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Measurement Induced Localization from Spontaneous Decay
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We present a simulation method which localizes the atomic wave function each time a spontaneous
photon is emitted. This allows a small set of basis states to be allocated dynamically to follow the
atomic motion. We illustrate the application of this technique in a study of position jumps and quantum
diffusion in the laser cooling of atoms. [S0031-9007(96)00228-1]
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Let us consider the spatially resolved photodetection
fluorescence photons from laser driven atoms. Accord
to quantum measurement theory, each observation o
emitted photon will localize the atomic center of ma
wave function in agreement with the spatial resolution
the detection scheme. Continuous observation of th
fluorescence photons allows us to give an operatio
definition of a “quantum trajectory” of a moving atom
in terms of the sequence of spatially resolved detec
events. This is of direct relevance for the descripti
of the random motion and transport of atoms in opti
molasses and atomic traps in the limit where the ato
center of mass motion must be quantized. In this Le
we develop a master equation formulation of this physi
picture. Apart from the conceptual interest from t
measurement point of view, this formulation leads direc
to a novel wave function simulation method whe
the spatial grid on which the atomic wave function
represented follows the Brownian motion of the atom.

In quantum optics, dissipation of a system may
treated by coupling to an external reservoir. The quan
master equation is derived by tracing over the reserv
states under the Markov approximation. This gives
evolution of the reduced density operatorr for the system
alone [1],

Ùr ­ 2
i
h̄

sĤeffr 2 rĤ
y
effd 1

X
g

2âgrây
g , (1)

where the non-Hermitian effective Hamiltonian̂Heff ­
Ĥ 2 ih̄

P
g ây

gâg is defined in terms of the Hamiltonia
Ĥ for the isolated system. The operatorâg when ap-
plied to the state generates the effect on the system
a decay into the reservoir mode labeled byg. In con-
tinuous measurement theory, the master equation has
interpretation of describing the time evolution of a sy
tem which is continuously observed, but the results of
measurement are not read and no selection is made
Consider, in particular, a system coupled tog ­ 1, . . . , N
counters which act continuously to register the arri
times of photons. The time evolution of the system co
ditional to having observed a certain trajectory of cou
is described by a system wave functioncstd undergoing
a sequence of quantum jumps. Between the counts
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system state evolves according toih̄ Ùcstd ­ Ĥeffcstd in
which the normkcstdk decreases with time from its ini
tial value of unity. The timet0 for the next decay can be
found by simulating a uniformly distributed random var
able R in the interval f0, 1g and solvingkcst0dk2 ­ R.
A second random variable is used to simulate the res
voir mode in which the excitation is observed, assigni
a relative weightkâgcst0dk2 to each counter. The opera
tor for the chosen mode is used to generate a quan
jump of the statecst0 1 dtd ­ âgcst0d for infinitesimal
dt. This is then renormalized and becomes the initial st
for the next interval. The master equation is derived b
stochastic averagerstd ­ kjwstdl kwstdjlst wherewstd ­
cstdykcstdk is the normalized system wave function. A
alternative stochastic formulation is quantum state dif
sion [3] which replaces the jumps by a diffusive tim
evolution and in quantum optics corresponds to hom
dyne detection.

The formulation of a stochastic evolution in terms
system wave functions has gained considerable inte
both as a novel simulation tool for the master equat
[4,5], and also from a conceptual point of view since t
individual trajectories might be interpreted as what m
be observed in a single run of an experiment. In t
sense the simulation corresponds to an idealized comp
experiment for a quantum optical system. In gener
however, there is not a unique way of decomposing
master equation to form quantum trajectories, since
reservoir measurement may be performed in any ba
This statement is equivalent to noting that Eq. (1)
invariant under the substitution̂ag !

P
a Uga âa where

U is any unitary transformation [4]. In this Letter, w
demonstrate that an appropriate choice ofâg is crucial
for the formulation of an efficient simulation metho
for estimating the ensemble distribution. Note that t
observation of a count in a particular decay channeg

localizes the wave function according to the action of t
correspondinĝag . A continuous spontaneous localizatio
also occurs in quantum state diffusion models [3]. T
criteria to consider when selecting the measurem
basis is that it should be chosen in such a way as
minimize the phase space required to accurately desc
the state as the system evolves. As an important exam
© 1996 The American Physical Society 3683
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we consider in detail the treatment of the spontane
emission of photons by atoms, although the principle
be extended to relaxation processes in other systems.

Simulation methods for calculating spontaneous em
sion have predominantly assumed an angle resolved
tection of the photon, i.e., the measurement of the w
vector. For a one-dimensional system this gives the
cay operators [5]

âus ­ sNusd1y2Âs exps2ikux̂d, (2)

where u [ f21, 1g is the component of the photon’
direction vector along the axis of interest. The angu
momentum of the photon about this simulation a
is s ­ 0, 61. The wave number of the photon isk,
Âs is the internal lowering operator proportional to th
square root of the transition rate, and̂x is the one-
dimensional position operator for the center of mass
the atom. The angular distribution of the radiation patt
is characterized by the functionsNu0 ­ 3s1 2 u2dy4
and Nu61 ­ 3s1 1 u2dy8. At each emission,u and s

are simulated, and the application of the correspond
decay operator generates a translation of the momen
coordinate of the atom.

In the general three-dimensional case [4] the photo
identified with a direction vectoru distributed on the unit
sphere. There are two channelsL ­ 61 associated with
the photon polarization, and this can be measured u
any basis seteuL orthogonal tou. The decay operator
are then given by

âuL ­
X
s

es ? ep
uLÂs exps2iku ? r̂d, (3)

where r̂ is the three-dimensional position operator. T
standard polarization vectorses correspond to the angula
momentum of the emitted photon about the quantizat
axis of the atom.

In our new formulation the fluorescence is not me
sured directly but is instead observed through a lens. T
is equivalent to the direct simulation of a Heisenberg m
croscope [6]. Applying a Fourier transform to the ope
tors in Eq. (2) to model the action of the lens gives t
new decay operators for one dimension

âns ­
Z 1

21
du sNusd1y2Âs expf2ikusx̂ 2 nly2dg, (4)

wherel ­ 2pyk is the photon wavelength. For angle r
solved detection,u labels a continuous but bounded set
operators, so that in the conjugate basis,n can be any
integer and indexes an infinite set of operators at d
crete points. The integral can be evaluated forân­0 s

to give a localized function centered at the origin a
the rest generated by translation by multiples of6ly2.
The emission timet0 is chosen in the same way as f
angle resolved detection [5]. The probability distrib
tion from which n and s are simulated is then give
by kânscst0dk2.

A physical constraint in considering three dimensions
that two parallel lenses must be used; one placed on e
3684
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side of the object. We label these byz ­ 61, define the
sx, yd plane to be the one aligned with the lenses, and
z to denote the perpendicular axis. The jump operat
are found by transforming Eq. (3) to give

ânLz ­
X
s

Z
dVujuz j

21y2es ? ep
uLÂs

3 expf2iku ? sr̂ 2 nly2dg, (5)

where the solid angle elementdVu is in the directionu ­
sux , uy, uzd and the integration is over the hemisphe
uzz . 0. In order to form a complete set of operators, t
vector n is assigned the valuessnx , ny, 0d wherenx and
ny are integers. This indexes a two-dimensional lattice
possible cells with which the observed photon could
associated, each of sizely2 by ly2.

In Fig. 1 we illustrate the probability density resultin
from the projection of a single photon measurement o
wave function in a momentum eigenstate. We have tra
over thez direction and have used the circular polarizati
basis foreuL. The figure is the same for all choices ofL

andz . The probability falls off outside the characterist
unit wavelength scale in both pictures demonstrat
the attenuation of the wave function at large distanc
from the observed photon position. This loss of spa
coherence by a single spontaneous emission has rec
been observed experimentally by Pfauet al. [6]. Note
that the wave function may spread coherently in betwe
the localizing quantum jumps. In particular, in the ca
of near dark internal states which do not absorb and e
light frequently, the average spatial coherence length m
be very large.

As a first example we apply the new operators
illustrate quantum position jumps in two dimension
We consider a three level system in aL configuration.
Spontaneous emission from the excited statejel occurs
predominantly to one of the ground statesjgsl on a strong
transition with rategs. This is much larger than the
decay rategw to the other ground statejgwl on a weak
transition. A resonant field with a large Rabi frequen
Vs is used to saturate the strong transition. Populat

FIG. 1. The probability density of the state resulting fro
applying the localizing operators to a momentum eigenstate
n ­ 0 and for changes in magnetic quantum number during
transition (a)Dmj ­ 0 and (b)Dmj ­ 61.
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which accumulates injgwl is excited by a laser on th
weak transition with a Rabi frequencyVw and a detuning
Dw ­ Vs equal to the Stark splitting of the excited sta
A similar situation has been studied in the context
quantum jumps in ion traps where a single stored ion m
exhibit periods of fluorescence on the strong transit
interrupted by dark bands [7]. It has been shown t
the dark periods are associated with the shelving of
electron on a weakly coupled state.

The periods of frequent photon emissions may loca
the atomic center of mass wave packet according to
application of the new quantum jump operators. The d
periods in which no photons are detected are then as
ated with a free quantum diffusion of the wave functio
In our model we consider two-dimensional motion on
sx, yd plane and the driving fields propagating along thz
axis. In Fig. 2 we illustrate a sample trajectory in whi
we show the expectation value (kx̂l, k ŷl) at times imme-
diately after each of the spontaneous emissions. In
figure the time unit isv

21
R where the recoil energy i

ER ­ h̄vR ­ h̄2k2y2m and m is the atomic mass. Th
inset shows the sequence of quantum jumps indicate
vertical lines as a function of time. Analysis of the wa
function shows that dark bands in the photon statis
produce a delocalized wave function so that the next
calizing jump can be selected from a large region. T
typically produces a long flight which can be seen in
periods denoted in the figure by a, b, and c. In orde
observe these flights experimentally, it would be nec
sary to resolve the fluorescence from a single atom [8]

As a second application we consider the spatial
fusion of atoms in quantized optical molasses wh
laser cooling with counterpropagating light beams p
vides damping of the atomic motion and gives rise
spatial diffusion in a periodic optical lattice [9]. Th

FIG. 2. Quantum jumps in position space. We show a sam
trajectory for the expectation value of the wave packet forgs ­
8 vR , gw ­ vR , Vs ­ 1024 vR , andVw ­ 0.5 vR . The inset
shows the spontaneous emission times which appear on
trajectory as circles for a time interval0 # t # 14v

21
R .
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temperatures achieved in experiments correspond to
accumulation of atoms in the few lowest vibrational e
ergy levels of the optical potential which results in th
localization of these atoms in space. A theoretical d
scription of the random walk of an atom in the opt
cal lattice should therefore be based on a fully quant
treatment of the atomic motion. We consider polariz
tion gradient cooling in a 1D laser configuration co
sisting of two counterpropagating linearly polarized lig
waves with orthogonal polarizations driving an angu
momentumJg ­ 1y2 ! Je ­ 3y2 and the more realistic
Jg ­ 3 ! Je ­ 4 transition [5]. In previous work [10]
a spatial diffusion coefficient was calculated in a sem
classical approach which is restricted to a1y2 ! 3y2
transition and which neglects spatial localization in t
potential wells.

Applying the localizing jump operators allows us to u
a small spatial grid (covering typically 8 wavelength
which, for the parameter values used in this Lett
turned out to be sufficient in order to account for th
spreading to the wave function in between the localizi
photon emissions) which dynamically traces the atom
each spontaneous emission. The propagation algori
was the split-operator first Fourier transform [5]. On
representative trajectory illustrating the random walk
shown in Fig. 3(a) where we plot the expectation val
of the spatial coordinate as a function of time. The lo
periods when the position does not change apprecia
correspond to sub-barrier motion when the total energy
the atom is below the threshold given by the maximu
of the optical potential. Energy fluctuations allow th
atom to eventually overcome the potential barrier whi
is indicated by the dashed line in Fig. 3(b). It ma
then travel over several wavelengths until it is trapp
again. In Fig. 4(a) we plot the ensemble average o
many trajectories illustrating the rate of expansion of t
initially well localized cloud. Following the experimenta

FIG. 3. (a) Expectation value of the spatial coordinate fo
single trajectory vs time (tR ­ v

21
R ) for 3 ! 4. (b) Corre-

sponding (kinetic plus potential) energy expectation value.
3685
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procedure in Ref. [10], we define a spatial diffusio
coefficient ass16 ln2d21 times the time derivative of the
squared FWHM of the atomic distribution which for th
final distribution in Fig. 4(a) is indicated by arrows. No
that in order to produce Fig. 4(a) with the angle resolv
detection method we would need a 10 times larger (i
80l) spatial grid resulting in an approximately 14 tim
longer propagation time (we usually use a moment
grid ranging from232h̄k to 132h̄k). In the case of a
1y2 ! 3y2 transition this factor increases to 60 for th
same simulation parameters. Considering that a sin
run usually takes a couple of CPU days even when us
several medium-size workstations, it is clear that
calculation of these diffusion coefficients is not feasib
without the method of the localizing quantum jumps. Th
computational advantage becomes even more pronou
when we go to higher dimensions since the number
grid points scales as a power of the dimensionality
the problem.

The behavior of the spatial diffusion coefficient as
function of the potential depthU0 [11] (the optical pump-
ing rate g0 is kept constant) is plotted in Fig. 4(b) fo
a 1y2 ! 3y2 transition (crosses) and a3 ! 4 transition
(circles), and compared with the semiclassical theory
a 1y2 ! 3y2 transition ignoring localization [10] (solid
line). Both localization and going to higher angular m
menta strongly suppress the spatial diffusion. This can
understood qualitatively by examining the distribution
kinetic energies in the molasses. From the upper two p
of Fig. 5 (1y2 ! 3y2) we find that 2.5% of all particles
have kinetic energies that are large enough to overco
the potential barrier between neighboring potential m
ima [shaded area in Fig. 5(b)]. Those particles contrib
the dominant part to the diffusion coefficient. A look
the lower two plots (3 ! 4) shows that only 0.5%, i.e.
5 times less than for the1y2 ! 3y2 transition, are now
above the threshold given by the lowest adiabatic pot
tial. Hence the strong suppression of spatial diffusion
this transition. A more detailed discussion of spatial d
fusion in optical molasses, in particular, the existence
Lévy flights below a critical potential depth, will be pub
lished elsewhere [12].

FIG. 4. (a) Spatial distribution at timest ­ 0, 500v
21
R , and

1000v
21
R for 3 ! 4, potential depthU0 ­ 200ER , and optical

pumping rateg0 ­ 3vR . (b) Spatial diffusion coefficient vs
U0 for 1y2 ! 3y2 (+), 3 ! 4 (o), and a semiclassical theor
for 1y2 ! 3y2 ignoring localization [10] (solid line).
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FIG. 5. (a) Optical potentials vs position for a1y2 ! 3y2
transition andU0 ­ 400ER . (b) Corresponding kinetic energ
distribution. The dotted line divides below and above barr
energies. (c) and (d) same as (a) and (b) but for a3 ! 4
transition. The solid and dashed lines in (c) correspond
adiabatic and diabatic potentials, respectively.
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