VOLUME 76, NUMBER 19 PHYSICAL REVIEW LETTERS 6 My 1996

Electron Vortices Produced by Ultraintense Laser Pulses
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Particle-in-cell simulations show that finite width and length laser pulses subject to relativistic self-
focusing propagate in an underdense plasma in a “bullet” shape and produce a quasistatic magnetic
field. This field remains behind the pulse and forms a magnetic wake associated with a row of electron
fluid vortices which are described by the Hasegawa-Mima equation. The vortices propagate much more
slowly than the pulse and evolve into an antisymmetric configuration which is shown to be stable when
the distance between its vortices is greater than the electron skin depth. [S0031-9007(96)00103-2]

PACS numbers: 52.40.Nk, 52.35.Ra, 52.65.Rr

Vortex dynamics is considered to be important ineE/m.wc = 3 (a > 1 for relativistic pulses), and initial
explaining a wide variety of nonlinear processes in magwidth and lengthA; = 5A and A = 124, respectively.
netized plasmas and to represent the final stage of tHeor these parameters the pulse poRer 4’ A | is greater
development of turbulence [1-3]. In this Letter we dis-than the threshold for relativistic self-focusing. As a
cuss a new area of application of vortex physics and showesult, the pulse is focused and propagates in the shape
that electron fluid vortices are produced in the interactiorof a narrow, finite length bullet as shown in Fig. 1. A
of an ultrashort high-intensity laser pulse with an initially vortex row is formed behind the pulse: Solid (dotted)
unmagnetized plasma. A laser pulse with finite length andines correspond to constant positive (negative) values
width, and with sufficiently high intensity, is subject to of the z component of the magnetic field. Sind& X
relativistic self-focusing and can propagate in the shape oB is proportional to the electron fluid velocity, these
a short, narrow “bullet” [4]. As was shown by computer isomagnetic curves also correspond to the stream lines
simulations [5,6], a quasistatic magnetic field is producedf the electron motion. The structure and magnitude of
in the vicinity of the region where the electromagneticthe magnetic field correspond to that of a narrow central
radiation is localized. We address here the question ofurrent sheet directed alongand carried by relativistic
what geometrical structure this quasistatic magnetic fieleélectrons produced by the wave break of the plasma
can be expected to develop behind the laser pulse.

First we present the results of a particle-in-cell (PIC)
computer simulation of the interaction of a laser pulse L
in an underdense plasma, which we performed in order [
to analyze the shape and the time development of the
quasistatic magnetic field. We used the 2X3V-PIC rela-
tivistic electromagnetic code described in [4]. All physical
variables depend on two spatial coordinatesidy. lons sof
are treated as a fixed charge neutralizing background. A w [
512 X 256 grid is used with approximately £Qarticles,
the plasma begins at= 5A and is preceded by a vacuum
region and the pulse is initialized at= —107/w outside 0
the plasma at the = 0 boundary. The laser pulse is
linearly polarized with its electric field directed along the
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FIG. 1. Magnetic wakefield generated by an ultrashort laser

z direction, so that the component of the magnetic field . . e By (Ao
is initially zero. In Fig. 1 we present the results Obtainedpulse in an underdense plasma: (a) distribution of the quasistatic
y : g. P magnetic field; (b) e.m. energy density on the pulse axis

in the case of an underdense plasfwg,/© = 0.45) of (X = kx = 277x/A,Y = ky = 27y/A, B is normalized on
a pulse with frequency, dimensionless amplitude =  m.wc/e).
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wakefield [6]. Plasma charge neutrality is ensured by two = 1 Z I Yi — Yk Ki(ri)

return current sheets which run at the periphery due to / 27 Tk e

opposite current repulsion. This repulsion is the basis for ) 1 Xj — X

the magnetic field formation through the development of i = on k; Ty ri Ki(rjr), ()

the Weibel instability. The occurrence of wave breaking
makes these laser plasma regimes less interesting frofg|lows, whererj, = |rj — re| = [(x; — x)? + (y; —

the point of view of laser wakefield acceleration, eveny, y2]1/2 e will assume that all vortices have the same
if per sethe focusing properties of the magnetic field ghsolute amplitude and takg;| = 1.

would be beneficial, as discussed in Refs. [7,8]. Following e consider the problem of the stability of an infinite
Ref. [6], we estimate the magnetic field strengthBas=  yortex chain. In the initial equilibrium the vortices
a(mewc/e) (wpe/w)*. We see that the current sheetpaye coordinates? = Jjs, y? —0, — < j < 4% and
develops an instability which tends to bend it and 0amplitudesT; = 1. If the distances between neigh-
produce a vortex row: The small scale vortices merggoring vortices is much smaller than 1 (in dimensional
and an asymmetry appears in the vortex row. The sizgpjts much smaller than the collisionless skin depth),
of these vortices is typically of the order of or larger thanfor ¢ « |y| « 1 the chain separates two subregions,
the collisionless skin depth/w,, and the period of their 3 ypper and lower one, with opposite electron velocity
motion is much longer than that of the Langmuir wavesalong x, v, = *U = ¥1/(2s). This is equivalent to a
'I;he propagation velocity of the vortex row alomds =~ yortex film with uniform surface density of generalized
0 Vg» much smaller than the group velocity ~ c ofthe  vorticity —1/s. Far from the film for| y| > 1, bothB and
laser pulse. We also see the development of a small scalg. tend to zero exponentially. This structure corresponds
instability that generates a short wavelength turbulence af two, oppositely directed, electric current sheets that
“vortex pairs” at a distance=2wc/w ), behind the head have a width of order one. In the analysis of a vortex
of the laser pulse [Fig. 1(a)]. In the distribution of the chain stability we extend the approach developed in hy-
electromagnetic energy density shown in Fig. 1(b), we se@rodynamics [12] to the Hasegawa-Mima point vortices.
that the pulse is localized in a well-delimited region andwe consider the motion of théh vortex with coordinates
that its leading part becomes sharper. x = js + x;(r) and y = y;(r). Because of the trans-
In the remaining part of this Letter we will investigate |ational invariance of the initial configuration we seek

the bending instability of a finite width current sheet thatsolutions of Egs. (2), linearized around the equilib-
has been observed in the PIC simulations. We invoke thum configuration, of the form x; = Xexdyt +

freezing of thez component of the rotation of the gen- j(jo)], y; = Yexgdyt +i(je)l, with 0< ¢ < 2.

eralized momenturlV X [p — (e/c)A] into the electron | ¢ is small, the perturbation has the form of a sinusoidal
fluid. Herep is the electron momentum andl is the  wave with wavelengthh = 277/« = 27s/¢, Wherex is

vector potential. Since their motion is slow comparedihe wave number. The perturbations grow exponentially

to the Langmuir time and their velocity is much smallerin time, and the growth rate is given by
than speed of light, the electron fluid can be regarded - ]

as incompressible. This leads to the following relation-,, — 1 H: Z Ki(js) (1 — CO$'¢)i|
ship between the electron velocity and the magnetic field! 7 [ = Js

v = —(c/4men)V X B, so that, takingB to be along the > 12
e J X[Z Kz(ks)—M>(l—cosk¢)N .
k=1 §

Z axis, we obtain
)

If s <1ande > 27s, A <1 and Eq. (3) reproduces
the result obtained in Ref. [12)y = ¢ (27 — ¢)/4ms>.
where the time and space units asg, = a Nw/w3,), Whene < 1, we havey = ¢/2s* = kU, whereU =
and c/w,., respectively. Equation (1) is known as 1/(2s), which coincides with the growth rate of the
the Charney equation or the Hasegawa-Mima (HM)Kelvin-Helmholtz instability. Fors << 1 and ¢ < 27y,
equation in the limit of zero drift velocity or the electron- i.e., for wavelengths greater than the width of the current
magnetohydrodynamics equation [1,2,9,10]. As is wellsheet(A > 1), Eq. (3) givesy = ¢?/ms® = «*U /2.
known (see Refs. [3,11]) Eq. (1) has a discrete vortexn the long wavelength limit the instability becomes slow
solution for which the generalized vorticity is localized at compared to the Kelvin-Helmholtz instability. In the
the pointsr =r;: O = AB — B =3 ,;T';8(r — rj()). limit s > 1, when the distance between two neighboring
Here I'; are constants and = (x,y). Then we have vortices is larger than one, Eq. (3) giveg~ (1 —

B =3 ,B;, Bj(rr;jt)=—(;/2m)Ko(Ir — rj(@)l). cosp) exp(—s)/s~/27 and the instability is exponentially
Here and belowk,(£) are modified Bessel functions. slow.

The curvesr;(r) are determined by the characteristics of In order to determine the nonlinear stage of the vortex
Eq. (1)r; =2 X V- 3. Bi(rj(2), r(r)). From these film instability, we have performed a numerical integration
expressions the equation of motion of the vortices, of Eq. (1). At the initial time the generalized vorticity
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bending in the framework of the MHD description has
been investigated in Ref. [13]. Let us consider a dou-
1 ble chain of opposite vortices in which the coordi-
- nates and the amplitudes of point vortices are equal
O\ A ), tox? =js+ Ut Y =1¢q —0<j<+o, I;=~1
L for the upper chain, and{ = (k + o)s + Ut, yp =
1L —1q, —» < k <+, Ty = 1 for the lower chain, re-
i spectively. The distance between neighboring vortices in
e a chain iss, the distance between the chains in thdi-
rection isq, and the lower chain is shifted along thxe
direction byos: o = 0 ando = 1/2 correspond to the
symmetrical and to the antisymmetrical configurations, re-
spectively. Here

N
v 45 Kb

o

(= [+ 08 + g
()

-2 -1 0 1 2 is the global velocity of the double chain in tkelirection.
X When s <1 and ¢ < 1 we recover known results
_ . i [12]: U = (1/2s)coth(wq/s) for ¢ =0, and U =
FIG. 2. Bending instability of a vortex fllm.il(a) Curves (1/2s)tani(mq/s) for o = 1/2. Far from the vortex

g{eeﬂlé?rlnagfiigzra:gf}dw vort;ﬁgy&?nitfi(;{ \tlozrtiéﬁ;) Bi"s’ (lf nth?_s row the magnetic field and the electron fluid velocity
pes .

Qmin = —0.03, Qmax = 1.3; (b) isomagnetic curves:B,,, — tend to zero exponentially. Fer < 1 this configuration
—0.037, Bmax = 0.1. corresponds to an electron current sheet with thickaess

surrounded by two opposite current sheets with thickness

is assumed to be localized in a region narrow in the of order 1, and is similar to the configuration observed
direction and infinitely long in thex direction. Then behind the laser pulse (see Fig. 1).
a small amplitude perturbation that depends on both  In our PIC simulation the velocity of the row prop-
andy is superimposed. The width of the vortex layer isagation is of orderc/40. For a pulse withu =~ 3 and
0.05¢/w ., While the perturbation wavelength is equal to w,./w = 0.45, we estimateeB/m.cw =~ 1 which is
2¢/wpe. This corresponds to the case when the widthconsistent with our normalizatiod’;| = 1. Then, from
of the vortex layer is much shorter than the collisionlessEq. (4) we find that the d|stance between ne|ghbor|ng
skin depth while the perturbation wavelength is longer. Invortices must be approximately equal &r/w,. in
Fig. 2(a) we see the bending of the chain and the formatioagreement with Fig. 1. From Egs. (2) we can obtain,
of bunches of generalized vorticity on the vortex film. Theto the first order in perturbation amplitude, the lin-
isomagnetic curves have the form of “squint cat eyes,’earized equation of motion of the vortices. Looking
as shown in Fig. 2(b). This instability slows down with for solutions of the formx; = Xexdyr + i(jo)l,
time. This can be explained by the exponential decreasing; = Y exdyt + i(j@)], x; = X' exd(yt + ike)], y; =
of the instability growth rate when the distance betweert’ exdy: + i(k¢)], for the perturbations of the coor-
neighboring vortices becomes of order or larger than 1dinates of vortices from the upper and the lower chain,
consistent with the analytical results obtained above. respectively, we find the dispersion relation which gives

Now we consider the stability of a thin current sheet.the relationship between the real and imaginary partg of
We note that the instability of a current sheet againsand¢:

-1E T =0 Pk

oe}

k=0 j=l )
Z( pk) g KpZ(Pk)>[1 + scodk + U)MHZ(M - Kz(pj)>(1 — CoSp)
&= 2 j=1 J
- . 1/2
Z(Kl(pk) (k + O')pz;gzsz(Pk)>[l — scodk + U.)QD]j” , (5)
k=0 k

wheres = *1 depends on the parity of the perturbatioh.recover Rayleigh’s result for the growth raRe(y) =
The symmetricale = 0 vortex row is always unstable. ¢U(g¢)'/%/s*? = kU(kq)'/? of the bending instability
In the limit s < g <1 and ¢ <27s/¢ < 1, we of a finite width, fluid stream. When the perturbation
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In order to investigate the nonlinear stage of the
bending instability of a current sheet with finite width and
1r a smooth distribution of the generalized vortici€y =
B — AB, we have performed a numerical integration of
Eq. (1). We have analyzed the case corresponding to a
current width smaller than one (than the collisionless skin
depth). The initial perturbation amplitude of 0.1 and the
wavelength is equal to two.

In Fig. 3 the result of the development of the bending
instability of a thin current sheet is presented. Initially,
the width of the current sheet &05¢/w . and the total
electric current inside it is one. This current sheet is
formed by two generalized vorticity layers with opposite
vorticity and distanc®.05¢/w .. In Figs. 1(a) and 3(b)
we see the development of an antisymmetric vortex row.
In the initial stage, for = 20wz, , the instability grows
exponentially in time. However, in the nonlinear stage

2 1 o 1 2 t = 20w, , the growth is not so fast.
X We thank G. Bertin, J. M. Dawson, A.V. Gordeev,
6.0 eang sy of 3 e oot (o D Qe n L POETLO, % Rasmussen, £ Sasoron
Curves of equal generalized vorticit§) for r = 19wp,: ; A s . S )
Quin = —1.193, Q.. = 1.198.  (b) Isomagnetic curves: Financial Support from the Italian Ministry for Research
Bumin = —0.02, Byax = 0.02. (MURST) and from the Italian National Research Council
(CNR) is gratefully acknowledged.

wavelength is larger than 1 angd (¢ < 1 < 27ws/p),
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