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We find that supersymmetry with parity can solve the strongCP problem in many cases includin
the interesting cases of having the minimal supersymmetric standard model or some of its ext
below the Planck, grand unified theory, and intermediate scales, as well as for the case where
a low-energy supersymmetric left-right model. Predictions emerge for some of theCP violating phases
in these supersymmetric models.
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The smallest dimensionless parameter in the stan
model is the strongCP phase,u ­ u 1 Arg Dets M d
where uy32p2 is the coefficient of theFF̃ term in
the QCD Lagrangian andM is the quark mass matrix
Experimental bounds on the electric dipole moment of
neutron imply thatu # 1029. There is no symmetry by
which u can be made naturally small (or zero) at the le
of the standard model, and this has been called the st
CP problem.

Two elegant solutions have been proposed. If the
quark were massless or if there were aUs1d Peccei-
Quinn (PQ) symmetry [1], thenu can be rotated away
However, the up quark seems to be massive, and the
symmetry leads to an axion which is severely constrai
by experiments. Other solutions like spontaneousCP
violation or the Nelson-Barr mechanism [2] require hea
quarks. Solutions based on spontaneousP violation have
so far required mirror families [3] orCP symmetry
as well [4]. While none of the existing solutions
completely ruled out, nevertheless a solution to the str
CP problem continues to occupy our minds.

In the supersymmetric extension of the standard mo
not only has no new solution to the strongCP problem
been found, but also a new problem gets generate
namely, the small supersymmetric (SUSY) phase pr
lem [5]. Even if the strongCP problem were solved
for example, by the PQ symmetry, direct contributio
to the dipole moment of the neutron constrain ma
other CP violating phases in the theory which could
a priori of the order 1. Also the Nelson-Barr mech
nism does not seem to generalize to the supersymm
extension of the standard model even with universal
SUSY breaking terms at the Planck and grand unified
ory (GUT) scales [6]. Thus solutions to the strongCP
problem based on spontaneousCP violation or the Nelson-
Barr mechanism have not been extended to minimal su
symmetric standard model (MSSM) and this is groun
for serious concern. From an experimental point of vie
while the MSSM is very predictive on things such as
Higgs mass, it does very poorly on the important ques
of additionalCP phases. At least two new independe
phases in theA, B, m, andm1y2 terms are expected and s
far there is no theoretical prediction on their values [7]
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In this Letter we show that if the MSSM [8] is
extended to include parity (which can then be brok
to MSSM at any scale betweenMSUSY and the Planck
scaleMPl), a new solution to the strongCP problem is
obtained. Further the small SUSY phase problem is a
automatically solved. An important prediction emerg
that there are no phases in the ratio of the Higgs vacu
expectation values (VEVS),m, B, A, or m1y2 of MSSM.
We also study the solution for the low-energy SUSY le
right symmetric model.

Strong CP problem with parity.—To be specific we
include parity by extending the standard model to the le
right symmetric model SUs2dL 3 SUs2dR 3 SUs3d 3

Us1dB2L [9]. The matter spectrum consists of the usu
quarks and leptons,Qis2, 1, 3, 1y3d, Qc

i s1, 2, 3, 21y3d,
Lis2, 1, 1, 21d, andLc

i s1, 2, 1, 1d wherei is the generation
index and runs from 1 to 3. One or more (indexed
a) bidoublet Higgs fieldsfas2, 2, 1, 0d are introduced to
break the theory down to electromagnetism. Thefa

are each represented by2 3 2 complex matrices while
the doublet quark and lepton fields by2 3 1 column
vectors. Under parityx ! 2x, Qi $ Qcp

i , Li $ Lcp
i ,

and fa $ fy
a . Invariance under parity of the Yukaw

term sha
ijQT

i faQc
j 1 H.c.d implies that ha

ij ­ hap
ji , i.e.,

the Yukawa matrix is Hermitian. The mass matr
is the product of the Yukawa matrix and the VEV
kfal. Therefore the quark mass matrix will have a re
determinant if we can prove that the matriceskfal are
real. This would then lead to a solution of the stro
CP problem since the couplingu of the parity odd
uy32p2 FF̃ term is zero due to parity.

kfal are determined by minimizing the Higgs potenti
and can be naturally real only if all the coupling constan
involving fa in the Higgs potential are real. We beg
by making an important observation that term involvin
only fa are the formmab Trfy

a fb, mab Trst2fT
a t2fbd,

etc. (in general traces of products offa, fT
a , fy

a , andt2).
By comparing every term and its Hermitian conjugate,
is easy to see that invariance underPsfa $ fy

a d implies
that all the constantsmab, mab, etc. are real. If we have
additional gauge singlet Higgs fieldss, such that under
Ps $ sy, then all coupling constants of terms involvin
fa ands will also be real.
© 1996 The American Physical Society
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In order to breakSUs2dR 3 Us1dB21 to Us1dY at a scale
MR (which can be anywhere betweenMW and the Planck
scale MPl), we need to introduce Higgs triplet (2 3

2 traceless matrices) or doublet fields namely, eit
Ds3, 1, 1, 2d, Dcs1, 3, 1, 22d or xs2, 1, 1, 1d, xcs1, 2, 1, 21d
such that underPD $ Dcp, x $ xcp and give a VEV to
the right-handed fields. There will be coupling terms b
tweenfa andDc or xc. Terms of the formlfTrsDcy 3

Dcd Trst2fT
a t2fad 1 TrsDyDd Trst2fy

a t2fp
adg are in-

variant underP, and l can be complex. We note tha
this complex term is the source of the strongCP problem
in left-right symmetric theory.

If there is supersymmetry, as we shall see, these te
coupling Dc to fa with complex coupling constants ar
naturally absent. Therefore no complex numbers app
in the minimization equations that determine the vacu
expectation values offa. Consequentlykfal are real and
we are led to a solution to the strongCP problem. Thus
parity requires that the Yukawa matrix is Hermitian a
SUSY makes it possible for the Higgs VEVs to be real, a
together they lead to a Hermitian quark mass matrix wh
has a real determinant. The rest of this Letter analyzes
tree level and loop effects of the solution in SUSY left-rig
models [10–12] spontaneously breaking to MSSM. W
pay particular attention to the interesting case of hav
the constrained minimal supersymmetric standard mo
below the GUT scale as well as the case of the low-ene
SUSY left-right model. It should also be noted that sin
a Hermitian Yukawa coupling matrix has complex e
ments that permit the usual Cabibbo-Kobayashi-Maska
(CKM) phase, in all the models considered in this Let
the CP violation in the kaon system is explained exac
as in the standard Weinberg-Salam model.

Tree level solutions: SUSY with parity.
Case 1: Minimal left-right model.—The superpotentia

for the minimal model is given by [10–12]

W ­ M TrDcD
c

1 Mp TrDD 1 mab Trt2fT
a t2fb .

(1)

There is no coupling between theDc and thefa. This
is the case even for the most general soft SUSY break
terms since they are given by the most general anal
cubic polynomials in the scalar fields of the theory. Sin
these have the same form asW (but with arbitrary
coefficients), there is no coupling betweenDc and fa

in these terms either. TheD terms only involve real
gauge coupling constants. As explained above,mab and
coupling constants of the quadratic soft SUSY break
terms involvingfa are all real due to parity. Henceall
coupling constants in the Higgs potential whereverfa

occurs are real. Thuskfal is naturally real and at the
tree level there is no strongCP problem.

We would like to preserve this nice feature of th
minimal model while extending to nonminimal model
The main reasons to extend the models are that we n
to break the left-right symmetric theory to MSSM at
high scale and so wehaveto introduce other fields. Also
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as it stands this model will breakQem spontaneously
unlessR parity is broken by giving the sneutrino a VEV
[10]. We would like to keepR parity unbroken, so as
not to introduce the complex phases in the lepton sec
and make the problem more complicated. This is anot
reason to consider nonminimal models. From now on
will interchangeably usef for fa since the generalization
to more than one doublet is now obvious. Also,
the following we will not explicitly write the squark or
slepton fields as their VEVs are zero.

Case 2: Breaking to MSSM1 singlet.—In order to
solve them problem [8], MSSM with a singlets has
been considered previously in the literature. A discre
Z3 symmetry f, s, Q, Qc , L, Lc ! ei2py3sf, s, Q, Qc ,
L, Lcd prevents the directm term. We will show that
SUSY left-right symmetric theory can naturally break
this low-energy theory with zero tree-level strongCP
phase. The most general left-right symmetric superp
tential is

W ­ M TrDcD
c

1 Mp TrDD

1 bshb TrDcD
c

1 hp
b TrDDd

1 fsbd 1 hss Trt2fTt2f 1 ls3 , (2)

where fsbd is any cubic polynomial, and underZ3,
D, Dc ! ei2py3sD, Dcd, D, D

c
! e2i2py3sD, D

cd, and
b ! b. Under paritys ! sy andb ! by. The soft
SUSY breaking terms can have their most general fo
consistent with parity andZ3. F terms are obtained by
taking the partial derivative ofW with respect to each of
the fields in the superpotential (denoted here byAi), so
that

VF ­ Si

Ç
≠W
≠Ai

Ç2
. (3)

It is easy to see that there are solutions forVF ø M4
SUSY

such thatDc, D
c ø MR and f, s are less thanMSUSY.

This implies that we can break the theory down
MSSM 1 singlet at a high scaleMR . Once again since
there is no coupling terms between theDc and f fields,
the coupling constants in the Higgs potential forall the
terms which containf are real due to parity. Likewise
all coupling constants for terms involvings are also real.
Thuskfl andksl are naturally real and there is no stron
CP phase at the tree level. A point to note is that th
model has not been considered in Ref. [10]. Therefo
the result of that paper does not apply and there c
be Qem conserving and parity breaking vacuuma witho
needingR-parity breaking. This is because a comple
hb leads to a complex VEV forb, thereby breaking
parity. The quarticF term in f stabilizes theQem con-
serving vacuum.

Case 3: Breaking to MSSM.—We introduce singlet
(they could be in general triplet or other fields too) field
a, b, and g. Under parity they go to their Hermitian
conjugate fields. The most general super potential
3487
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W ­ haa TrDcD
c

1 hbb TrDcD
c

1 maag 1 mbbg

1 l1g3 1 l2a3 1 l3b3 1 mab Trt2fT
a t2fb

1 sDtermsd , (4)

where in order to prevent couplings betweenDc and
f in the F term, we have imposed a discrete symm
try sDd such thatg, D, D

c
! ei2py3sg, D, D

cd; a, b !

e2i2py3sa, bd and the rest of the fields are invarian
The singlets allow us to break theSUs3d 3 SUs2dL 3

SUs2dR 3 Us1dB2L symmetry at a high scalesMRd to
MSSM. This is important and can be checked by wr
ing out all the F terms obtained by differentiatingW
with each and every field. The crucial point is that the
are solutions forVF ­ 0, with the singlets and the right
handed fieldsalonepicking up VEVs. ma andmb set the
scale for MR ¿ MSUSY, MW . Once again all coupling
constants in terms whereverf occurs are real, and henc
kfl is real and there is no strongCP problem. In order
to avoid the boundMR # MSUSYyf of Ref. [13] we can
introduceB 2 L ­ 0 triplet fieldsv, vc such that under
Dv, vc ! e2i2py3sv, vcd. This does not change the re
sult thatkfl is real.

This case has the advantage over case 2 since the
crete symmetries (parity as well as the discrete symm
D) can be broken at a high scale so that domain w
associated with the breakdown of discrete symmetries
be inflated away.

We have shown three illustrated cases where there
natural solution to the strongCP problem at the tree level
Other nonminimal models can be easily accommodated
a similar manner. Now we will study the loop effects.

The complete solution.—If MR .. MSUSY, MW then
the effective theory belowMR will by SUSY SUs2dL 3

SUs3d 3 Us1d (and in particular in case 3 it will be th
MSSM). The MSSM superpotential and the soft SUS
breaking terms are given by [8,14,15]

W ­ mHT H 1 hu
ijQT

i Huc
j 1 hd

ijQT
i Hdc

j , (5)

VS ­ mHT H 1 Au
ijQ̃T

i Hũc
j 1 Ad

ijQ̃T
i Hd̃c

j

1 M3G̃G̃ 1 M2LW̃LW̃L 1 MY ỸỸ

1 quad. scalar masses, (6)

whereG̃ and W̃L are the gluino and left-handed gaugin
(W -ino), respectively, and where the standard mo
Higgs doubles are denoted byHs2, 1, 1d andHs2, 1, 21d.
These doublets are the light elements of the bidou
fieldsfa. Because of parity and since we have shown t
all couplings in terms containingfa are real (in cases 1, 2
and 3 above even afterDc picks up VEV), the following
boundary conditions emerge atMR:

m ­ mp, hu
ij ­ hup

ji , hd
ij ­ hdp

ji ,

Au
ij ­ Aup

ji , Ad
ij ­ Adp

ji , m ­ mp,

M3 ­ Mp
3 . (7)

We now use the two-loop renormalization group equ
3488
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tions [14] to run the above coupling constants to the T
scale. Our results follow.

Result 1: Constrained minimal supersymmetric sta
dard model.—If the soft SUSY breaking terms com
from a supergravity sector, there are further constra
that soft SUSY breaking terms can satisfy [15]. The
constraints both can be derived from some super-gra
theories and can be motivated by low energy flavor p
nomenology. We will first consider the most constrain
MSSM that has received the maximum attention w
the following universality conditions at the supergravi
(SUGRA) breaking (or Planck) scale:

A
u,d
ij ­ Ah

u,d
ij , m ­ Bm ,

M3 ­ M2L ­ MY ­ m1y2 . (8)

Now using Eq. (7) it is easy to see thatA, B, and m1y2
are real. The quadratic scalar masses are also unive
and real. Therefore the only complex phase in the the
is the standard model CKM matrix phase. It is easy
see using the two-loop renormalization group equatio
(RGE) of Ref. [14] that every coupling constant (couplin
matrix) and its Hermitian conjugate evolve accordin
to the same RGE if the above conditions are m
Therefore Hermitian matrices remain Hermitian and re
couplings remain real. Thus at the weak scale the Yuka
and squark matrices are Hermitian. The Higgs doub
coupling constants are all real, and the gluino,B-ino,
and W -ino mass terms are real. Hence the expectat
value of H and H is real, and the quark mass matrix
Hermitian and the strongCP phase is zero. In this case
the loop effects at the weak scale will induce a negligib
small strongCP phase consistent withu ,, 1029, and
we have the solution to the strongCP problem. Note
that we have implicitly assumed thatMR is approximately
equal to the SUGRA breaking scale (orMPl) and we will
relax this condition later (see result 3).

Result 2: With universality only for gauginos.—There
are supergravity models where only some but not nec
sarily all universality conditions are predicted. Also
string theory we may have nonuniversal terms [16]. T
only universality condition that is really needed for us
that of gaugino phases, namely,

ArgM3 ­ ArgM2L ­ ArgM2R ­ ArgMB2L . (9)

We will not assume any other universality condition a
so the rest of the soft SUSY breaking terms can
general. Even in this case, and using Eq. (7), it is e
to see that the RGE preserve the Hermitian and r
nature of the respective coupling constants and theref
just as in result 1 it follows that there is no stron
CP problem. In addition to supergravity models alrea
included in the first result, such a universality conditio
can be obtained from models where the gaugino m
term ratios depend only on real numbers like the struct
constants of the gauge groups [16]. It can also hap
due to an underlying grand-unified group.



VOLUME 76, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 6 MAY 1996

g

f

e

p
as

t
ta
fo

he
a

ng

Y

in
nt
th
d

av

t-

a
.
.
lu
g
f

c
ie

e
rie
er
m
a
th
n,

f

ry

SM
nd

have
Y

s.
of

ett.
ys.

ett.

s

ne,

;
9,

v.
ra,

D

if,

s,
Result 3: Bound onW -ino phase, accessible stron
CP.—Parity relates only the left and the rightW -ino
phases but does not set them to zero. If instead o
MPl, SUs2dR is broken at an intermediate scaleMR then
even if W -ino phases are real atMPl they will pick up a
complex value from the complex terms in theD sector,
due to the renormalization group running fromMPl to
MR . This phase will in turn give rise to a gluino phas
because while the left-handedW-ino contributes to the
renormalization group running fromMR to MW , the right-
handedW -ino does not. Both effects are at the two-loo
level [14]. Hence the gluino mass term picks up a ph
of the orders1y16p2d2s1y16p2d2d, which is about1029d

whered are typical phases in theD terms. This resultan
strongCP phase is consistent with current experimen
bounds, and at the same time is reasonably exciting
the neutron electric dipole moment (edm) searches.

Even if the Planck scale universality conditions on t
gaugino phases are not exact, what the above estim
implies is that theW -ino phases must be withins1y16p2d2

at that scale or they will induce too large a stro
CP phase.

Result 4: Without universality, low-energy SUS
left-right model.—Even if no supergravity universality
constraints are imposed (and the soft SUSY break
terms have their most general form with no constrai
even on the gaugino mass terms), the solution to
strong CP problem with left-right symmetry preserve
all the way up to the low-energy scaleMR # MSUSY

works. This is because both left and rightW-inos are
present at low energies ifMR # MSUSY , and their effects
will cancel each other giving no strongCP phase. Note
that the illustrative models of case 1, 2, and 3 can h
MR # MSUSY.

Another very interesting possibility for low-energy lef
right symmetry is withx , xc, x, xc fields instead of the
triplets, and with universalA and B terms. Once we
imposeR parity, and noting that terms likexT fxc must
have a real coupling constant (due to parity), we c
see that the phase in thexcT xc can be rotated away
Universal A and B terms must be real due to parity
Hence we once again have real vacuum expectation va
for the Higgs fields. There is no problem with havin
to worry aboutQem breaking minima as the result o
Ref. [10] does not apply to doublet fields.

Non supersymmetric left-right model.—It is worth
noting that the termlfDcyDc Trst2fTt2fdg that was the
source of the strongCP problem in nonsupersymmetri
left-right models can be eliminated by discrete symmetr
like f1 ! if1, Qc

3 ! iQc
3 , etc. We need to introduc

enough bidoublets and have enough nontrivial symmet
that transform the quark fields in a family numb
dependent way, so as to prevent all such troubleso
terms, while at the same time obtaining a consistent qu
mass matrix. In this case we can have solutions to
strong CP problem in the nonsupersymmetric versio
at
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without having to introduceCP as a good symmetry o
the Lagrangian.

In conclusion, we have shown that supersymmet
with parity can solve the strongCP problem in many
cases including the interesting cases of having the MS
or some of its extensions below the Plank, GUT, a
intermediate scales, as well as for the case where we
a low-energy SUSY left-right model. The small SUS
phase problem is also solved in these models.
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