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Index of Refraction for an Optical Medium with Clamped Quantum Phase
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In an adiabatic approximation for the simultaneous propagation of two optical pulses in a dielectric
medium with clamped quantum phase, we reduce the Maxwell wave equation to a matrix equation with
a non-Hermitian propagation kernel. Numerical simulations confirm novel consequences of an analytic
solution that we identify as a two-photon-resonant propagation law. [S0031-9007(96)00102-0]

PACS numbers: 42.50.—p, 42.65.Re

The complex refractive index is the key parameter inand generalizes them to include inhomogeneous broaden-
the propagation of optical pulses in dielectric media. Theang processes.
real part determines optical path length and governs phaseIn order to discuss our results most simply, we focus
matching, and the imaginary part governs gain and losen propagation in a model for phaseonium that is an
in amplifiers and absorbers. The index is the parametddealized version of a wide class of realistic absorbing
that specifies the most important length scales on whicimedia whose principal optical properties are determined
pulse propagation effects are measured, even when k& two-photon-resonant optical transitions from a pair of
pulse effect is not well described by an index, as, fomondegenerate ground states to an upper level. As shown
example, in soliton and solitary wave propagation or inin Fig. 1, the transitions are affected by a variety of decay
situations where the light intensity exceeds a nonlineachannels and are two-photon resonant, but may be far
threshold or the pulse duration is too short. Howeverfrom individually resonant. A distribution of detunings
the refractive index is certainly the appropriate parameteA can be incorporated, and we have done this.
to describe long and weak light pulses, even pulses of We inject two different-color plane-wave pulses into
different colors traveling together through a dielectric sothe phaseonium at = 0 and calculate the changes in
long as the different pulses excite the dielectric weaklypulse amplitude and shape after propagation to position
and independently. For weak pulses, independence can This can be done numerically case by case using
normally be taken for granted because of rapid andvell-known algorithms [5], and we give results below.
ubiquitous incoherent material relaxation effects. However, this is not sufficient. For our main purpose, an
In this Letter we report on new results regarding theanalytic approach is necessary which we describe now.
refractive index for weak multipulse propagation in a The electric field vector for the two optical pulses can
dielectric medium characterized by a quantum phase thdge written
is held fixed for long times despite the action of optical £ = 3 F, (3, t)e' k@) + 3 F, (. 1)e'®ri ) + ¢cc.,
relaxation processes with very short lifetimes. Such an
unusual medium (so-called phaseonium [1]) is unheard (1)
of in traditional spectroscopy, but is widely called for in wherek,c = w, andk,c = w,; andE, andE; are the
recent proposals to use laser light for quantum control oamplitudes of the electric fields of the two pulses. It
reactions, devices, and processes of various kinds [2]. is assumed that the two fields interact separately with
The consequences for pulse propagation in this nontra-
ditional medium can be severe, leading, for example, to

strong violations of Beer's law of absorption for the two 2 S
pulses, even if both pulses are weak enough to be de- A Y
scribed by Beer’'s law separately. We show here that a -7 = 2X
two-photon-resonant propagation formula can be derived )1 'Y23

for phaseonium from approximate equations of propa- a)b

gation, and we confirm the validity of this formula by ) 3
numerical simulations. We show that the formula pre- 1 a

dicts wave mixing that naturally incorporates earlier de-

velopments including matched pulses [3] and trapped anfliG. 1.  Sketch of energy levels of typical three-level atom in
dressed fields [4] in an appropriate multifield vector spaceabsorbing medium.
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the two transitions shown. Specifically, if we létw  plitudes, e.g.p3; = C|Cjs, etc. In a conventional spectro-
denote a generic bandwidth that roughly accounts foscopic medium these off-diagonal coherences are zero or
the incoherent phenomena that may be present, then weegligible, and one correctly expects that the differences
requirelw, — w,| > 8w, which is not difficult to satisfy  in the present case must be significant.
when the fields are optical or near optical and in a Raman- Under present conditions, the right hand sides of both
type interaction as shown in Fig. 1. Egs. (2) are proportional to a linear combination (of

The quantum phase of the two ground states is typicalland Q;,. Thus, if we designate bjQ)) the two-field [6]
proposed to be clamped by external fields which dacolumn vectofQ,,Q,]", we can write the equations for
not interact with the phaseonium transitions of interestthe pulses in terms of 2 X 2 propagation operatai:
and we do not concern ourselves with those fields here. 2 .

- - _ | KiCiIF K.CiC3 rp rq

If we account for background dispersion due to host XK = |:K CiCE Ky|Cal? } = { }
and impurity atoms by interpreting as the background b=13 RIS P54
propagation velocity, then in the narrow-band pulse limitin the second matrix we have introduced a simpli-
the equations for the pulse amplitudes take the form fied dimensionless notation fofK’'s matrix elements:

QO aQb [)-E Cy, q = Cs, r = (Ka/K)CT, and s = (Kb/K)C;,
EYa ipalpar)s Y2 ip(p23) . (2) with K = K,|C/|> + K,|C5]*, whereK, = (u./2(A —
¢ ¢ iv,)), etc. Note that we do not take, = w,.
Here the notation is as follows: th@'s are Z'’s in fre- The propagation (scattering) equation equivalent to (2)

guency units, i.e., they are }he corresponding c/omplejs Y/ a¢ = i K|Q), with the obvious solution
Rabi frequenciesf), = 2d,E,/h, andQ, = 2d,E,/h, :
while the p's are atomic density matrix elements appro- 10, 7)) = 4100, 7)). )
priate to the two dipole transitions (1-2 and 3-2), and theThis is a two-photon-resonant propagation law for phaseo-
u parameters are standard propagation coefficients for theium [7], andK is clearly a two-field (matrix) wave vec-
transitions individuallyu, = 47d?Nw,/hc, etc., where tor, but further analysis is required for interpretation. Note
generallyu, # w,. The angular brackets denote an av-that the wave vector operatd is complex, nonsymmet-
erage over the ensemble of source dipoles, i.e., an averagie, and non-Hermitian [8]. It has complex eigenvalues
over a distribution ofA’s arising from the Doppler effect «;, with k=0 andx; = K. The right and left eigenvec-
or otherwise. Finally, we have defined local-time coordi-tors of K are different and both will eventually be needed.
nates{ andr in the frame propagating with velocityin  For ko we have|uy) =[q, —p]", and{vo| =[s, —r]; and
the mediumer = ¢t — z and{ = z. for x; we havelu;) =[r, s]", and{v,| =[p, q]. Note that

In addition to the two field equations there are, of course{vg|u;) = (v |up) =0 and (volug) = {vi|lu;) =1, and the
equations for the nine atomic density matrix elements imsum; |u;)(v,| is the unit operator.
plied by the energy level diagram in Fig. 1, given by Now we discuss the implications of the matrix prop-
ihdp/dt = [H,p] + relaxation terms, as usual. Theseagation law (5) for phaseonium. Unusual features are
eleven equations are nonlinearly coupled and must bfopund not previously associated with weak pulse propa-
solved together, but for short medium response times, chagation which illustrate the dramatic effects of perfect off-
acteristic of the usual Beer’s law (i.e., wher> dw and  diagonal long-range order (ODLRO, p{ip33 = p13p3i1)
y8w > Q2, for all pulse bandwidths, Rabi frequencies, in a new context.
and damping rates), the atoms relax effectively instantly on Standard one-pulse results, such as Beer's law of ab-
the pulse time scale, and the relevant “adiabatic” solutionsorption, cannot be obtained from (5) in the usual way by

for (p21) and(p3) are making the pulses arbitrarily weak or even by setting one
_ Q, + Q of them initially to zero. However, if the off-diagonal co-
(p21) = <(p“ 2/(22)_ ; )p31 b> (3)  herences vanistp(z = p3; = 0), thenX is diagonal, the
Ya two components o)) evolve independently, and the two
and pulses recover their usual independence and Beer’s law
_ behavior, as shown in Fig. 2. For phaseonium, however,
Q, + Q , : ! .
(p23) = P13 (p33, p22) (4) since one of the eigenvalues &€ is identically zero (for
2(A —
( iyp) arbitrary choices of quantum phase ap)j spontaneous

Here y is the total dipole damping rate of the individual wave mixing always gives rise to a nonattenuating part
transitions, i.e.,y, = y21 + yax, €tc., wherey,; is the  of the solution for both field components, independent of
dephasing rate of the dipole transition between levels 2heir initial values. The nonattenuating part|6f) cor-
andj. responds to the “trapped field” combination of amplitudes
Phaseonium assigns fixed relative quantum phase b@troduced earlier [4].
tween states 1 and 3, and zero occupation probability Given arbitrary inputs for the two field3, and(Q,, the
to level 2, so we can takp,, = 0 and write the other full solution for thea component is given bf),({,7) =
density matrix elements in terms of fixed probability am-{(a | Q(Z, 7)), where we will designate bya) and |b)
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cillate in space (because of the nonzero imaginary part of
the eigenvalué) and decay to (because of the real part
of the eigenvaluk) a spatially steady state. We should
also mention that the phase of the off-diagonal order can
affect the propagation significantly. This is illustrated in
the bottom part of Fig. 3 where the degree of long-range
order, the atomic level populations, and the input pulses
are the same as for the top part, but the phaseonium phase

FIG. 2. Intensities/(Z,T) = (Q7,)* of pulsesa (left) andb s different by /4. We note that because of the phase

(right) as a function of space and time for a zero ODLROshift, the evolution is now completely different.

medium. The parameters used apg; = 0.6, p33 = 04, . . :
andp;3 = 0, with K, = 1.5K,, Z = Im(K){, andT = /7, Formula (6) also implies thadeliberately unmatched

wherer, is the width of pulsen. pulses can be used for elaborate pulse shagimge (5)
specifies the degree to which the pulses will partially ex-
change some of their shape characteristics during propa-
gation. This is shown in Fig. 4. In this case, putseas

a pair of completely disjoint pulses injected before and af-
ter single pulse. It is obvious that pulse shaping can be
strongly dynamic both in time and in space.

the bare single-field states represented [by0]” and
[0,1]7, respectively. By exploiting both right and left
eigenvectors of the propagation operafkir, we find

Q.2 7) = Z (alu;)e™ < (v;|Q0, 7)) In_summary, we have ob_tained anew approximate prop-
=01 agation law for very weak light pulses in a quantum-phase-

= (g5 + rpe’*9)Q,(0,7) clamped medium (phaseonium). We have shown that the

, intrinsic two-photon-resonant nature of the propagation in-

— gr(l — e®)Q,(0,7). (6)  validates well-known aspects of weak pulse propagation.

A similar expression foK), can be obtained. Note that The key element in our analysis is an adiabatic approxi-
(6) shows that if ther dependences of the two pulses Mation leading to a non-Hermitian matrix wave vector for
are the same af = 0 then they will be the same for all the coupled fields. Despite heavily overdamped evolution
(. This is the “matched-pulse” effect noted by Harris [3] Qf the atomic density matrix elements th_at cquple to the
for non-phase-clamped media. In Figs. 3 and 4 we ploti€lds, complex pulse shaping can be obtained in both space

several predictions of formula (6). One sees the evolutio@Nd time, and the reshaping is strongly quantum phase de-
toward matched shapes f@r>> 1. pendent. An unstated assumption has been the absence of

It is evident from formula (6) that the perfect offdi- decay from level 3 to level 1. In practice, this will add a

agonal long-range order plays a remarkable role in pulsémall positive imaginary part to the zero eigenvaluefof
propagation. In the top part of Fig. 3 we plot the evo-l€adingto additional decay. However, both 1-2 and 2-3 are

lution of the same input pulses of Fig. 2 in a perfectassumed to be dipole transitions,|$pand|3) have equal

Finally, since the propagation law (5) was derived approx-

imately, we have checked its validity by solving the cou-
pled two-pulse Maxwell and Schrédinger equations fully
numerically [5] in several cases, for comparison with the
predictions of analytic formula (6). To illustrate the re-
sults, in Fig. 5 we show a comparison of the peak inten-
sity of pulsea as computed by our analytic approximate
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FIG. 3. Intensities/(Z,T) = (Q7,)* of pulsesa (left) andb
(right) as a function of space and time for a perfect ODLROFIG. 4. Intensitied(Z,T) = (Q27,)* of pulsesa (left) andb
medium. The parameters are as in Fig. 2, exggpt= —0.24  (right) as a function of space and time for a perfect ODLRO
in the top figures ang; = —+/0.24 exp(—i7/4) in the bottom  medium. The population parameters are as in Fig. 3 (top).
figures. Different input pulses are chosen, as shown.
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— T of these effects, with wide reference lists, are given by
_ 150} Pulsea o M. O. Scully in Phys. Rep219, 191 (1992), which treats
2 Numerical phaseonium explicitly, and Quantum Opt.201 (1994).
5§ P [3] S.E. Harris, Phys. Rev. Lett70, 552 (1993);72, 52
= 75l N i (1994).
= Analytical [4] J.H. Eberly, M.L. Pons, and H.R. Haqg, Phys. Rev. Lett.
& 72, 56 (1994).
0L . . . [5] A good discussion of the numerical method for light
0 1 2 3 propagation problem can be found in A. Icsevgi and
z W.E. Lamb, Jr., Phys. Revl85 517 (1969), and in
FIG. 5. Showing the agreement between the predictions of ~ F.P. Mattar, Appl. Phys17, 53 (1978). We have used
analytic propagation formula (6) and the exact numerical  the general outline presented in these papers and actually
solution of the coupled Maxwell-Schrédinger equations. used the fourth-order Runge-Kutta method for the time
integration and the Euler method for the space integration
as described in W.H. Presst al., Numerical Recipes
theory and exactly numerically, as a function of propaga-  in Fortran (Cambridge University Press, Cambridge,
tion distance. The agreement is quite good. England, 1992), p. 704.
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have no overlap at all. This is the physical motivation for
a matrix formulation of the propagation equations. When

[1] Exploitation of the unusual properties of quantum phase-  the incident field is treated as a single pulse (see [1]),
clamped atoms was initiated by M. O. Scully in Phys. Rev.  these considerations are not evident.
Lett. 55, 2802 (1985), and extended in Phys. Rev. L&f. [8] Previous discussion of non-Hermitian propagation kernels
1855 (1991). has been motivated by consideration of excess sponta-
[2] Effects of recent interest include two-color interactions to neous emission in laser amplifiers and oscillators. An

control electron currents, molecular reactions, dielectric ~ early example is A.E. Siegman, Phys. Rev.38, 1253
properties, various types of lasing, etc. Reviews of many  (1989);39, 1264 (1989).
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