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In an adiabatic approximation for the simultaneous propagation of two optical pulses in a diele
medium with clamped quantum phase, we reduce the Maxwell wave equation to a matrix equation
a non-Hermitian propagation kernel. Numerical simulations confirm novel consequences of an an
solution that we identify as a two-photon-resonant propagation law. [S0031-9007(96)00102-0]
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The complex refractive index is the key parameter
the propagation of optical pulses in dielectric media. T
real part determines optical path length and governs ph
matching, and the imaginary part governs gain and l
in amplifiers and absorbers. The index is the param
that specifies the most important length scales on wh
pulse propagation effects are measured, even whe
pulse effect is not well described by an index, as,
example, in soliton and solitary wave propagation or
situations where the light intensity exceeds a nonlin
threshold or the pulse duration is too short. Howev
the refractive index is certainly the appropriate parame
to describe long and weak light pulses, even pulses
different colors traveling together through a dielectric
long as the different pulses excite the dielectric wea
and independently. For weak pulses, independence
normally be taken for granted because of rapid a
ubiquitous incoherent material relaxation effects.

In this Letter we report on new results regarding t
refractive index for weak multipulse propagation in
dielectric medium characterized by a quantum phase
is held fixed for long times despite the action of optic
relaxation processes with very short lifetimes. Such
unusual medium (so-called phaseonium [1]) is unhe
of in traditional spectroscopy, but is widely called for
recent proposals to use laser light for quantum contro
reactions, devices, and processes of various kinds [2].

The consequences for pulse propagation in this non
ditional medium can be severe, leading, for example
strong violations of Beer’s law of absorption for the tw
pulses, even if both pulses are weak enough to be
scribed by Beer’s law separately. We show here tha
two-photon-resonant propagation formula can be deri
for phaseonium from approximate equations of pro
gation, and we confirm the validity of this formula b
numerical simulations. We show that the formula p
dicts wave mixing that naturally incorporates earlier d
velopments including matched pulses [3] and trapped
dressed fields [4] in an appropriate multifield vector spa
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and generalizes them to include inhomogeneous broad
ing processes.

In order to discuss our results most simply, we foc
on propagation in a model for phaseonium that is
idealized version of a wide class of realistic absorbi
media whose principal optical properties are determin
by two-photon-resonant optical transitions from a pair
nondegenerate ground states to an upper level. As sh
in Fig. 1, the transitions are affected by a variety of dec
channels and are two-photon resonant, but may be
from individually resonant. A distribution of detuning
D can be incorporated, and we have done this.

We inject two different-color plane-wave pulses in
the phaseonium atz ­ 0 and calculate the changes i
pulse amplitude and shape after propagation to posi
z. This can be done numerically case by case us
well-known algorithms [5], and we give results below
However, this is not sufficient. For our main purpose,
analytic approach is necessary which we describe now

The electric field vector for the two optical pulses ca
be written

$E ­ x̂Easz, tdeiskaz2vatd 1 x̂Ebsz, tdeiskbz2vbtd 1 c.c.,

(1)
wherekac ­ va andkbc ­ vb; andEa andEb are the
amplitudes of the electric fields of the two pulses.
is assumed that the two fields interact separately w

FIG. 1. Sketch of energy levels of typical three-level atom
absorbing medium.
© 1996 The American Physical Society 3687
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the two transitions shown. Specifically, if we letdv

denote a generic bandwidth that roughly accounts
the incoherent phenomena that may be present, then
requirejva 2 vbj ¿ dv, which is not difficult to satisfy
when the fields are optical or near optical and in a Ram
type interaction as shown in Fig. 1.

The quantum phase of the two ground states is typica
proposed to be clamped by external fields which
not interact with the phaseonium transitions of intere
and we do not concern ourselves with those fields he
If we account for background dispersion due to ho
and impurity atoms by interpretingc as the background
propagation velocity, then in the narrow-band pulse lim
the equations for the pulse amplitudes take the form

≠Va

≠z
­ imakr21l,

≠Vb

≠z
­ imbkr23l . (2)

Here the notation is as follows: theV’s are E ’s in fre-
quency units, i.e., they are the corresponding comp
Rabi frequencies:Va ; 2daEayh̄, andVb ; 2dbEbyh̄,
while the r’s are atomic density matrix elements appr
priate to the two dipole transitions (1-2 and 3-2), and t
m parameters are standard propagation coefficients for
transitions individually:ma ­ 4pd2

aNvayh̄c, etc., where
generallyma fi mb . The angular brackets denote an a
erage over the ensemble of source dipoles, i.e., an ave
over a distribution ofD’s arising from the Doppler effect
or otherwise. Finally, we have defined local-time coord
natesz andt in the frame propagating with velocityc in
the medium:ct ; ct 2 z andz ; z.

In addition to the two field equations there are, of cour
equations for the nine atomic density matrix elements i
plied by the energy level diagram in Fig. 1, given b
ih̄≠ry≠t ­ fH, rg 1 relaxation terms, as usual. Thes
eleven equations are nonlinearly coupled and must
solved together, but for short medium response times, c
acteristic of the usual Beer’s law (i.e., wheng ¿ dv and
gdv ¿ V2, for all pulse bandwidths, Rabi frequencie
and damping rates), the atoms relax effectively instantly
the pulse time scale, and the relevant “adiabatic” solutio
for kr21l andkr23l are

kr21l ­

*
sr11 2 r22dVa 1 r31Vb

2sD 2 igad

+
(3)

and

kr23l ­

*
r13Va 1 sr33 2 r22dVb

2sD 2 igbd

+
. (4)

Here g is the total dipole damping rate of the individua
transitions, i.e.,ga ­ g21 1 g2X , etc., whereg2j is the
dephasing rate of the dipole transition between level
and j.

Phaseonium assigns fixed relative quantum phase
tween states 1 and 3, and zero occupation probab
to level 2, so we can taker22 ­ 0 and write the other
density matrix elements in terms of fixed probability am
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plitudes, e.g.,r31 ; Cp
1C3, etc. In a conventional spectro

scopic medium these off-diagonal coherences are zer
negligible, and one correctly expects that the differenc
in the present case must be significant.

Under present conditions, the right hand sides of bo
Eqs. (2) are proportional to a linear combination ofVa

and Vb . Thus, if we designate byjVl the two-field [6]
column vectorfVa, VbgT , we can write the equations fo
the pulses in terms of a2 3 2 propagation operatorK :

K ­

"
KajC1j

2 KaCp
1C3

KbC1Cp
3 KbjC3j

2

#
­ K

"
rp rq
sp sq

#
.

In the second matrix we have introduced a simp
fied dimensionless notation forK ’s matrix elements:
p ; C1, q ; C3, r ; sKayKdCp

1 , and s ; sKbyKdCp
3 ,

with K ; KajC1j
2 1 KbjC3j

2, whereKa ; kmay2sD 2

igadl, etc. Note that we do not takema ­ mb.
The propagation (scattering) equation equivalent to

is ≠jVly≠z ­ iKjVl, with the obvious solution

jVsz , tdl ­ eiKz jVs0, tdl . (5)

This is a two-photon-resonant propagation law for phas
nium [7], andK is clearly a two-field (matrix) wave vec-
tor, but further analysis is required for interpretation. No
that the wave vector operatorK is complex, nonsymmet-
ric, and non-Hermitian [8]. It has complex eigenvalu
ki , with k0 ­ 0 andk1 ­ K. The right and left eigenvec-
tors ofK are different and both will eventually be neede
For k0 we haveju0l ­ fq, 2pgT , andky0j ­ fs, 2rg; and
for k1 we haveju1l ­ fr , sgT , andky1j ­ fp, qg. Note that
ky0ju1l ­ ky1ju0l ­ 0 and ky0ju0l ­ ky1ju1l ­ 1, and the
sum

P
i juil kyij is the unit operator.

Now we discuss the implications of the matrix prop
agation law (5) for phaseonium. Unusual features a
found not previously associated with weak pulse prop
gation which illustrate the dramatic effects of perfect o
diagonal long-range order (ODLRO, orr11r33 ; r13r31)
in a new context.

Standard one-pulse results, such as Beer’s law of
sorption, cannot be obtained from (5) in the usual way
making the pulses arbitrarily weak or even by setting o
of them initially to zero. However, if the off-diagonal co
herences vanish (r13 ­ r31 ­ 0), thenK is diagonal, the
two components ofjVl evolve independently, and the tw
pulses recover their usual independence and Beer’s
behavior, as shown in Fig. 2. For phaseonium, howev
since one of the eigenvalues ofK is identically zero (for
arbitrary choices of quantum phase andg), spontaneous
wave mixing always gives rise to a nonattenuating p
of the solution for both field components, independent
their initial values. The nonattenuating part ofjVl cor-
responds to the “trapped field” combination of amplitud
introduced earlier [4].

Given arbitrary inputs for the two fieldsVa andVb , the
full solution for thea component is given byVasz , td ­
ka j Vsz , tdl, where we will designate byjal and jbl
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FIG. 2. IntensitiesIsZ, T d ; sVtpd2 of pulsesa (left) and b
(right) as a function of space and time for a zero ODLR
medium. The parameters used arer11 ­ 0.6, r33 ­ 0.4,
andr13 ­ 0, with Kb ­ 1.5Ka, Z ; ImsKdz , andT ; tytp ,
wheretp is the width of pulsea.

the bare single-field states represented byf1, 0gT and
f0, 1gT , respectively. By exploiting both right and lef
eigenvectors of the propagation operatorK , we find

Vasz , td ­
X

i­0,1

kajuileikiz kyijVs0, tdl

­ sqs 1 rpeiKz dVas0, td

2 qrs1 2 eiKz dVbs0, td . (6)

A similar expression forVb can be obtained. Note tha
(6) shows that if thet dependences of the two pulse
are the same atz ­ 0 then they will be the same for al
z . This is the “matched-pulse” effect noted by Harris [
for non-phase-clamped media. In Figs. 3 and 4 we p
several predictions of formula (6). One sees the evolut
toward matched shapes forZ ¿ 1.

It is evident from formula (6) that the perfect offdi
agonal long-range order plays a remarkable role in pu
propagation. In the top part of Fig. 3 we plot the ev
lution of the same input pulses of Fig. 2 in a perfe
ODLRO medium. We observe that the input pulses

FIG. 3. IntensitiesIsZ, T d ; sVtpd2 of pulsesa (left) and b
(right) as a function of space and time for a perfect ODLR
medium. The parameters are as in Fig. 2, exceptr13 ­ 20.24
in the top figures andr13 ­ 2

p
0.24 exps2ipy4d in the bottom

figures.
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cillate in space (because of the nonzero imaginary par
the eigenvalueK) and decay to (because of the real pa
of the eigenvalueK) a spatially steady state. We shou
also mention that the phase of the off-diagonal order c
affect the propagation significantly. This is illustrated
the bottom part of Fig. 3 where the degree of long-ran
order, the atomic level populations, and the input puls
are the same as for the top part, but the phaseonium p
is different bypy4. We note that because of the pha
shift, the evolution is now completely different.

Formula (6) also implies thatdeliberately unmatched
pulses can be used for elaborate pulse shapingsince (5)
specifies the degree to which the pulses will partially e
change some of their shape characteristics during pro
gation. This is shown in Fig. 4. In this case, pulseb was
a pair of completely disjoint pulses injected before and
ter single pulsea. It is obvious that pulse shaping can b
strongly dynamic both in time and in space.

In summary, we have obtained a new approximate pr
agation law for very weak light pulses in a quantum-pha
clamped medium (phaseonium). We have shown that
intrinsic two-photon-resonant nature of the propagation
validates well-known aspects of weak pulse propagati
The key element in our analysis is an adiabatic appro
mation leading to a non-Hermitian matrix wave vector f
the coupled fields. Despite heavily overdamped evolut
of the atomic density matrix elements that couple to t
fields, complex pulse shaping can be obtained in both sp
and time, and the reshaping is strongly quantum phase
pendent. An unstated assumption has been the absen
decay from level 3 to level 1. In practice, this will add
small positive imaginary part to the zero eigenvalue ofK ,
leading to additional decay. However, both 1-2 and 2-3
assumed to be dipole transitions, soj1l andj3l have equal
parity and any 3-1 decay effects will normally be sma
Finally, since the propagation law (5) was derived appro
imately, we have checked its validity by solving the co
pled two-pulse Maxwell and Schrödinger equations fu
numerically [5] in several cases, for comparison with t
predictions of analytic formula (6). To illustrate the re
sults, in Fig. 5 we show a comparison of the peak inte
sity of pulsea as computed by our analytic approxima

FIG. 4. IntensitiesIsZ, T d ; sVtpd2 of pulsesa (left) and b
(right) as a function of space and time for a perfect ODLR
medium. The population parameters are as in Fig. 3 (to
Different input pulses are chosen, as shown.
3689
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FIG. 5. Showing the agreement between the predictions
analytic propagation formula (6) and the exact numeri
solution of the coupled Maxwell-Schrödinger equations.

theory and exactly numerically, as a function of propa
tion distance. The agreement is quite good.
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