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Measurement Induced Localization from Spontaneous Decay

M. Holland! S. Marksteinet;? P. Marte!-?> and P. Zollel
Joint Institute for Laboratory Astrophysics and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440
2Institute for Theoretical Physics, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
(Received 13 February 1995

We present a simulation method which localizes the atomic wave function each time a spontaneous
photon is emitted. This allows a small set of basis states to be allocated dynamically to follow the
atomic motion. We illustrate the application of this technique in a study of position jumps and quantum
diffusion in the laser cooling of atoms. [S0031-9007(96)00228-1]

PACS numbers: 42.50.—p, 03.65.Bz, 32.80.—t

Let us consider the spatially resolved photodetection oystem state evolves accordingitoys(r) = Hegrip(2) in
fluorescence photons from laser driven atoms. Accordingvhich the norm||i(r)|| decreases with time from its ini-
to quantum measurement theory, each observation of aral value of unity. The time’ for the next decay can be
emitted photon will localize the atomic center of massfound by simulating a uniformly distributed random vari-
wave function in agreement with the spatial resolution ofable R in the interval[0, 1] and solving||y(¢')||> = R.
the detection scheme. Continuous observation of thes& second random variable is used to simulate the reser-
fluorescence photons allows us to give an operationatoir mode in which the excitation is observed, assigning
definition of a “quantum trajectory” of a moving atom a relative weight|a, ¢ (¢')||* to each counter. The opera-
in terms of the sequence of spatially resolved detectiotor for the chosen mode is used to generate a quantum
events. This is of direct relevance for the descriptionump of the statey(r’ + dr) = a,y(¢') for infinitesimal
of the random motion and transport of atoms in opticald:. This is then renormalized and becomes the initial state
molasses and atomic traps in the limit where the atomidor the next interval. The master equation is derived by a
center of mass motion must be quantized. In this Lettestochastic average(r) = {|¢ (1)) {¢(?)|)sc Where ¢(r) =
we develop a master equation formulation of this physicaly(z)/|ly(¢)|| is the normalized system wave function. An
picture. Apart from the conceptual interest from thealternative stochastic formulation is quantum state diffu-
measurement point of view, this formulation leads directlysion [3] which replaces the jumps by a diffusive time
to a novel wave function simulation method whereevolution and in quantum optics corresponds to homo-
the spatial grid on which the atomic wave function isdyne detection.
represented follows the Brownian motion of the atom. The formulation of a stochastic evolution in terms of
In quantum optics, dissipation of a system may besystem wave functions has gained considerable interest
treated by coupling to an external reservoir. The quanturboth as a novel simulation tool for the master equation
master equation is derived by tracing over the reservoif4,5], and also from a conceptual point of view since the
states under the Markov approximation. This gives thendividual trajectories might be interpreted as what may
evolution of the reduced density operagofor the system be observed in a single run of an experiment. In this

alone [1], sense the simulation corresponds to an idealized computer
R P . ot experiment for a quantum optical system. In general,
pP="7 (Hetrp — pHerr) + Z2aypa7, (1) however, there is not a unique way of decomposing the

4 . master equation to form quantum trajectories, since the

where the non-Hermitian effective Hamiltonidd.;s =  reservoir measurement may be performed in any basis.

H — ihY, ala, is defined in terms of the Hamiltonian This statement is equivalent to noting that Eq. (1) is
H for the isolated system. The operat®; when ap- invariant under the substitutiod, — >, U,,a, Where
plied to the state generates the effect on the system df is any unitary transformation [4]. In this Letter, we

a decay into the reservoir mode labeled py In con- demonstrate that an appropriate choiceagfis crucial
tinuous measurement theory, the master equation has tfi@er the formulation of an efficient simulation method
interpretation of describing the time evolution of a sys-for estimating the ensemble distribution. Note that the
tem which is continuously observed, but the results of thebservation of a count in a particular decay chanpel
measurement are not read and no selection is made [dpcalizes the wave function according to the action of the
Consider, in particular, a system coupledyte= 1,...,N  correspondingi,. A continuous spontaneous localization
counters which act continuously to register the arrivalalso occurs in quantum state diffusion models [3]. The
times of photons. The time evolution of the system con-<criteria to consider when selecting the measurement
ditional to having observed a certain trajectory of countsasis is that it should be chosen in such a way as to
is described by a system wave functigiiz) undergoing minimize the phase space required to accurately describe
a sequence of quantum jumps. Between the counts thbe state as the system evolves. As an important example,
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we consider in detail the treatment of the spontaneouside of the object. We label these by= *1, define the

emission of photons by atoms, although the principle carix, y) plane to be the one aligned with the lenses, and use

be extended to relaxation processes in other systems. z to denote the perpendicular axis. The jump operators
Simulation methods for calculating spontaneous emisare found by transforming Eq. (3) to give

sion have predominantly assumed an angle resolved de-

tection of the photon, i.e., the measurement of the wave ayrg = Z] dQuluzl’l/ze(r - €rAg

vector. For a one-dimensional system this gives the de- o

cay operators [5] X exd—iku - (7 — vA/2)], ©)
due = (Nuo)'?A, expl—ikuz), (2)  where the solid angle elemeiif),, is in the directioru =

where u € [—1,1] is the component of the photon’s (ux,u,,u.) and the integration is over the hemisphere
direction vector along the axis of interest. The angulam;{ > 0. In order to form a complete set of operators, the
momentum of the photon about this simulation axisvector» is assigned the valugsg,, »,,0) wherer, and
is ¢ =0,*1. The wave number of the photon is v, are integers. This indexes a two-dimensional lattice of
A, is the internal lowering operator proportional to the possible cells with which the observed photon could be
square root of the transition rate, ardis the one- associated, each of si2¢2 by A/2.
dimensional position operator for the center of mass of In Fig. 1 we illustrate the probability density resulting
the atom. The angular distribution of the radiation patterrfrom the projection of a single photon measurement on a
is characterized by the function®,, = 3(1 — »?)/4  wave function in a momentum eigenstate. We have traced
and N,-; = 3(1 + 4?)/8. At each emissiony and o  over thez direction and have used the circular polarization
are simulated, and the application of the correspondingasis fore,». The figure is the same for all choices A&f
decay operator generates a translation of the momentuand{. The probability falls off outside the characteristic
coordinate of the atom. unit wavelength scale in both pictures demonstrating
In the general three-dimensional case [4] the photon ighe attenuation of the wave function at large distances
identified with a direction vectat distributed on the unit from the observed photon position. This loss of spatial
sphere. There are two channéls= =1 associated with coherence by a single spontaneous emission has recently
the photon polarization, and this can be measured usingeen observed experimentally by Pfatial. [6]. Note
any basis seg,, orthogonal tou. The decay operators that the wave function may spread coherently in between

are then given by the localizing quantum jumps. In particular, in the case
A of near dark internal states which do not absorb and emit
ayn = Z €, - €2A, exp—iku - F), (3) light frequently, the average spatial coherence length may

g

be very large.

where? is the three-dimensional position operator. The As a first example we apply the new operators to
standard polarization vectoes, correspond to the angular illustrate quantum position jumps in two dimensions.
momentum of the emitted photon about the quantizatiowe consider a three level system inAaconfiguration.
axis of the atom. Spontaneous emission from the excited stafeoccurs

In our new formulation the fluorescence is not mea-predominantly to one of the ground stafes) on a strong
sured directly but is instead observed through a lens. Thigansition with ratey,. This is much larger than the
is equivalent to the direct simulation of a Heisenberg mi-decay ratey,, to the other ground statg,,) on a weak
croscope [6]. Applying a Fourier transform to the opera-transition. A resonant field with a large Rabi frequency

tors in Eq. (2) to model the action of the lens gives theq is used to saturate the strong transition. Population
new decay operators for one dimension

1
dyy = f du (Nyuo) A, exd—iku(t — vA/2)], (4) 2
-1

whereX = 27 /k is the photon wavelength. For angle re-
solved detectiony labels a continuous but bounded set of
operators, so that in the conjugate basiscan be any
integer and indexes an infinite set of operators at dis- -4a
crete points. The integral can be evaluated d9r,, x 0
to give a localized function centered at the origin and (a)

the rest generated by translation by multiples®of /2.
The emission time’ is chosen in the same way as for
angle resolved detection [5]. The probability distribu-
tion from which » and o are simulated is then given

Probability

0.75

o
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by ||2 p FIG. 1. The probability density of the state resulting from
y a”"'/’_(t = . L . . . applying the localizing operators to a momentum eigenstate for

A physical constraint in considering three dimensions is, = and for changes in magnetic quantum number during the
that two parallel lenses must be used; one placed on eadfansition (a)Am; = 0 and (b)Am; = *1.
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which accumulates ifg,,) is excited by a laser on the temperatures achieved in experiments correspond to the
weak transition with a Rabi frequendy,, and a detuning accumulation of atoms in the few lowest vibrational en-
A,, = Q; equal to the Stark splitting of the excited state.ergy levels of the optical potential which results in the
A similar situation has been studied in the context oflocalization of these atoms in space. A theoretical de-
quantum jumps in ion traps where a single stored ion magcription of the random walk of an atom in the opti-
exhibit periods of fluorescence on the strong transitiorcal lattice should therefore be based on a fully quantum
interrupted by dark bands [7]. It has been shown thatreatment of the atomic motion. We consider polariza-
the dark periods are associated with the shelving of théon gradient cooling in a 1D laser configuration con-
electron on a weakly coupled state. sisting of two counterpropagating linearly polarized light
The periods of frequent photon emissions may localizeavaves with orthogonal polarizations driving an angular
the atomic center of mass wave packet according to thmomentunv, = 1/2 — J, = 3/2 and the more realistic
application of the new quantum jump operators. The darl, = 3 — J, = 4 transition [5]. In previous work [10]
periods in which no photons are detected are then assoa- spatial diffusion coefficient was calculated in a semi-
ated with a free quantum diffusion of the wave function.classical approach which is restricted tol@2 — 3/2
In our model we consider two-dimensional motion on thetransition and which neglects spatial localization in the
(x,y) plane and the driving fields propagating along the potential wells.
axis. In Fig. 2 we illustrate a sample trajectory in which  Applying the localizing jump operators allows us to use
we show the expectation valugtf, (9)) at times imme- a small spatial grid (covering typically 8 wavelengths,
diately after each of the spontaneous emissions. In thighich, for the parameter values used in this Letter,
figure the time unit iswgz' where the recoil energy is turned out to be sufficient in order to account for the
Er = hwg = h*k*/2m andm is the atomic mass. The spreading to the wave function in between the localizing
inset shows the sequence of quantum jumps indicated hyhoton emissions) which dynamically traces the atom at
vertical lines as a function of time. Analysis of the waveeach spontaneous emission. The propagation algorithm
function shows that dark bands in the photon statisticsvas the split-operator first Fourier transform [5]. One
produce a delocalized wave function so that the next lorepresentative trajectory illustrating the random walk is
calizing jump can be selected from a large region. Thisshown in Fig. 3(a) where we plot the expectation value
typically produces a long flight which can be seen in theof the spatial coordinate as a function of time. The long
periods denoted in the figure by a, b, and c. In order tgeriods when the position does not change appreciably
observe these flights experimentally, it would be neceseorrespond to sub-barrier motion when the total energy of
sary to resolve the fluorescence from a single atom [8]. the atom is below the threshold given by the maximum
As a second application we consider the spatial dif-of the optical potential. Energy fluctuations allow the
fusion of atoms in quantized optical molasses whereatom to eventually overcome the potential barrier which
laser cooling with counterpropagating light beams pro-s indicated by the dashed line in Fig. 3(b). It may
vides damping of the atomic motion and gives rise tothen travel over several wavelengths until it is trapped
spatial diffusion in a periodic optical lattice [9]. The again. In Fig. 4(a) we plot the ensemble average over
many trajectories illustrating the rate of expansion of the
initially well localized cloud. Following the experimental
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FIG. 2. Quantum jumps in position space. We show a sample tt,

trajectory for the expectation value of the wave packetyfor=

8 wr, Yw = wg, ; = 1024 wg, andQ,, = 0.5wr. Theinset FIG. 3. (a) Expectation value of the spatial coordinate for a
shows the spontaneous emission times which appear on thgingle trajectory vs timetf = wg') for 3 — 4. (b) Corre-
trajectory as circles for a time interval= ¢ = 14wy '. sponding (kinetic plus potential) energy expectation value.
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procedure in Ref. [10], we define a spatial diffusion
coefficient as(16In2)~! times the time derivative of the
squared FWHM of the atomic distribution which for the
final distribution in Fig. 4(a) is indicated by arrows. Note
that in order to produce Fig. 4(a) with the angle resolved
detection method we would need a 10 times larger (i.e.,
80A) spatial grid resulting in an approximately 14 times
longer propagation time (we usually use a momentum
grid ranging from—32%k to +324k). In the case of a
1/2 — 3/2 transition this factor increases to 60 for the &
same simulation parameters. Considering that a single 2
run usually takes a couple of CPU days even when using
several medium-size workstations, it is clear that the :
calculation of these diffusion coefficients is not feasible 025 0 0.25 0 | 3 a
without the method of the localizing quantum jumps. This Y probability
computational advantage becomes even more pronounced ’

when we go to higher dimensions since the number of!G. 5. (a) Optical potentials vs position for B2 — 3/2

; ; ; ; ; ransition andlU, = 400E;. (b) Corresponding kinetic energy
?r:adp[:gtl)rllésmscales as a power of the dimensionality 01f:listribution. The dotted line divides below and above barrier

) . . . o energies. (c) and (d) same as (a) and (b) but f& & 4
The behavior of the spatial diffusion coefficient as atransition. The solid and dashed lines in (c) correspond to

function of the potential deptt/, [11] (the optical pump- adiabatic and diabatic potentials, respectively.
ing rate yy is kept constant) is plotted in Fig. 4(b) for
a 1/2 — 3/2 transition (crosses) and Z2— 4 transition
(circles), and compared with the semiclassical theory fo
a 1/2 — 3/2 transition ignoring localization [10] (solid
line). Both localization and going to higher angular mo-
menta strongly suppress the spati.al_ diffusion_. 'I.'his.can be[l] C. Gardiner,Quantum NoiséSpringer, Berlin, 1991).
understood qualitatively by examining the distribution of 2] A. Barchielli and V.P. Belavkin, J. Phys. R4, 1495
kinetic energies in the molasses. From the upper two plots’ ~ (1997).

of Fig. 5 (1/2 — 3/2) we find that 2.5% of all particles [3] N. Gisin and I.C. Percival, Phys. Lett. 867, 315 (1992):
have kinetic energies that are large enough to overcome B.M. Garraway and P.L. Knight, Phys. Rev. 49, 1266
the potential barrier between neighboring potential min- (1994), and references cited.

ima [shaded area in Fig. 5(b)]. Those particles contribute[4] J. Dalibardet al., Phys. Rev. Lett68, 580 (1992); C.W.
the dominant part to the diffusion coefficient. A look at Gardiner et al.,, Phys. Rev. A46, 4363 (1992); H.J.
the lower two plots ¥ — 4) shows that only 0.5%, i.e., Carmichael An Open Systems Approach to Quantum Op-
5 times less than for thé/2 — 3/2 transition, are now Hciﬁsgr%gggsg'?iglgggs); N. Gisin and I.C. Percival,
a.lbove the threshold given by th_e lowest a_dlab_atlc_poten-[S] P. Mayrteet aI,., Phys. Rev. Lett71, 1335 (1993); P. Marte
tial. Hence the strong suppression of spatial diffusion for

. o . . . . ) et al., Phys. Rev. A47, 1378 (1993); Y. Castin and K.
this transition. A more detailed discussion of spatial dif- Molmer, Phys. Rev. Let{74, 3772 (1995).

fusion in optical molasses, in particular, the existence of (g] . B. Braginski and F. Y. Khalili,Quantum Measurement,
Lévy flights below a critical potential depth, will be pub- edited by K.S. Thorne (Cambridge University Press,
lished elsewhere [12]. Cambridge, 1992); S.M. Tan and D.F. Walls, Phys. Rev.
A 47, 4663 (1993); T. Pfawet al., Phys. Rev. Lett.73,
1223 (1994).
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