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Quantum Breathers in a Nonlinear Lattice
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We study nonlinear phonon excitations in a one-dimensional guantum nonlinear lattice model using
numerical exact diagonalization. We find that multiphonon bound states exist as eigenstates which
are natural counterparts of breather solutions of classical nonlinear systems. In a translationally
invariant system, these quantum breather states form particlelike bands and are characterized by
a finite correlation length. The dynamic structure factor has significant intensity for the breather
states, with a corresponding quenching of the neighboring bands of multiphonon extended states.
[S0031-9007(96)00123-8]
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The paradigms of nonlinearity have provided numerous;; _ 15_5 M5 5 2 52 4 4}
insights into condensed matter physics [1]. For examples{i g ;[ 2 " 2 (@ = buer)” +wey + v, |,
the dynamics of nonlinear excitations (such as solitons, (1)
polarons, and breathers) are central to understanding
thermodynamic and transport properties of various lowwith periodic boundary conditions, and wih, and ¢,
dimensional materials [2]. As an important example ofthe dimensionless canonical lattice momentum and dis-
intrinsic dynamic nonlinearity, breather excitations—spa-placement operator§d,,, p,] = i8,.,. The coefficient
tially localized and time-periodic waves in the form of 7} sets the scale of energy, whereasw, and v are
bound states of linear excitations—have been found odimensionless parameters. The first two terms describe
excluded in various nonlinear models depending on tha standard harmonic Debye lattice, while the second two
properties of nonintegrability and discreteness [3,4]. Interms forw, v = 0 describe a single-welp* nonlinearity,
particular, although breathers are rigorously stable irwhich corresponds to the Taylor expansion of either a lo-
integrable partial differential equations [such as thet(  cal nonlinear interaction due to anharmonicity or an effec-
1)-dimensional sine-Gordon or nonlinear Schrddingettive lattice interaction arising from, e.g., electron-lattice
equations], they are unstable monintegrable continuous coupling. Other nonlinear Hamiltonians can be treated by
systems. Recently it has been appreciated, however, théite same methods described below and can be expected to
they can be stablized, not only in integrable [5,6] but alsccontain varieties of breathers. However, the simple form
in nonintegrable [7] cases, blattice discretenesand in Eq. (1) isolates the breather without, e.g., complica-
sufficiently strong nonlinearity—in the form of dynamic tions of multiply degenerate ground states. Note that the
localized excitations, the generalization of uncoupledclass of models represented by Eq. (1) does not conserve
oscillators. For some models, existence regimes havihe total number of phonon quanta in contrast with sim-
been rigorously established [8]. We are left with a centrapler discrete quantum models where solitons have been
question for physical problems described by discretediscussed [12].
nonintegrable quantursystems: Do nonlinear solutions  There are two limiting cases for which the physics
analogous to the classical breather exist and, if so, whaif the model becomes transparent. First, in the absence
are their observable signatures? This question has a lord nonlinearity ¢ = 0), the model is trivially solvable.
history in terms of biphonon bound states or resonance$he linear coupling between nearest-neighbor oscillators
[9], and has been studied more recently in Bethe ansain Eg. (1) results in spatially extended Bloch-wave states
systems [10] as well as semiclassically [11]. Here, weof phonons. Thev term acts merely as an adjustable fac-
focus on numerical exact diagonalization of a simpletor controlling the dispersion of phonon bands, and will be
nonintegrable quantum anharmonic chain. We find thakept small throughout this study. Second, fof~1) >
the classical breather solutions indeed have their quantum the ¢* term plays the dominant role. However, we can
counterparts as eigenstates of the system Hamiltoniamgain qualitatively understand many features of the sys-
with distinctive signatures in appropriate correlationtem, including the appearance of breathers. The nearest-
functions. neighbor interaction governed by will cause the local
Our quantum nonlinear lattice model is “Einstein” modes to become hybridized, creating narrow
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continua of phonon states at each local vibrational energy
The ¢* term produces a local repulsive interaction be-
tween two or more quanta if they are located at the sam
site. This interaction therefore leads to bound multiphonor
states, breathers, that are spifiwardsfrom each multi-
phonon continuum [7]. These states are the simplest forn
of breathers we expect to find in molecular systems, i.e.&
whenever local nonlinear vibrations are weakly coupled>~ ) P
to neighboring ones. Below, we consider systems with o 5.0
n ~ v ~ 1, which are more interesting because of their 1 i o 4
relevance to many strongly interacting solid-state systems ] o
such as quasi-one-dimensional polymers. In this case, th <o
nearest-neighbor Debye coupling will compete with dife

nonlinearity to determine the correlation length of eigen- (a) 1 (b)
states in the system. The main physical effects ofd#he 0.0 ' 0.0 : ' :
term are as follows: (i) opening finite gaps in the many- 0.0 05 Lo 00 0.5 1.0
body excitation spectrum, which offers the possibility of oo/ doBo/T

bound states within the gaps; and (i) suppression of the g, 1. Eigenspectrum of the nonlinear system: (a) four-site
effective linear coupling, facilitating the dynamic localiza- chain with the phonon basis truncated at 17 phonons per site
tion of certain eigenstates. (i.e., My, = 18; 65536 states)y = 0.5, w = 0.2, v = 2.0;

We study this problem by numerical exact diagonal-(P) eig;rzwt-site Cg%g‘ Witlmliaflgelzs ?h(el ?Zgg&gbslteatr‘?esgﬁe:egét on
o X . . ) =02, v = 0.56. g,
ization using the Einstein phonon basis [13], where th?n the translation group. The dispersion is symmetric in

only physical approximation is the truncation of the in-, and only eigenstates witg, = 0 are shown. The solid
finite Hilbert space. This restricts our numerical simula-circles denote breather states. Other states are plotted as open
tions to a parameter region where the nonlinearity is no¢iamonds.

too large. To maintain physical correctness and numeri-

cal reliability, we solve the problem for finite chains with (peaked ain = 1). There are several different kinds of
moderately large nonlinearity, systematically studying thenigher excited bands of states, including ones with small
effect of truncation and system size. We adopt a modifiegyyt finite bandwidths. The emergence of these isolated
[14] Davidson method [15] to perform the exact diagonal-hands can be readily interpreted as the existence of par-
ization for the large sparse matrix of the system Hamiltonticlelike states, where the bandwidth is a measure of the
ian, and then a projective Lanczos method [16] to calculatghverse particle mass. They can also be viewed as bound
various correlation functions. Eigenfunction convergenceyhonon states. We will argue below that these narrow,
has been tested through the Weinstein lower bound formuligolated bands of states are quantum breathers. Note that
[15], and the symmetries (e.g., the translational invariancéhese breather states have explicit Bloch-wave transla-
under periodic boundary conditions) were also checked. tional symmetry with well-defined crystal momendg

The low-lying eigenspectra for four- and eight-site non-associated with their center of mass motion. However,
linear chains with representative parameter sets are showRey also exhibit a finite lattice displacement correlation
in Fig. 1. Several characteristic features can be notedength (describing the particlelike coherence of breathers),
First, as anticipated above, finite gaps are opened due &5 we now discuss.
the effect of the nonlinearitw. Second, states which  To identify breathers in the quantum excitation spec-
originally belong to the same band in the linear Debyetrum, we establish their main characteristics by examining
or Einstein lattice now split into several bands. While thekey correlation functions. These functions are not only
nonlinearity does not allow the ordering of these bands iﬂmportant for diagnostic purposes, but are also relevant
terms of bare phonons of the linear system, one can stith many measurable quantities. One characteristic of the
roughly distinguish different bands by the bare phonorglassical breather is spatial localization of the envelope.
number distribution functiorp, (m) = («|8(, bib, =  In the translationally invariant quantum case, the dynamic
m) |e) and the average number of bare phonGMs) =  |ocalization of breathers can be measured by the corre-

3., mpa(m), whereb, = (¢, + ip,)/~2, and|a)is an  sponding spatial correlation of the displacements at sites
eigenstate of the system with crystal momentgmand  separated by lattice spacings:

energye,. (We have also used this function to deter- N -

mine that our results are not dependent on the truncation.) fan = n'st = 1) = (aldp()u(D]a).  (2)

In contrast to the Debye lattice, the ground state is isoFor the linear system, these correlation functions are read-
lated, with a finite gap to the excited eigenstates. Thély computed and in general they have multiple spatial

guantity p (m) for the first band above the ground stateand temporal Fourier components reflecting the system’s
shows that it is mainly formed from one phonon statephonon modes propagating with various phase velocities.
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10F These quantum breathers do show experimentally ob-
2 C servable signatures of their distinctive local structure and
S osF dynamics. In particular, lattice displacements within a few
= C correlation lengthg are strongly correlated in the breather
=% 0.0E " s and therefore can be analyzed by the density-density
i C ] correlation functionS(r,7) = (1/N) fdr’(f)A(r’,O)f)(r’ +
—0.5 — ) I L L r, 1)), where p(r,t) = >, 8(r — nag — €¢,(t)) is the
0 1 2 3 4 density operatorg, is the lattice constanty is the num-

n ber of lattice sites, and = (i/MQ)'/? sets the scale
) _ _ ) of length for lattice displacements. The qualitative be-
e st o ot e et i VI OF (1) I sensiiv 10 th ratio /. In princ-
state withg = 77'./Clo, <M42> — .83, while the gray line is for ple, thes_e cor'relations can be probed by neutron scattering
an extended state with = 7 /ao, (Mas) = 3.13. [18], which directly measures the dynamic structure fac-
tor S(g, w) [the spatial and temporal Fourier transform of

However, in a nonlinear system, multiphonon bound stateé(r’ 1, given at zero temperature by

can appear. InFig. 2, the instantaneous spatial correlation » .
function f.(n,0) of a typical state in the isolated bands is S(¢. @) = > 8(fiw — €, + Eo)f dre ’qr] dr
illustrated. The spatial correlation is clearly localized at @ .

n = 0 and exhibits the particlelike nature of these states, a X —0lp(r'.0 5 + .0 10 4
key feature of a breather. In this strongly nonlinear regime, N< P, O la) alp(r + 1, 00107, (4)

the breathers have a small correlation lengthig on the . .
gt where |0) is the ground state. In the linear case, one

order of a lattice constant). The other states form a “con Id . hich t h I
tinuum” of extended multiphonon states which have sig—}’.\/orl]J Seel;a :jezponse.ﬂtq,fwl)l.w 'Cﬁ races e?_c " mu-
nificant weight even at large, also illustrated in Fig. 2. Iphonon band dispersion, tailing oft exponentially 4n

We investigated temporal coherence in the Iocalizecf"e" th_e quantum Depye-WaIIer fact_or) _and decreasing
state by examining the Fourier transfoiy (n, ) of the algebraically withw, with regular spacing iw. The re-

I : : sult for the nonlinear four-site system of Fig. 1(a) is illus-
time-dependent correlation functigy (n, 1), trated in Fig. 4. The elastic response of the ground state at

o _ 5 4 o = 0has now gained an exponentially decayindepen-
Faln =’ @) %ml(ﬁ” 1B) (Blnla) dence which is different from the harmonic Debye-Waller
X 8(hw — eg + €4) 3) factor [18]. We also note that in this zero-temperature

calculation, there is no zero-frequency contribution from
. : S the breathers [19]. In addition to the expected large low-
Fo(0, w) for a typical breather state is shown in Fig. 3. opargy contributions from the ground state and the first
The dynamics of the localized states exhibit a small NUMyLonon band, breather excitations are the dominant con-

ber of frequencies with significant amplitudes, reflectingyi tion whereas those contributions from the extended
the anharmonicity of the system. The strongly Iocallze(#

. A ultiphonon “continua” are almost negligible. The sum
breather_here can be ex.pected to exhibit mult!ple mternqlule [do 0S(q, 0) = Qg2€2/2 implies that the quench-
frequencies even classically [5,7,17], especially in th,, of the extended-state contribution is consistent with
strongly nonlinear regime. However, this multifrequencyy e aihers forming as bound states of nearby phonons, and
property is not distinctive for breathers—anharmonic iq gimjjar to the transfer mechanism of the optical oscillator
phonons and multiphonon states exhibit similar S'gn""ture%trength to local modes in the presence of electronic bound
states. The center of the response is shifted to higlier
higher breather bands, consistent with the fact that higher
lying breathers (binding more phonons) are narrower in
the classical limit. Another clear feature of this nonlinear
system revealed b§(q, w) is that the breather bands are
irregularly spaced.

To summarize, we have demonstrated that quantum
breathers exist as eigenstates of the simple nonlinear
lattice system studied with a renormalized mass corre-

) sponding to a narrow but finite bandwidth. The quantum
: breathers have been identified as robust nonlinear solu-
Ecl)ﬁé%tiomﬁn;%%”% Eﬁznt?:g;%r(gﬁé &fF}S?ZFe?#g rdaé'ta_tiong with their own ch.aracte.ristic spatial chalization and
function peaks are broadened by a Lorentzian for visualizatiofnultifrequency dynamics. Finally, we predict that the dy-
purposes. namic structure factor is strongly enhanced at momentum

calculated using the spectral projection method [16]
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FIG. 4. The dynamic structure factdt(q, w) of the system in Fig. 1(a) at zero temperature d&ne ay/10. Note that the
equal-heights peaks ofS(q, w) at ¢ = 0 are not shown. The delta-function peaks along ¢h@xis are broadened by a narrow
Lorentzian.

and energy transfers corresponding to breather excitations and C.R. Willis,ibid., pp. 59, 63.
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. . 1993).
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