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Electromagnetic Radiation by a Tunneling Charge

M. I. Dyakonov and 1. V. Gornyi

A.F. loffe Physical-Technical Institute, 194021 St. Petersburg, Russia
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Electromagnetic radiation during the quasiclassical tunneling motion of a charge through a smooth
potential barrier is considered. A general formula for the radiation spectral density per tunneling
particle is derived, which is essentially classical (i.e., does not contain the Planck constant), and
is given by a simple modification of the convenient result for the classical overbarrier motion.
[S0031-9007(96)00117-2]

PACS numbers: 41.60.—m, 03.65.Sq

A charge moving in an external potential experienceslimensional nonrelativistic case considered here it may be
acceleration and hence emits electromagnetic radiationvritten as

For the simple case of a one-dimensional infinite motion 9F 2 2 1
the classical formula describing the bremsstrahlung is [1] <—> = — = |a,-f|2 S— 3
o F 5 B2 dw /)y 3w Wy
— 2
Yo 37 3 law I, @D where (0E/dw)y is the radiation energy in a unit

frequency interval per particle in the final stafe Wy

is the probability of a transition to this state,s is

the matrix element of the acceleration operatdr) =

—m~'9U(z)/9z between the initial and final states, is

the particle mass, ant(z) is the potential energy. The
” . corresponding wave functions are normalized to unit flux.

Qo = [ ma(t) exp(—iwr)dt. (2) For a givenw there are two final stateg, = r, r where

r stands for reflection andfor transmission. Accordingly,

= T and W, = R, whereT andR are the transmission

d reflection coefficients, respectively. The total spec-

trum is given by

whered’E /dw is the total radiation energy per unit fre-
quency intervalg is the particle charge; is the velocity
of light, and a,, is the Fourier transform of the charge
acceleratioru(r),

In quantum mechanics, by applying the Fermi golde
rule one obtains the same result if (i) the charge motion '%r;
quasiclassical and (ii) the emitted photon enerfgy, is
much less than the particle energy

Quantum mechanics also says that in the presence of IE _ T(E) 4 R(af)
a potential barrier some particles may be transmitted dw ; .
through the barrier folE < U,, where Uy is the maxi- . . .. o
mum barrier height. In the quasiclassical situation theIf conditions (i) and (ii) are satisfied, fdf < Up we have

fraction of these particles is exponentially small, so their" . ! art1)d {h« Il SO tTe vall:.eaf{awvaw (afE/_a;o), ted
contribution to the total emitted radiation is negligible. is given by the classical equation (1). We are intereste

However, one may be specifically interested in the bremsi-n finding (9 /9w), which gives the radiation spectrum

strahlung during this underbarrier motion, and this is theProduced b.y.a_l single tunneling particle. o (4)
problem that we address in this Letter [2]. For the initial state we take the wave functidin,

Assuming that conditions (i) and (ii) are fulfilled, we d€scribing an incoming particle moving in the positive
show that in the case of quantum tunneling the bremsdirection of thez axis [Fig. 1(a)]. According to the Som-
strahlung spectrum is described by the same classicaperfeld rule for the calculation of bremsstrahlurlg [3] the
equation (1)’ in WhiCh, however’ in order to QPJ one final state should be described by the fUnCtml(lk) for
should take the integral in Eq. (2) along a certain contouthe reflected particles, and by the functidff) for the
in the complex plane of variable We also show that transmitted ones [Fig. 1(b)]. The functioﬂé_fk) and‘I’(J_:k)
for the underbarrier motion the valug in Eq. (1) may be are related by
found as an analytical continuation of the classical function ) (s (+) -) -)

a,(E) from regionE > Uy to the regiont < Uj. Wt = (P, Vi =AY + BV,

We stress that the situation is rather unusual, since thghere A and B are the amplitudes of the reflected and
expression for the radiation spectral density per tunnelingransmitted waves, respectively (see Fig. 1), so that
particle is classical: it does not contain the Planck constany|2, 7 = |B|2.
hi, though the number of such particles, of course, goes t0 e consider the radiation during transmission, therefore
zero in the classical limit. "

Our starting point is the well-known quantum for- ais :f (\I’;i:r))*a(z)\P,i;) dz . 5)
mula for the bremsstrahlung spectrum [3]. For the one- —o0

(4)

Jw Jw

3542 0031-900796/76(19)/3542(4)$10.00 © 1996 The American Physical Society



VOLUME 76, NUMBER 19 PHYSICAL REVIEW LETTERS 6 My 1996

Above the barrier the quasiclassical functiolfi,%jr) and ‘PE{:) may be written in the form

m 12 (1
‘I’I(c+) = (p,-(z)) exl{iki(z —z0) + if_g@(g pi(z1) — ki)d21j|, (6)
1/2 o0
_ 1
v, = (%) exp[ikf(z - 2) - ifz (; prla) - kf> dz1 (7

wherefik; = (2mE)'2, pi(z) = 2m[E — U2, the | where
quantitiesks, ps(z) are defined analogously, with the ini-

tial energyE replaced by the final energy; = £ — lw. b = f dz(ki _ 1 pfk(z)), 9)

The phase of the functioW /_*) is chosen in such a way —o nt

that for; — —oowe havewgr o« exfdik;(z — zo)], where - 1 1

zo is an arbitrary point. The functioﬂfg) has a similar At(z9) = f dZ(E - v—0> (10)
20

asymptotic form at — .
ForE < U, the quasiclassical expressions W)Lfr) and  y(z) = {2[E — U(2)]/m}?, vy = v(x®o) = 2E/m)'/2.
‘1'2,7) differ from those given by Egs. (6) and (7) only by In deriving Egs. (8)—(10) we used the relatipfi(z) —
additional reflected waves existingat< a for ¥ and ~ ps(z) = fiw/v(2). _
atz > b for ¥\). Herea andb are the left and right  Equations (8)—(10) are valid both fér > Uy andE <
turning points, respectively. However, one can see that thEo- Moreover, the matrix element;; is an analytical
relative contribution of the reflected waves to the matrixfunction of energyE. For E > U, the quantitiesd
elementa;; is exponentially small, being proportional to and At(z) are real. @ is the total phase difference
an integral from a rapidly oscillating function. Hence for introduced by the potential/(z), and Az(zo) has the
calculatinga;s one may use the functions given by Egs. (G)phyglcal meaning of the time delay with respect to free
and (7) both fole > Uy and forE < Up. Inthe latter case motion from pointz to <. _ _
ata < z < b the functionp;(z) should be understood as _ For E < Uy at a <z <b the function v(z) in
il pi(z)], while p;(z) = —il p,(z)|. Such a choice of the Egs. (8) and (10) should be understood.asély(z)l.
branches o (z) provides the correct behavior of the two Thus ® becomes complex. In fack = exp(i®) is the

functions within the underbarrier region. complex amplitude of the transmitted wave ahce= |B|?
. ' coefficient. The time delay\r(zyp) generally becomes
aip = exdi® + iwAt(z)] complex too. It remains real if the poing is chosen to
* dz , 2 dz the right of the turning poink.
X jlm v(2) a(z) ex _’w/ vz ) (8) We now rewrite Eq. (8) by introducing instead ofa
° new time variable
Z
t = [ ‘iZ‘) . (11)
o v(z)
@ 1 Z )
- U( ) Then
air = BexdiwAt(zo)]a, , (12)
Ay = ] a(r)exp(—iwt) dt, (13)
c

®) U@

where the integration contour is defined by the manner
in which the timer changes, according to Eq. (11), when
z runs from—co to « along the real axis.

Note thata,, in Eq. (13) depends on the choice of the
point zo, at which #(zo) = 0 [this is true also for the
FIG. 1. Schematic representation of the initial (a) and fi-CIaSSIcal equation (2)]. I,f we take a”Othe.r real pOzléI,In
nal (b) states for calculating the matrix element in Eq. (5).Place ofzo and choose(z) = 0, the quantitya,, changes
(a) Functionw!") describing the incoming particles; (b) func- by an additional factor

tion W~ describing the transmitted particles. TheAl,and % 4y
B above the arrows denote the amplitudes of corresponding ex ia)f — .
waves. o v(2)
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For E > U, this is just a phase factor. However, if Imt
E < U, and if the interval(zo, zy) happens to include at L @
least a part of the underbarrier region, the modulus of this iT

factor is no longer equal to unity. This change in the
absolute value of,, is compensated by the corresponding
change in the modulus of the factor ¢xpAtz(zo)] in

Eq. (12). The product C (E> Uo)

G, = a,exgioAt(zo)] (14) 0 I > Re t
would always change by just a phase factor{exz, —
z0)/vo], both for E < U, and for E > U,. Thus a,, E—

depends org, only through an irrelevant phase factor

expliwzo/vo) for any energy. -
Equation (12) gives the general correspondence be- v

tween the matrix element;; and the Fourier compo- C (E<U0)

nent a, for the quasiclassical infinite motion. As we

have seen|a;¢|* = la,|* for E > Uy; however, this is

no Ionger.true foz < Up. Comparmg the clas_S|caI equa- g 2. Complext plane with cuts and integration contours in

tion (1) with the quantum equation (3) and using Eq. (12)gq. (13) forE > U, and forE < Uj.

we see that for arbitrary energy the quantity in Eq. (1)

should be replaced by, given by Eqgs. (13) and (14).

The quantitya,, is an analytical function of energy crossing the cuts. We note that a similar integration
E. Thus we have the following rule for calculating the contour was introduced by Iviev and Mel'nikov [5] who
radiation spectrum of a tunneling charge. Given a clasgonsidered tunneling through a barrier in an external ac
sical a,, value forE > U, and some choice of the point fje|d.

20, it should be multiplied by the factor efjaw A#(zo)] to We will now derive asymptotic formulas for the radia-
Obtain&w, which should then be analytica”y continued to tion Spectrum of a tunneling Charge in the |OW_frequency

the regionE’ < Up. The resulting value of,, should be  and high-frequency limits. In the first case£ < 1) we
put in Eq. (1) instead of,,. If zo is chosen to the right rewrite Eq. (13) as

of the barrier top, then for energiés > U(zy) the delay

Atr(zp) is real and the quantitied, anda, differ by a _ ] _ .

phase factor only. Thus for this special choicezgfand do =10 C[U(Z) volexp(—iwn)dr. (15)
for the energy rangd/(z9) < E < Uy Eq. (1) is valid,
with a,, given by Eq. (13). However, in the general case_lwvom, where Ar — Ar(—=) is the total time delay

one should replace,, by a,,. . . . .
We  will ncfw cons>i/der the integration contour in given by Eq. (10). Finally, the radiation spectral density

Eq. (13). AtE > U, it obviously goes along the real axis IS
(dashed line in Fig. 2). AE < U, the contourC is pre- <af>
t

-iT

Using Egs. (10), (11), and (15) far — 0 we obtainaz, =

2 ¢
sented by the heavy line in Fig. 2, where for convenience 3y o3 o’ vglAr]*. (16)
we have chosen= 0 atz = b. Itruns from—o — i7
to —ir (classical motion to the left of the turning poimt, ~ This formula is valid for both the classical motion above
from —ir to O (tunneling motion between turning points the barrier and the tunneling motion. The time delay,

a and b), and from0 to « (classical motion at > »).  is an analytical function of energy which may be continued

Jw

The quantityr is the “bounce” time for tunneling [4] from the classical regio® > U, to the tunneling region
by E < Uy. Thew? dependence at low frequencies is char-
T = f . acteristic for the one-dimensional motion.
a vl In the high-frequency caseo > 1) it is convenient

The functiona(z) is an analytical function of in the  to connect the branching points in Fig. 2 by vertical cuts
complex ¢ plane with cuts which start at the branching and shift the integration contodr far downwards so that
points. The branching points are situatedzat r(z;) it gets caught on cuts. The integral along the contour
where z; are the poles ofU(z). The functiona(s) is  C would be equal to the sum of integrals around these
periodic along the Imaxis with a period27, since the cuts; however, fow 7 > 1 the contribution of the nearest
underbarrier motion in imaginary time is equivalent to ato the real axis cut dominates. Calculations give the
periodic classical motion in an inverted potential. Notefollowing result in the high-frequency limitdE /dw), o
that the values ofi(¢) along C are real. Obviously the 2/*2 exp—wr), wheren is the order of the pole of
contourC may be deformed at one’s convenience withoutU(z) which is nearest to the Reaxis.
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We note that the relative contribution of the part of by a classical formula (not containing the Planck constant),
the contourC running from —o — i7 to —i7 to the which is a simple modification of the conventional result
integral in Eq. (13) is proportional to ekp w7) and hence for the classical overbarrier motion. We have also derived
suppressed. This is related to the fact that if the particlgeneral asymptotic expressions for the radiation spectrum
emits a photon before tunneling it loses the enefgy, in the low- and high-frequency limits.
and therefore its transmission coefficient decreases. Thus
at wr > 1 there is only a small fraction of transmitted
particles which have radiated a photon before entering the

barrier. o ,
As an example, we give explicit asymptotic results [] 'E'iga;-(ag‘grag‘;;';i E}i‘sL'g)t‘f'ct)ﬂhfgg;sicggheory of
obtained for the potentldl/(z)z = Uo/ costi(z/d), [2] There may be situations (e.gx,decay) when the radiation
<£> — 2e vzf(an-) (17) is produced only by particles, which are transmitted
dw /; 37cd 0 ’ through the barrier. In such cases the motion in the
underbarrier region gives an appreciable contribution to
&) = [#Inz(ﬁ) +1]€% (£ k1), (18) the total emitted radiation.
T&) = o(v/E) Peexp—g) (¢ 1). [3] V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii,
wherer = 7d /v Quantum Electrodynamid$®ergamon, New York, 1971),
= 0.
pp. 313-319.

In summary, we have considered electromagnetic radia|4] R, Landauer and Th. Martin, Rev. Mod. Phyas, 217
tion accompanying the quasiclassical tunneling motion of =~ (1994).
a charge through a potential barrier. We have shown tha{5] B.I. Ivlev and V. 1. Mel'nikov, Phys. Rev. Lett55, 1614
the radiation spectral density per tunneling particle is given  (1985).
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