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Boundary Effects and the Order Parameter Symmetry of High-Tc Superconductors
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Apparently conflicting phase-sensitive measurements of the order parameter symmetry in the hig
Tc cuprate superconductors may be explained by regions near surfaces in which the order parame
symmetry is different than in the bulk. These surface states can lead to interesting and testable effec
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Phase-sensitive measurements on the high tempera
superconductor YBa2Cu3O72d (YBCO) have yielded two
potentially conflicting sets of results for the symmetry o
the superconducting order parameter [1]. Measureme
involving currents flowing in the CuO2 planes, such
as the corner-junction SQUID experiments [2–4], th
corner-junction flux modulation experiments [5,6], and th
tricrystal ring experiments [7], indicate an order parame
with primarily dx22y2 symmetry under rotations in the
planefDskd , coskx 2 coskyg. The presence, however
of Josephson tunneling perpendicular to the CuO2 planes
between heavily twinned YBCO and a conventionals-
wave superconductor [8–10] suggests an order param
with a significants-wave component [11,12].

A bulk order parameter of mixeds anddx22y2 symme-
try could explain both sets of experiments. An order p
rameter with this mixed symmetry, for a material which
otherwise macroscopically symmetric under90± rotations
(heavily twinned YBCO), requires either a first order tran
sition or two separate bulk phase transitions. So far, th
has been no convincing evidence for either of these.
this paper, then, we assume that the order parameter in
bulk superconductor transforms as one irreducible rep
sentation of the rotation groupD4h, eithers or dx22y2.

Using a Ginzburg-Landau model in which boths and
dx22y2 order parameter symmetries are allowed, but on
one is favored in the bulk, we find that there are tw
possibilities consistent with both the CuO2 plane andc-
axis tunneling experiments.

The first possibility is that the order parameter iss
wave in the bulk and ad-wave component is mixed in
at faces normal to the CuO2 planes [Fig. 1(a)]. This
does not require any special choice of parameters; ther
an instability to mixing near these faces. The symme
being tested is the rotation in the CuO2 plane, and placing
an edge in that plane breaks the symmetry explicitly. Th
always causes mixing. The amount of mixing depen
on the energetics: If thed-wave component is strongly
disfavored (as might be expected in a convention
superconductor), the mixing is small. If there is a clo
competition, the mixing may be large. In addition, w
find that for this case the mixing can explain the CuO2

plane experiments only if the order parameter breaks ti
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reversal invariance at the surface; it must have the fo
s 1 id there.

The second possibility is that the order parameter id
wave in the bulk, and a surface state forms which mix
in an s component on the face perpendicular to thec axis
[Fig. 1(b)]. This occurs only under certain condition
The two components must inhibit each other, in the se
that the presence of one makes the other energetically
favorable. In addition, the effect of thec-axis boundary
must be such that the magnitude of thed-wave component
decreases significantly from its bulk value near the ed
In that case, thes-wave component is less suppressed n
the surface, and a localized region of mixed symmetry
develop [13].

The presence of the surface state normal to thec axis
is sensitive to the boundary conditions. This may expl
the difficulty in achievingc-axis junctions, as well as th
variability among samples of angle-resolved photoem
sion spectroscopy studies of the gap magnitude [14].
photoemission studies see the topmost CuO2 layer. Varia-
tions in surface properties affect the boundary conditio
which in turn affect whether the order parameter has
form d 1 s, d 1 is, or pure d at the surface, each o
which has a different momentum dependence.

The c-axis surface state may also lead to “p-junction”
behavior. In a SQUID loop between YBCO and
conventional superconductor, with junctions normal to
c axis, the configuration with opposite relative phases
the two junctions will lead to a net phase difference ofp

in the absence of an applied magnetic field.

FIG. 1. Two possibilities consistent with both sets of pha
sensitive experiments: (a) A surface state of mixeds and d
symmetry forms normal to the CuO2 planes in a bulks-wave
superconductor; (b) a surface state of mixed symmetry fo
parallel to the CuO2 planes in a bulkd-wave superconductor.
© 1996 The American Physical Society
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For both possibilities discussed above, the starting p
is the Ginzburg-Landau free energy [15]

F  Fs 1 Fd 1 Fsd 1
1

8p

Z
d3rB2,

Fi 
Z

d3rfkijDci j
2 1 aisT djcij

2 1 bi jcij
4g , (1)

Fsd 
Z

d3rhl1jcsj
2jcdj2 1 l2scp2

s c2
d 1 c2

s cp2
d d

1 f gcp
d sD2

x 2 D2
ydcs 1 c.c.gj .

The CuO2 planes are in thex-y directions, the magneti
field B  === 3 A, the gauge invariant gradient operat
D  === 2 2ieAyc, and the indexi runs overs and d.
We now consider the two cases separately.

Bulk s case.—We consider a homogeneous system
the absence of a magnetic field, for which the gradi
terms in F vanish in the bulk. A purelys-wave so-
lution to Eq. (1) exists whenas , 0 and ad 1 jasj 3

sl1 2 2l2dy2bs . 0. If ad , 0 and as 1 jadj sl1 2

2l2dy2bd . 0, then a purelyd-wave solution also exists
As long asa2

s ybs . a2
dybd, thes solution has lower en

ergy than thed solution and is the stable global minimu
of the free energy.

Ordinarily, near a boundary, a stability criterion follow
from considering the change in energy due to addin
smallcd to the bulkcs solution:

dF  cp
d f2kd≠2

x 1 ad 1 ljcsj
2gcd 1 Osjcd j4d , (2)

where

l ; l1 1 2l2 cos2usd , (3)

usd is the relative phase between thes and d order
parameters,cssxd is the unperturbed solution, and w
consider a boundary along thex direction. If the operator
in brackets has an eigenstate with negative eigenva
then the energy will be lowered by forming a surface sta
If there are no negative eigenvalues, the system is st
against the formation of a surface state.

This stability criterion assumes that the gradient ter
mixing thes andd components inFsd can be neglected
For a boundary which is in thea-b plane, this will not
necessarily be true. Near a boundary, the gradient te
in Fsd add a term linear incd to Eq. (2). The effect of
a linear term is that the energy can always be lowered
turning on a smallcd fi 0, that is, there is an instabilit
to mixing.

This instability occurs only for boundaries in thea-b
plane because boundaries in this plane explicitly break
rotational symmetry being tested; they allow a term s
ascp

s sD2
x 2 D2

y dcd to contribute to the free energy. Fo
a boundary along thec axis, there is no equivalent linea
order mixing through gradients.

The form of the magnitudesSsrd ; jcssrdj and
Dsrd ; jcdsrdj near the boundary will depend in deta
on the Ginzburg-Landau parameters and the boun
int

r

n
nt

a

e,
e.
ble

s

ms

by

he
h

l
ry

conditions. The relative phaseusd betweencs andcd is
easier to understand. There are only two terms in the
energy given in Eq. (1) which depend on this phase:

l2S2D2 cos2usd 1 gDs≠2
x 2 ≠2

ydS cosusd , (4)

where we have assumed there are no spontaneous p
gradients (currents) at the edge. The second term
minimized for a relative phase difference between ths
and d components of0 or p , depending on the sign o
g. However, for a given system, this term will prefe
opposite phases on the faces normal to thex̂ and ŷ
directions: s 1 d on one face ands 2 d on the other
[16]. Such a configuration is not consistent with t
corner-junction experiments because there will be no
phase shift in a loop formed between two adjacent fac

The first term in Eq. (4), however, favorsusd  6py2
when the coefficientl2 is positive, andusd  0 or p

when l2 is negative. Ifusd  6py2 at the minimum
then the second term does not contribute, and there i
preference from this surface energy for either sign. T
corner energy is minimized for a uniform phase arou
the material, and the result iss 1 id at every face or
s 2 id at every face. This solution, which occurs wh
the parameters are such thatl2 , 0 and the first term
dominates over the second term at the minimum,
the potential to be consistent with the corner-juncti
experiments.

Both the single corner-junction and tricrystal rin
experiments, however, place strong limits on the amo
of s which is present at the surface [1,7]. In order f
the bulks scenario to explain these results, the parame
must be fine-tuned so that the amount of residuals-wave
order parameter near the surface is small. This makes
picture somewhat unlikely, although not yet ruled out.

Bulk dx22y2 case.—In this case, we assume that th
corner-junction experiments are detecting the intrins
bulk order parameter symmetry and that surface st
with mixed symmetry form at the faces perpendicular
thec axis.

The energy cost of adding a smallcs solution to a bulk
cd solution is

dF  cp
s f2ks≠2

z 1 as 1 ljcdj2gcs 1 Osjcsj
4d , (5)

where l is defined in Eq. (3), and we now consider
boundary along thêz direction. When the operator in
brackets develops a bound state with a negative en
satisfying the appropriate boundary conditions, a surf
state will form.

The boundary conditions determine the presence of
surface state in the following way. Ifcd near the surface
decreases very little from its bulk value, then thecs

component will be as suppressed as it is in the bulk an
surface state is unlikely to form. Conversely, ifcd does
decrease significantly, a surface state may be induced
3635
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More explicitly, the boundary condition at an inte
face can be written in general [17] asdcszdydzjz0 
cs0dyL, where L measures the extent to which th
order parameter is suppressed at the interface. A
superconductor-insulator boundaryL ! `, so cs0d is
close to the bulk value, whereas at a superconductor-m
boundaryL ! 0, so thatcs0d nearly vanishes. There
fore boundaries which are more superconductor-me
like, with small L, enhance the likelihood of a surfac
state forming. A rough interface may also generate sm
L and be conducive to forming a surface state; just as
Anderson theorem does not protect ad-wave order param-
eter from being suppressed by impurities, it also does
prevent it from being suppressed by rough surfaces [1

The symmetry of the surface state will depend on
sign of thel2 defined in Eq. (1); the state will have th
form s 6 id for positive l2 and s 6 d for negativel2
[13]. For a given system (fixedl2), the plus and minus
states are degenerate, and this can lead to the ef
illustrated in Figs. 2 and 3. The Josephson energy for
SQUID loops shown in Fig. 2 can be written as

EJ sFd  EJ,a cosfa 1 hEJ,b cosfb , (6)

where EJ,i are the Josephson coupling energies for
top and bottom junctionssi  a, bd, fi are the phase
differences across these junctions, andh is 61. The
phase differences satisfy

fa 2 fb  2p
F

F0
, (7)

whereF is the net flux enclosed in the loop andF0 
hcy2e is the flux quantum [19]. The configuration i
which the top and bottom junctions have misaligneds
componentssh  21d adds an additional phase shift o
p because the conventional superconductor couples
to the s component of the order parameter (assumin

FIG. 2. Two possible configurations of ad-wave supercon-
ductor, with surface states of mixed symmetry, in a SQU
loop with a conventional superconductor.
3636
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tunnel junction in which higher order tunneling matr
elements can be neglected). The result for symme
junctions is shown in Fig. 3. Minimizing the Josephs
energy yields a net phase shift ofF0y2 between the flux
dependence of theh  11 andh  21 configurations.

This phase shift leads to several interesting behavi
In the high-inductance limit, theh  21 configuration
in Fig. 2 will cause spontaneous currents generating h
integral flux quanta, as in the tricrystal ring configuration
The half-integral periodicity ofEJsFd is also reflected in
a half-integral periodicity in the flux dependence of t
critical current, which will be seen if the system can pro
both configurations in achieving the maximum superc
rent. We also note that an asymmetric junction, for wh
E1 fi E2, causes the resultingEJsFd to oscillate between
2jE1 2 E2j and 2jE1 1 E2j, instead of0 and22E1 as
in Fig. 3, but the periodicity withF0y2 remains the same

There are several other interesting consequences
mixed symmetry surface state. First, for the state n
mal to thec axis there should be a surface phase tr
sition, at a temperatureTc,s below the bulkTc, where
the s-wave component of the order parameter disappe
This would most likely occur at too high a temperature
be seen in the Josephson tunneling into a conventio
superconductor, but might be seen in photoemiss
There is some preliminary evidence from photoem
sion studies on Bi2Sr2CaCu2O81x that at a temperature
øs0.8 0.9dTc there is an increase in anisotropy of th
gap magnitude, as would occur if a surfaces-wave con-
tribution to the order parameter were disappearing [2
Second, the relative phase angle between the two c
ponents,usd , is a dynamical variable, and its oscillation
which occur as long as there is a charging energy (a ca
itance in the Josephson equations), are a new collec
mode of the order parameter. This mode is charged, s
jcsj fi jcdj, and will therefore be pushed up near t
plasma frequency, but is distinct from the usual plas
mode. The mode will disappear at the temperatureTc,s of
the surface phase transition.

FIG. 3. Josephson energy of the two configurations in Fig
The h  11 configuration behaves as an ordinary SQUID, b
the flux dependence for theh  21 configuration is shifted by
F0y2. The result is that the ground state energy of the sys
(solid line) is periodic with periodF0y2 rather thanF0.
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