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Boundary Effects and the Order Parameter Symmetry of HighZ. Superconductors
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Apparently conflicting phase-sensitive measurements of the order parameter symmetry in the high-
T. cuprate superconductors may be explained by regions near surfaces in which the order parameter
symmetry is different than in the bulk. These surface states can lead to interesting and testable effects.
[S0031-9007(96)00149-4]

PACS numbers: 74.20.De, 74.50.+r, 74.72.-h

Phase-sensitive measurements on the high temperatueversal invariance at the surface; it must have the form
superconductor YB&Lw;0,_5 (YBCO) have yielded two s + id there.
potentially conflicting sets of results for the symmetry of The second possibility is that the order parametef is
the superconducting order parameter [1]. Measuremenigave in the bulk, and a surface state forms which mixes
involving currents flowing in the Cuf planes, such in ans component on the face perpendicular to ¢haxis
as the corner-junction SQUID experiments [2—4], the[Fig. 1(b)]. This occurs only under certain conditions.
corner-junction flux modulation experiments [5,6], and theThe two components must inhibit each other, in the sense
tricrystal ring experiments [7], indicate an order parametethat the presence of one makes the other energetically less
with primarily d,-—,» symmetry under rotations in the favorable. In addition, the effect of theaxis boundary
plane[A(k) ~ cos, — cos,]. The presence, however, must be such that the magnitude of thevave component
of Josephson tunneling perpendicular to the €p@anes decreases significantly from its bulk value near the edge.
between heavily twinned YBCO and a conventioral In that case, the-wave component is less suppressed near
wave superconductor [8—10] suggests an order paramettite surface, and a localized region of mixed symmetry can
with a significants-wave component [11,12]. develop [13].

A bulk order parameter of mixed andd,-—,» symme- The presence of the surface state normal toctlais
try could explain both sets of experiments. An order pa-is sensitive to the boundary conditions. This may explain
rameter with this mixed symmetry, for a material which isthe difficulty in achievingc-axis junctions, as well as the
otherwise macroscopically symmetric undér rotations variability among samples of angle-resolved photoemis-
(heavily twinned YBCO), requires either a first order tran-sion spectroscopy studies of the gap magnitude [14]. The
sition or two separate bulk phase transitions. So far, therphotoemission studies see the topmost Claer. Varia-
has been no convincing evidence for either of these. Itions in surface properties affect the boundary conditions,
this paper, then, we assume that the order parameter in tehich in turn affect whether the order parameter has the
bulk superconductor transforms as one irreducible reprorm d + s, d + is, or pured at the surface, each of
sentation of the rotation groupyy,, eithers or d,> .. which has a different momentum dependence.

Using a Ginzburg-Landau model in which bathand The c-axis surface state may also lead to-junction”
d>—,> order parameter symmetries are allowed, but onlypehavior. In a SQUID loop between YBCO and a
one is favored in the bulk, we find that there are twoconventional superconductor, with junctions normal to the
possibilities consistent with both the Cu@lane andc- ¢ axis, the configuration with opposite relative phases on
axis tunneling experiments. the two junctions will lead to a net phase differencenof

The first possibility is that the order parametersis in the absence of an applied magnetic field.
wave in the bulk and a-wave component is mixed in
at faces normal to the CuyOplanes [Fig. 1(a)]. This
does not require any special choice of parameters; there is
an instability to mixing near these faces. The symmetry a L s c[ D
being tested is the rotation in the Cu@lane, and placing
an edge in that plane breaks the symmetry explicitly. This
always causes mixing. The amount of mixing depends
on the energetics: If thé-wave component is strongly (@) (b)
disfavored (as might be expected in a conventional o . ]
superconductor), the mixing is small. If there is a closeF!G- 1. Two possibilities consistent with both sets of phase-

titi th . be | In additi sensitive experiments: (a) A surface state of mixednd d
competiion, the mixing may be large. [n addilion, we symmetry forms normal to the Cu(planes in a bulks-wave

find that for this case the mixing can explain the GUO superconductor; (b) a surface state of mixed symmetry forms
plane experiments only if the order parameter breaks timparallel to the Cu@planes in a bulki-wave superconductor.
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For both possibilities discussed above, the starting pointonditions. The relative phagk, betweeny, andy, is
is the Ginzburg-Landau free energy [15] easier to understand. There are only two terms in the free
1 energy given in Eq. (1) which depend on this phase:
F=FS+Fd+FSd+8—fd3rB2,
& A:82D? o0,y + yD(92 — 32)Scody,  (4)
Fi= [@alDul + a@ln? + e, @

where we have assumed there are no spontaneous phase

gradients (currents) at the edge. The second term is
Fyg = fd3r{/\1|¢s|2|¢d|2 + g + W) minimized for a relative phase difference between she
and d components of) or 7, depending on the sign of
+ [ vy (DI — DYy, + cc.]). y. However, for a given system, this term will prefer

The CuQ planes are in the-y directions, the magnetic OPPOSite phases on the faces normal to sheand y
field B =V x A, the gauge invariant gradient operator diréctions:s + d on one face and — d on the other
D =V — 2ieA/c, and the indexi runs overs and d. [16]. S.uch'a conflggratlon is not consistent with the
We now consider the two cases separately. corner-junction experiments because there will be no net
Bulk s case—We consider a homogeneous system inPhase shiftin a loop formed between two adjacent faces.
the absence of a magnetic field, for which the gradient 1Ne firstterm in Eq. (4), however, favofg, = /2
terms in F vanish in the bulk. A purelys-wave so- When the coefficieni, is positive, andf,; = 0 or 7
lution to Eq. (1) exists whem, < 0 and ag + las| ¥ when A, is negative. If6,, = i7r/2_at the minimum
(A; = 2X2)/2b, > 0. If a; <0 and a, + |ag| (A, —  then the second term does not contribute, and there is no
212)/2bg > 0, then a purelyd-wave solution also exists. Preference from this surface energy for either sign. The
As long asa?/b, > a3 /by, thes solution has lower en- CO'Mer energy is minimized for a uniform phase around

ergy than the/ solution and is the stable global minimum the material, and the result is + id at every face or
of the free energy. s — id at every face. This solution, which occurs when

Ordinarily, near a boundary, a stability criterion follows the parameters are such thaf < 0 and the first term
from considering the change in energy due to adding gommates over the second term at the minimum, has

smally, to the bulky, solution: the pptential to be consistent with the corner-junction
« 5 5 . experiments.
OF = ¢ [—kady + aa + Asl"lpa + OUal®), (2) Both the single corner-junction and tricrystal ring
where experiments, however, place strong limits on the amount

of s which is present at the surface [1,7]. In order for
A=A + 21,0020y, (3) the bulks scenario to explain these results, the parameters
0,4 is the relative phase between theand d order must be fine-tuned so that the amount of residualave
parameters,(x) is the unperturbed solution, and we order parameter near the surface is small. This makes the
consider a boundary along thedirection. If the operator picture somewhat unlikely, although not yet ruled out.
in brackets has an eigenstate with negative eigenvalue, Bulk d,-—,. case—In this case, we assume that the
then the energy will be lowered by forming a surface statecorner-junction experiments are detecting the intrinsic,
If there are no negative eigenvalues, the system is stablaulk order parameter symmetry and that surface states
against the formation of a surface state. with mixed symmetry form at the faces perpendicular to
This stability criterion assumes that the gradient termshe ¢ axis.
mixing thes andd components inFy,; can be neglected. The energy cost of adding a smégi) solution to a bulk
For a boundary which is in the-b plane, this will not ¢, solution is
necessarily be true. Near a boundary, the gradient terms
in F,; add a term linear iy, to Eq. (2). The effect of  6F = ¢/ [— k.0 + a, + Aal*ls + Oy, (5)
a linear term is that the energy can always be lowered by
turning on a smally; # 0, that is, there is an instability where A is defined in Eq. (3), and we now consider a
to mixing. boundary along the direction. When the operator in
This instability occurs only for boundaries in theb  brackets develops a bound state with a negative energy
plane because boundaries in this plane explicitly break thsatisfying the appropriate boundary conditions, a surface
rotational symmetry being tested; they allow a term suctstate will form.
asy(D? — D2)y, to contribute to the free energy. For  The boundary conditions determine the presence of the
a boundary along the axis, there is no equivalent linear- surface state in the following way. if; near the surface
order mixing through gradients. decreases very little from its bulk value, then thg
The form of the magnitudesS(r) = |¢,(r)] and component will be as suppressed as it is in the bulk and a
D(r) = |i,(r)| near the boundary will depend in detail surface state is unlikely to form. Converselyyif does
on the Ginzburg-Landau parameters and the boundarmjecrease significantly, a surface state may be induced.
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More explicitly, the boundary condition at an inter- tunnel junction in which higher order tunneling matrix
face can be written in general [17] a8/(z)/dzl,—o =  elements can be neglected). The result for symmetric
¥ (0)/L, where L measures the extent to which the junctions is shown in Fig. 3. Minimizing the Josephson
order parameter is suppressed at the interface. At anergy yields a net phase shift /2 between the flux

superconductor-insulator boundafy — o, so ¢(0) is dependence of thg = +1 andn = —1 configurations.
close to the bulk value, whereas at a superconductor-metal This phase shift leads to several interesting behaviors.
boundaryZ — 0, so thaty(0) nearly vanishes. There- In the high-inductance limit, the; = —1 configuration

fore boundaries which are more superconductor-metain Fig. 2 will cause spontaneous currents generating half-
like, with small L, enhance the likelihood of a surface integral flux quanta, as in the tricrystal ring configurations.
state forming. A rough interface may also generate smallhe half-integral periodicity of;(®) is also reflected in
L and be conducive to forming a surface state; just as tha half-integral periodicity in the flux dependence of the
Anderson theorem does not protect-avave order param- critical current, which will be seen if the system can probe
eter from being suppressed by impurities, it also does ndioth configurations in achieving the maximum supercur-
prevent it from being suppressed by rough surfaces [18].rent. We also note that an asymmetric junction, for which
The symmetry of the surface state will depend on theE; # E», causes the resulting, (®) to oscillate between
sign of the, defined in Eg. (1); the state will have the —|E; — E,| and —|E; + E,|, instead of0 and —2E; as
form s = id for positive A, ands = d for negativeA,  in Fig. 3, but the periodicity withib,/2 remains the same.
[13]. For a given system (fixed,), the plus and minus There are several other interesting consequences of a
states are degenerate, and this can lead to the effeatixed symmetry surface state. First, for the state nor-
illustrated in Figs. 2 and 3. The Josephson energy for thenal to thec axis there should be a surface phase tran-
SQUID loops shown in Fig. 2 can be written as sition, at a temperatur&, ; below the bulkT,, where
— the s-wave component of the order parameter disappears.
Es(@) = Esacosp + nEJ’b_COS(m” . ©) This would most likely occur at too high a temperature to
where E,; are the Jo;ephson coupling energies for thgye seen in the Josephson tunneling into a conventional
top and bottom junctionsi = a,b), ¢; are the phase superconductor, but might be seen in photoemission.
differences across these junctions, andis =1. The  There js some preliminary evidence from photoemis-
phase differences satisfy sion studies on BSrLCaCuOs,, that at a temperature
B d ~(0.8-0.9)T, there is an increase in anisotropy of the
ba = bp =27 (}TO () gap magnitude, as would occur if a surfacevave con-
where @ is the net flux enclosed in the loop an, = tribution to the order parameter were disappearing [20].
Second, the relative phase angle between the two com-

hc/2e is the flux quantum [19]. The configuration in . . ; ; L
which the top and bottom junctions have misaligned ponentsf,,, is a dynamical variable, and its oscillations,
which occur as long as there is a charging energy (a capic-

componentgn = —1) adds an additional phase shift of | i the h i llecti

7 because the conventional superconductor couples on[{ANce In the Josephson equa 'OT‘S)’ aré a new coflective

to the s component of the order parameter (assuming ode of the order parameter. This mode is charged, since
sl # lgl, and will therefore be pushed up near the

plasma frequency, but is distinct from the usual plasma
mode. The mode will disappear at the temperafurgof

L — the surface phase transition.
D+S
(o]
T —t D ® | n=+1
E,
D+S
|—\—
—
D+S
[}
[ —Te D ()] ~— n=-1
D-S
[ — FIG. 3. Josephson energy of the two configurations in Fig. 2.
The n = +1 configuration behaves as an ordinary SQUID, but
FIG. 2. Two possible configurations of &wave supercon- the flux dependence for the = —1 configuration is shifted by
ductor, with surface states of mixed symmetry, in a SQUID®,/2. The result is that the ground state energy of the system
loop with a conventional superconductor. (solid line) is periodic with periodb,/2 rather thand,.
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