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Simple Supersymmetric Solution to the StrongCP Problem
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It is shown that the minimal supersymmetric left-right model can provide a natural solution to the
strongCP problem without the need for an axion, nor any additional symmetries beyond supersymmetry
and parity.
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Quantum chromodynamics, which is extremely sucesspurpose. The only difference between earlier supersym-
ful in describing strongly interacting phenomena in bothmetric (SUSY) left-right models and ours is the inclusion
the low as well as the high energy domain, has the wellof dimension 4 Planck scale induced terms, which are in
known problem that it can lead to an uncontrolled amoungeneral expected to be present [6]. This provides a way
of CP violation in the flavor conserving hadronic pro- to ensure thaR parity remains an exact symmetry in the
cesses. This s the stro@P problem [1]. The parameter theory even after the gauge symmetry is spontaneously
® which characterizes the strength of th&¥@-violating  broken. This in combination with the constraints of par-
interactions is constrained by present upper limits on théy invariance on the coupling parameters of the theory
electric dipole moment of the neutron to be less tharead us to our result that the model provides a solution
1072-10"1°, The presence of such a small number in ato the strongCP problem without the need for an axion.
theory indicates the existence of new symmetries beyon8ince the Yukawa couplings in the model are complex,
the standard model of electroweak and strong interactionshe observed weakP violation in the kaon system is ex-
Three classes of spontaneously broken symmetries havelained via the usual Cabibbo-Kobayashi-Maskawa phase
in the past, been advocated as solutions to the st@mg in the left-handedV coupling (as in the standard model).
problem: (i) Peccei-Quinn (PQ) U(1) symmetry [2], (i) Some additional interesting properties of the model are
parity (or left-right) symmetry of weak interactions [3], (i) including Planck scale effects leaves the solution
and (iii) softly brokenCP symmetry [4]. There also ex- unscathed, as in Ref. [8]; (ii) unlike the minimal super-
ist other solutions which use less transparent symmetriesymmetric model (MSSM) and the model of Ref. [18],
to constrain the form of quark mass matrices into interarity is naturally conserved to all orders IffMp;, SO
esting forms thereby suppressify to the desired level that the lightest supersymmetric particle (LSP) remains
[5]. In the absence of any experimental evidence for oabsolutely stable in this model and plays the role of cold
against any of these solutions, one can look for theoreticalark matter (CDM), and (iii) the SUSY contributions to
criteria to reduce the number of such possibilities. Onedhe electric dipole moment of the neutron are automati-
criterion discussed in recent years is to use the lore thatally suppressed, thereby curing the so-called SIS
unlike local symmetries, all global symmetries are brokerproblem. o
by a nonperturbative gravitational effect, such as black To see how parity symmetry really suppresses e
holes and wormholes. Since all our solutions involve newet us start by noting that in an electroweak theory there
global symmetries, one must investigate whether in thare two contributions t@® at the tree level® = 0 +
presence of these effects the solution to the strGRy  Argdef(M,M,), where® is the coefficient of th& G term
problem remains viable. In Ref. [6] it was shown thatin the QCD Lagrangian induced by instanton effects, and
the presently invisible axion models [7] are incompatiblethe second term is self-explanatory wih, andM,; denot-
with the above nonperturbative effects essentially due ting the up and down quak mass matrices. Sifi€eis odd
the fact that the PQ symmetry breaking scale in this casander parity, if the theory is required to be parity invari-
must be=10-10'2 GeV. On the other hand, it was ant, we must havé® = 0. The vanishing of the second
shown in Ref. [8] that as long as the scaledadr CPvi-  term is, however, more tricky. In the nonsupersymmet-
olation are less than some intermediate scale, the nonpaie left-right models based on the gauge group(BY X
turbative Planck scale effects do not destabilize the secorflU(2)z X U(1)g- [11], the quark masses arise from the
and third solutions to th® problem. In this Letter, we following gauge invariant Lagrangian:
will show that in a class of minimal supersymmetric mod-
els recently discussed [9,10] in order to have autonftic Ly =h.,0, ,9;0r) + Hec., (1)
parity conservation prior to symmetry breaking, the strong
CP parameter® naturally vanishes at both the tree andwhere Q, = (u,,d,) (a = 1,2,3 for three generations)
the one-loop level, thus providing a solution to the strongand ®; are bidoublets (2,2,0). In the minimal nonsuper-
CP problem. No additional symmetries are need for thesymmetric model, one usually considers ofeso that
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there exists another bidoublt = 7,d*r, leadingtotwo  SU(2), X SU2)z X U(1)z_; with quarks and lep-
Yukawa matriceh™ andh®. Under left-right P) sym-  tons transforming as doublets under S)J; de-
metry, one assumes th@y , < Qg adn®; « q);f_ It pending on their chirality as follows: Q (2,1,

is then easy to show that parity invariance demands thaté); 0°(1,2, —%); L2,1,-1); and L°(1,2,+1).
h® = h®Wt Now, if the ground state had the property The Higgs fields and their transformation properties are
that (®;) is real (i.e., the ground state B8P conserv- ®,,(2,2,0); A(3,1,+2); A(3,1,-2); A°(1,3,-2); and
ing) then one would have Hermitian mass matrices im-A“(1,3,4+2). The superpotential for this theory is given
plying that the second term i above is zero. One by (we have suppressed the generation index)

would then have obtaineg@ .. = 0. Unfortunately, with-

out extra symmetrie;, the most general Higgs potential in y, — h QT 7,d,70° + hgi)LTTZquTZLc

a nonsupersymmetric left-right model has complex cou- i

plings, and therefore the vacuum state is necessaifily + i(fL" AL + £, LT 7ALE) + paTr(AA)
violating. As an example consider the Higgs systém + ua Tr(ACR) + i TH T ®T 15®;) + Wr
(Az,Ag) [12], whereA; and Ay are left and right SU(2) ‘ :

triplets, respectively, wittB — L = 2. In this model, all (2)

but one scalar coupling in the Higgs potential are real,
but the complex one correspondsltddetCI)(e"“AZAL + where Wyr denotes nonrenormalizable terms
e~ Al Ag) + H.c. which induces a complex vacuum ex- arising ~ from Planck _ scale physics.  Typically,
pectation value (VEV). Note now that in the presence ofWnr = (A/M)[Tr(A¢7,A")]* + other terms. Being
complex VEVs(®), the mass matrix is not Hermitian and @ Planck scale effect, it can violate parity symmetry,
at the tree leve® # 0 despite the theory being parity in- and we assume it does. At this stage all couplings
variant. One therefore needs new symmetries that forbiﬁ;,,,pij,MA,MA‘-,f, f. are complex with u;;, f, and
the above term [3]. f. being symmetric matrices. The terms that break
The supersymmetric modekAs already supersymmetry softly to make the theory realistic can be
mentioned, the gauge group of the theory iswritten as

|
Loy = fd4ezm$¢,-*¢i + fd20 0> AW, + ]cﬂﬁﬁzzijwf

+ ]d%@zzmpw,,w,, +]d2§522mjp~;~;. (3)
p p

In Eg. (3), W, denotes the gauge-covariant chirlal of Ref. [10] which showed that in order for the ground
superfield that contains thé&,,-type terms with the state to respect electromagnetic gauge invariance, one
subscript going over the gauge groups of the theorynust breakR parity, i.e., (#) # 0 for at least one
including SU3).. W, denotes the various terms in the generation. This is not desirable for our purpose since
superpotential, with all superfields replaced by their scalathe (#¢) VEV will always induce the VEV of#) via the
components and with coupling matrices which are noteptonic Yukawa couplings. Because of these sneutrino
identical to those inW. Equation (3) gives the most VEVs the minimum equations generate a small phase in
general set of soft breaking terms for this model. the bidoublet VEVs, which will upset the Hermiticity of

To see how® = 0 in the model, let us choose the the quark mass matrices leading to nonz€&o Thus
following definition of left-right transformations on the in order to solve the strongP problem we need to
fields and the supersymmetric variabteQ < Q<t; L —  work with the minimum wheré¢) = 0. So how does
Lt d; o & A o AT R o AT 9 o 8, Weyp, —  One evade the theorem of Ref. [10]? Let us recall that
Wev,: @andWe—rsuee < Wi psu@.- With this def- the result of Ref. [10] is valid for the most general

initi f LR v it i t0 check thhf;) _ renormalizable superpotential of the model. However,
|n(|i)|$n of L-r symmetry, 1t IS easy 10 chec X7 if one assumes that nonperturbative Planck scale effects
h,;; )

gl s Mij = /Lf,-; pwa = pa; £ =15 Misp, = Masvoy > can induce operators with dimension 4 or higher, the

andmy, , o = M, s FTOM these constraints, we result of Ref. [10] is easily avoided leading to the

see that Yukawa couplings still remain complex, whereagharge conserving minimum wi#<) = 0. The simplest

all couplings involving only bidoublet Higgs fields are real. operator that is helpful i$A/Mp) [Tr(A°7,A)]>. The

This is the first step in our proof th& = 0. main point is that in the absence of the dimension 4 terms
Now we are ready to look for minima of the Higgs in the superpotential, the global minimum of the theory

potential to see whethef®;) have phases or not. In not only conserves parity but also violates electric charge

discussing this, we must first recall the relevant resultonservation as soon as it breaks the gauge symmetry (i.e.,
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(A°) # 0) and is given by(A) = (A°) = (1/+/2)v7, and K

similarly for (A) = (A“) = (1/v/2)v'7;. This happens . N e

because theD term vanishes for this charge violating / \J

minimum [10], whereas it is nonzero for the charge Q i Q° Q N Q°

conserving one for which(A¢) = v(r; — i7»)/2 and
(A°y = v'(r, + im)/2. As soon as the Planck scale
terms are included, it lifts the charge violating minimum  FIG. 1. Higgs contibution to one-loop calculation ®f

higher than the charge conserving one for a large range

of parameters. In typical singlet hidden gector P0|0nyigauginos, and because of the constrainy,,, = m},,,,

type models, we estimate® — v ~ f?Msusy/167>  derived earlier, their complex parts cancel out when the
so that the charge conserving minimum occurs fo=  djagrams are summed up. Two typical graphs are shown
4 (4Apuav*/MpMsysy)'/*. Herefis one of the leptonic in Fig. 2. Therefore the gauge mediated contribution is
Yukawa couplings defined in Eq. (2). Far= 1,ua =  also automatically Hermitian. Thus, the total one-loop
v = Msysy = 1 TeV, we getf = 107°. The parity contribution to® vanishes.

asymmetric nature of this operator is also crucial for From the above discussion, we conclude that the lowest
obtaining a parity violating minimum. We also note that grder contribution ta®, if any, can arise only at the two-

A can be chosen complex, and yet the phase it induces i8op level. Its contribution t@® can be crudely estimated

MO

the VEVs being of order?/M3, is negligible. to be

Having chosen the VEV witkz¢) = 0, let us now see )
whether the VEVs of theb field are real as is needed 0 = <m,mb>; <ﬂ> (5)
to solve the strondgCP problem. We have carried out V%/K (1672)> \ M?

a detailed analysis of the Higgs potential and find that, _

at the minimum of the potential, it is indeed true. It is For u;; = 10~'M, this “primitive” estimate givesd =

clear that the two-bidoublet SUSY left-right model being4 X 107°1, where| denotes the value of the two-loop

discussed is a special case of the four Higgs extensioiitegral. A more careful estimate will also bring in small

of the minimal supersymmetric standard model as famixing angles, which will further suppress.

as the doublet Higgs sector is concerned. The question An interesting point to note is that since in our

of spontaneou<P violation in the latter case has been model theB — L gaugino and gluino mass terms 4@

recently studied in Ref. [13], where it is shown that if a conserving, the problem of a large neutron electric dipole

general supersymmetric model with two pairs of Higgsmoment does not exist, and one has a simple resolution of

doublets has no complex parameters in the doublet Higg&e SUSYCP problem encountered in the MSSM.

sector, it cannot brealcP spontaneously for any range In summary, we have shown that minimal models that

of values of the parameters of the Higgs potential. Sinc€ombine supersymmetry and parity invariance provide a

our model in the Higgs sector is a special case of thissimple solution to the strongP problem without the need

it follows that the VEVs ofd; must be real. This then to invoke any additional symmetries. The key elements

implies that the quark mass matrices are Hermitian anén our proof are (i) the transformation of supersymmetry

therefore® = 0 naturally at the tree level in our model. coordinate — 6 under parity, and (ii) the inclusion of
Let us now turn to the one-loop contribution to the the nonperturbative Planck scale suppressed operators in

quark mass matrices to see if they make any contributione superpotential. The latter ensures that the ground state

to ®. Because if the quark mass matrices lose their

Hermiticity at the one loop they will induce too large MO
a value for ®. There are both Higgs and gaugino (a) %
mediated diagrams (Figs. 1 and 2, respectively). The ~ /N -
Higgs mediated graph contributes as follows: Q @

. . Q Ve e Ve N @

Ml =[A;n MO0, (4)
b

Here ME,O) denotes the tree level contribution. Because ®) N .
of the symmetry propertyw;; = up; and the reality ¢ @
of w;j, it follows that BM;{ is Hermitian. As far as Q Vi Vi b\ Q°

the gauge mediated contribution is concernéd/[qc o N
(0) . . . . . L
Mg . Turning to gaugino contributions, sinee, for the IG. 2. Examples of gaugino contributions to one-loop calcu-

SUQ2)r can be_ComP'?x’ _a Ca@fL_'I analysi.s is neede ation of @. V, , are left and right gauginos, respectively. The
to see what their contribution t® is. We find these gaugino massn,, is in genera] Comp|ex_ There is an analo-

contributions come always in pairs for both left and rightgous graph to (b) that involves right-handed gauginos.
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of the theory conserveR parity, which in turn leads to
real vacuum expectation values of the bidoublet fields for
arbitrary values of the parameters in the theory. This [6]
together with the Hermiticity of the Yukawa couplings
generic to left-right models leads to our solution to the
strongCP problem. 7]
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Note added—After this work was completed, we came  [g]
across a paper by R. Kuchimanchi [14] which also arrives
at the same result, under the assumption that all gaugind®9]
masses are the same at the Planck scale.
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