK [15] in
this regime indicate a small value ofdyyds along the
upper branch. In view of the present analysis, this agr
with the reported velocity behavior immediately aft
crack initiation [5,8,10]. Another check of this pictur
can be suggested: In some experiments a drop in
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FIG. 2. Typical velocity histories in the steady-state (sol
and periodic (dashed) regimes.

stress has been measured after crack initiation [16]. T
suggests that in those systemssscd , sh, a conclusion
that can be checked by independent methods as a te
this analysis.

l , 1.—To analyze this case, let us assume again
initially the tip stress is lower thansl . From relation (4)
the stress will increase until it reachessh, whereupon the
crack will start propagating as forl . 1. The velocity
and the stress will then gradually decrease. Sincec , yl

is not a point on the upper branch, the system can
settle into a steady state as before and atsl it flips back
to the lower branch. There the crack halts momentar
the stress at the tip builds up again tosh, and the cycle
repeats itself. This is arelaxation cyclewhose period is
found from (4):

t ­
a
c

Z sh

sl

1yuubssd 2 1yulbssd
ss2 2 1d3y2 ds , (6)

whereuub . 0 and ulb , 0 are, respectively, the value
of u along the upper and lower branches. When
velocity vanishes along the lower branchulb ­ 21. A
typical velocity history in this case is also shown in Fig.

l ­ 1.—This marginal case is sensitive to the value
≠yy≠s at sl. If the derivative is regular, one can easi
see that the analysis is the same as forl . 1. The only
difference is thats can only approachsscd ­ sl from
above because fors , sl the only motion is up the lowe
branch. If≠yy≠s diverges atsl , the behavior depend
on the detailed form of the divergence. For illustratio
consider the form

y ­ yl exp

"
a

√
s

sl
2 1

!n
#

! u , const

1 ss 2 sldn , (7)

with 0 , n , 1. The behavior near the fixed point
found by using (7) in Eq. (4),

s 2 sscd , st0 2 td1ys12nd , u , st0 2 tdnys12nd,

(8)
is

of

at

ot

,

e

f
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where t0 . t is a constant. Now the propagation ra
converges toc as apower lawrather than exponentially
It should be noted that this propagation mode is sensi
to small fluctuations that can easily flip the system to
lower branch. A small noise in this case will give rise
a quasiperiodic motion similar to that discussed below.

Intermittency and quasiperiodicity.—Since the PZ is in-
homogeneous, one expects fluctuations in the local p
erties which may well go beyond the effective mediu
assumption. For simplicity, let us restrict the discuss
only to fluctuations in the tip stress during propagatio
s ­ s0std 2 hstd, wheres0 is the stress in the absence
noise. This corresponds to a situation where the crack
counters microvoids of varying sizes along its path. Up
association of a microvoid to the crack, the tip stress dr
momentarily with the drop depending on the microvoid
size. The fluctuations in microvoid sizes give rise then
noise in the tip stress. A fluctuation during steady-st
propagation that reducess by more thand ­ sscd 2 sl

(see Fig. 1) flips the system to the lower branch. The s
tem then has to go through the process of stress increa
sh, jump to the upper branch, and converge tosscd again.
The time that this process takes depends on the orig
fluctuation,h . d, and can be found by applying (4) t
the motion along the two branches:

Tshd ­
a
c

"Z sh

sscd

uubssd21ds
ss2 2 1d3y2

2
Z sh

sscd2h

ulbssd21ds
ss2 2 1d3y2

#
.

(9)

It is the occurrence frequency of the flips betwe
the branches which determines to a large extent
observable behavior. This frequency depends on both
noise characteristics and the value ofd. The stochastic
velocity behavior can be obtained from the statistics
h by using relation (9). For example, the probabili
density ofT , PsTd, can be found from that ofh, P0shd,
by inverting relation (9) to obtainhsT d and substituting in

PsTd ­ P0ssshsT dddddhydT . (10)

From (9) one can also find the effects of various forms
the noise temporal correlationskhstdhst0dl on the velocity
history. A detailed analysis of the statistics, includi
the explicit dependence on the distribution of microvo
sizes, will be reported shortly. Here I only point out a fe
intriguing consequences forl . 1 andsscd , sh: First,
a low occurrence frequency (i.e.,,1yt) of h . d leads
to an intermittentbehavior, wherein the tip is “knocked
occasionally from the steady state and then returns t
only to be knocked out of it again at a later time.
plot of such a history is shown in Fig. 3. Second,
very high occurrence frequency of fluctuations of s
h . sh 2 sl gives rise to a quasiperiodic behavior
follows: As the tip stress builds up along the low
branch tosh the system flips to the upper branch.
fluctuation then immediately knocks the system back
the lower branch, not allowing it to settle into the stea
state. The mean period will then be close to the time sp
3705
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Fig. 3. A typical velocity history in the intermittent regime.

on the lower branch, namely,øsaycd fs1 2 1ys
2
l d21y2 2

s1 2 1ys
2
hd21y2g. Thus the microvoid size distribution

determines the observable behavior by governing
statistics ofh. Since this distribution also plays a majo
role in determining the roughness of the fracture surfac
my analysis can rigorously link roughness measureme
to the velocity history.

To summarize, a minimal theoretical model has be
proposed to explain the rich behavior observed in cra
propagation in amorphous and polymeric materials. T
theory is a direct consequence of the observations of s
relaxation rates of the tip stress, the occurrence of differ
initiation and arrest stresses, and the deduced qualita
form of yssd. The mode of propagation has been foun
to depend only on one material parameter,l ­ cyyl. For
l . 1 the propagation speed saturates to a limiting valu
while for l , 1 it oscillates periodically. Noise gives
rise to a spectrum of behavior ranging from intermittent
quasiperiodic propagation. The model explains natura
recent observations of oscillations in polymeric materia
and measurements for its validation have been sugges
It predicts that the low-noise steady-state growth rate
exactlyc, the wave speed in the PZ, and should be possi
to test experimentally. Lowl is expected to correspond
to high disorder and vice versa. So, by manipulatin
the disorder, one may tunel. I should remark that the
effective continuum approximation of the PZ probab
breaks down for too broad a distribution of microvoi
sizes, and a statistical treatment is more adequate. E
for propagation velocities of orderc , 500 mys and given
the fact that currently observations are limited to tim
of msec and higher, the effective continuum assumpti
should hold when microvoids are smaller than 500mm.
Microvoids do not usually reach such sizes in polymer
materials, and therefore this model should do a good
explaining experimental observations [2] in these system
A complementary statistical analysis for broad microvo
3706
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distributions is currently under way and will be reporte
shortly. Finally, many ramifications of this model rema
to be explored: the effects of noise correlationskhstdhst0dl
on the dynamics, the effects of realistic distribution of vo
sizes, and the implications of the statistics and veloc
history on the surface roughness, to name a few.
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