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Electromagnetic Radiation by a Tunneling Charge
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Electromagnetic radiation during the quasiclassical tunneling motion of a charge through a s
potential barrier is considered. A general formula for the radiation spectral density per tunn
particle is derived, which is essentially classical (i.e., does not contain the Planck constant
is given by a simple modification of the convenient result for the classical overbarrier mo
[S0031-9007(96)00117-2]
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A charge moving in an external potential experien
acceleration and hence emits electromagnetic radia
For the simple case of a one-dimensional infinite mot
the classical formula describing the bremsstrahlung is

≠E

≠v
­

2
3p

e2

c3
javj2, (1)

where≠E y≠v is the total radiation energy per unit fr
quency interval,e is the particle charge,c is the velocity
of light, and av is the Fourier transform of the charg
accelerationastd,

av ­
Z `

2`

astd exps2ivtd dt . (2)

In quantum mechanics, by applying the Fermi gold
rule one obtains the same result if (i) the charge motio
quasiclassical and (ii) the emitted photon energy,h̄v, is
much less than the particle energyE.

Quantum mechanics also says that in the presenc
a potential barrier some particles may be transmi
through the barrier forE , U0, whereU0 is the maxi-
mum barrier height. In the quasiclassical situation
fraction of these particles is exponentially small, so th
contribution to the total emitted radiation is negligib
However, one may be specifically interested in the bre
strahlung during this underbarrier motion, and this is
problem that we address in this Letter [2].

Assuming that conditions (i) and (ii) are fulfilled, w
show that in the case of quantum tunneling the bre
strahlung spectrum is described by the same clas
equation (1), in which, however, in order to getav one
should take the integral in Eq. (2) along a certain cont
in the complex plane of variablet. We also show tha
for the underbarrier motion the valueav in Eq. (1) may be
found as an analytical continuation of the classical func
avsEd from regionE . U0 to the regionE , U0.

We stress that the situation is rather unusual, since
expression for the radiation spectral density per tunne
particle is classical: it does not contain the Planck cons
h̄, though the number of such particles, of course, goe
zero in the classical limit.

Our starting point is the well-known quantum fo
mula for the bremsstrahlung spectrum [3]. For the o
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dimensional nonrelativistic case considered here it may
written as µ

≠E

≠v

∂
f

­
2

3p

e2

c3
jaif j2

1
Wf

, (3)

where s≠E y≠vdf is the radiation energy in a un
frequency interval per particle in the final statef, Wf

is the probability of a transition to this state,aif is
the matrix element of the acceleration operatoraszd ­
2m21≠Uszdy≠z between the initial and final states,m is
the particle mass, andUszd is the potential energy. The
corresponding wave functions are normalized to unit fl

For a givenv there are two final states,f ­ r , t where
r stands for reflection andt for transmission. Accordingly
Wt ­ T and Wr ­ R, whereT andR are the transmission
and reflection coefficients, respectively. The total sp
trum is given by

≠E

≠v
­ T

µ
≠E

≠v

∂
t

1 R

µ
≠E

≠v

∂
r

. (4)

If conditions (i) and (ii) are satisfied, forE , U0 we have
R ø 1 and T ø 1, so the value≠E y≠v ø s≠E y≠vdr

is given by the classical equation (1). We are interes
in finding s≠E y≠vdt which gives the radiation spectrum
produced by a single tunneling particle.

For the initial state we take the wave functionC
s1d
k

describing an incoming particle moving in the positi
direction of thez axis [Fig. 1(a)]. According to the Som
merfeld rule for the calculation of bremsstrahlung [3] t
final state should be described by the functionC

s2d
2k for

the reflected particles, and by the functionC
s2d
k for the

transmitted ones [Fig. 1(b)]. The functionsC
s1d
6k andC

s2d
6k

are related by

C
s2d
k ­ sCs1d

2k dp, C
s1d
k ­ AC

s2d
2k 1 BC

s2d
k ,

where A and B are the amplitudes of the reflected a
transmitted waves, respectively (see Fig. 1), so thatR ­
jAj2, T ­ jBj2.

We consider the radiation during transmission, theref

aif ­
Z `

2`
sCs1d

ki
dpaszdCs2d

kf
dz . (5)
© 1996 The American Physical Society
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Above the barrier the quasiclassical functionsC
s1d
ki

andC
s2d
kf

may be written in the form

C
s1d
ki

­

√
m

piszd

!1y2

exp

"
ikisz 2 z0d 1 i

Z z

2`

√
1
h̄

pisz1d 2 ki

!
dz1

#
, (6)

C
s2d
kf

­

√
m

pfszd

!1y2

exp

"
ikfsz 2 z0d 2 i

Z `

z

√
1
h̄

pfsz1d 2 kf

!
dz1 , (7)
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where h̄ki ­ s2mEd1y2, piszd ­ h2mfE 2 Uszdgj1y2, the
quantitieskf , pfszd are defined analogously, with the in
tial energyE replaced by the final energyEf ­ E 2 h̄v.
The phase of the functionCs1d

ki
is chosen in such a wa

that forz ! 2` we haveC
s1d
ki

~ expfikisz 2 z0dg, where
z0 is an arbitrary point. The functionCs2d

kf
has a similar

asymptotic form atz ! `.
ForE , U0 the quasiclassical expressions forC

s1d
ki

and
C

s2d
kf

differ from those given by Eqs. (6) and (7) only b
additional reflected waves existing atz , a for C

s1d
ki

and
at z . b for C

s2d
kf

. Herea and b are the left and righ
turning points, respectively. However, one can see tha
relative contribution of the reflected waves to the ma
elementaif is exponentially small, being proportional
an integral from a rapidly oscillating function. Hence f
calculatingaif one may use the functions given by Eqs.
and (7) both forE . U0 and forE , U0. In the latter case
at a , z , b the functionpiszd should be understood a
ijpiszdj, while pfszd ­ 2ijpfszdj. Such a choice of the
branches ofpszd provides the correct behavior of the tw
functions within the underbarrier region.

A straightforward calculation gives

aif ­ expfiF 1 ivDtsz0dg

3
Z `

2`

dz
yszd

aszd exp

√
2iv

Z z

z0

dz1

ysz1d

!
, (8)

FIG. 1. Schematic representation of the initial (a) and
nal (b) states for calculating the matrix element in Eq. (
(a) FunctionC

s1d
k describing the incoming particles; (b) fun

tion C
s2d
k describing the transmitted particles. The 1,A, and

B above the arrows denote the amplitudes of correspon
waves.
e

g

where

F ­
Z `

2`
dz

√
ki 2

1
h̄

pp
i szd

!
, (9)

Dtsz0d ­
Z `

z0

dz

√
1

yszd
2

1
y0

!
, (10)

yszd ­ h2fE 2 Uszdgymj1y2, y0 ­ ys6`d ­ s2Eymd1y2.
In deriving Eqs. (8)–(10) we used the relationpp

i szd 2

pfszd ­ h̄vyyszd.
Equations (8)–(10) are valid both forE . U0 andE ,

U0. Moreover, the matrix elementaif is an analytical
function of energyE. For E . U0 the quantitiesF

and Dtsz0d are real. F is the total phase difference
introduced by the potentialUszd, and Dtsz0d has the
physical meaning of the time delay with respect to fr
motion from pointz0 to `.

For E , U0 at a , z , b the function yszd in
Eqs. (8) and (10) should be understood as2ijyszdj.
Thus F becomes complex. In fact,B ­ expsiFd is the
complex amplitude of the transmitted wave andT ­ jBj2

is the exponentially small (forE , U0) transmission
coefficient. The time delayDtsz0d generally becomes
complex too. It remains real if the pointz0 is chosen to
the right of the turning pointb.

We now rewrite Eq. (8) by introducing instead ofz a
new time variable

t ­
Z z

z0

dz1

ysz1d
. (11)

Then

aif ­ B expfivDtsz0dgav , (12)

av ­
Z

C
astd exps2ivtd dt , (13)

where the integration contourC is defined by the manne
in which the timet changes, according to Eq. (11), whe
z runs from2` to ` along the real axis.

Note thatav in Eq. (13) depends on the choice of th
point z0, at which tsz0d ­ 0 [this is true also for the
classical equation (2)]. If we take another real point,z0

0, in
place ofz0 and choosetsz0

0d ­ 0, the quantityav changes
by an additional factor

exp

√
iv

Z z 0
0

z0

dz
yszd

!
.
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For E . U0 this is just a phase factor. However,
E , U0 and if the intervalsz0, z0

0d happens to include a
least a part of the underbarrier region, the modulus of
factor is no longer equal to unity. This change in t
absolute value ofav is compensated by the correspondi
change in the modulus of the factor expfivDtsz0dg in
Eq. (12). The product

ãv ­ av expfivDtsz0dg (14)

would always change by just a phase factor expfivsz0
0 2

z0dyy0g, both for E , U0 and for E . U0. Thus ãv

depends onz0 only through an irrelevant phase fact
expsivz0yy0d for any energy.

Equation (12) gives the general correspondence
tween the matrix elementaif and the Fourier compo
nent av for the quasiclassical infinite motion. As w
have seen,jaif j2 ­ jav j2 for E . U0; however, this is
no longer true forE , U0. Comparing the classical equ
tion (1) with the quantum equation (3) and using Eq. (1
we see that for arbitrary energy the quantityav in Eq. (1)
should be replaced bỹav given by Eqs. (13) and (14).

The quantity ãv is an analytical function of energ
E. Thus we have the following rule for calculating th
radiation spectrum of a tunneling charge. Given a c
sical av value forE . U0 and some choice of the poin
z0, it should be multiplied by the factor expfivDtsz0dg to
obtainãv , which should then be analytically continued
the regionE , U0. The resulting value of̃av should be
put in Eq. (1) instead ofav . If z0 is chosen to the righ
of the barrier top, then for energiesE . Usz0d the delay
Dtsz0d is real and the quantities̃av and av differ by a
phase factor only. Thus for this special choice ofz0 and
for the energy rangeUsz0d , E , U0 Eq. (1) is valid,
with av given by Eq. (13). However, in the general ca
one should replaceav by ãv .

We will now consider the integration contour
Eq. (13). AtE . U0 it obviously goes along the real ax
(dashed line in Fig. 2). AtE , U0 the contourC is pre-
sented by the heavy line in Fig. 2, where for convenie
we have chosent ­ 0 at z ­ b. It runs from2` 2 it
to 2it (classical motion to the left of the turning pointa),
from 2it to 0 (tunneling motion between turning poin
a and b), and from0 to ` (classical motion atz . b).
The quantityt is the “bounce” time for tunneling [4]

t ­
Z b

a

dz
jyszdj

.

The functionastd is an analytical function oft in the
complex t plane with cuts which start at the branchi
points. The branching points are situated att ­ tszid
where zi are the poles ofUszd. The function astd is
periodic along the Imt axis with a period2t, since the
underbarrier motion in imaginary time is equivalent to
periodic classical motion in an inverted potential. No
that the values ofastd along C are real. Obviously the
contourC may be deformed at one’s convenience with
3544
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FIG. 2. Complext plane with cuts and integration contours i
Eq. (13) forE . U0 and forE , U0.

crossing the cuts. We note that a similar integrati
contour was introduced by Ivlev and Mel’nikov [5] who
considered tunneling through a barrier in an external
field.

We will now derive asymptotic formulas for the radia
tion spectrum of a tunneling charge in the low-frequen
and high-frequency limits. In the first case (vt ø 1) we
rewrite Eq. (13) as

av ­ iv
Z

C
fystd 2 y0g exps2ivtd dt . (15)

Using Eqs. (10), (11), and (15) forv ! 0 we obtainav ­
2ivy0Dt, whereDt ­ Dts2`d is the total time delay
given by Eq. (10). Finally, the radiation spectral dens
is µ

≠E

≠v

∂
t

­
2

3p

e2

c3
v2y2

0 jDtj2. (16)

This formula is valid for both the classical motion abov
the barrier and the tunneling motion. The time delay,Dt,
is an analytical function of energy which may be continu
from the classical regionE . U0 to the tunneling region
E , U0. Thev2 dependence at low frequencies is cha
acteristic for the one-dimensional motion.

In the high-frequency case (vt ¿ 1) it is convenient
to connect the branching points in Fig. 2 by vertical cu
and shift the integration contourC far downwards so that
it gets caught on cuts. The integral along the conto
C would be equal to the sum of integrals around the
cuts; however, forvt ¿ 1 the contribution of the neares
to the real axis cut dominates. Calculations give t
following result in the high-frequency limit:s≠E y≠vdt ~

v2nysn12d exps2vtd, wheren is the order of the pole of
Uszd which is nearest to the Rez axis.
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We note that the relative contribution of the part
the contourC running from 2` 2 it to 2it to the
integral in Eq. (13) is proportional to exps2vtd and hence
suppressed. This is related to the fact that if the part
emits a photon before tunneling it loses the energyh̄v,
and therefore its transmission coefficient decreases. T
at vt ¿ 1 there is only a small fraction of transmitte
particles which have radiated a photon before entering
barrier.

As an example, we give explicit asymptotic resu
obtained for the potentialUszd ­ U0y cosh2szydd,µ

≠E

≠v

∂
t

­
2e2

3pc3
y2

0fsvtd , (17)

fsjd ­

(
f 1

p2 ln2s E
U02E d 1 1gj2 sj ø 1d ,

2sU0yEd1y2j exps2jd sj ¿ 1d ,
(18)

wheret ­ pdyy0.
In summary, we have considered electromagnetic ra

tion accompanying the quasiclassical tunneling motion
a charge through a potential barrier. We have shown
the radiation spectral density per tunneling particle is giv
e

us

e

a-
f
at
n

by a classical formula (not containing the Planck constan
which is a simple modification of the conventional resu
for the classical overbarrier motion. We have also deriv
general asymptotic expressions for the radiation spectr
in the low- and high-frequency limits.
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