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We introduce a self-organized critical model of punctuated equilibrium with many internal degrees of
freedom (1) per site. We find exact solutions faf — <« of cascade equations describing avalanche
dynamics in the steady state. This proves the existence of simple power laws with critical exponents
that verify general scaling relations for nonequilibrium phenomena. Punctuated equilibrium is described
by a devil's staircase with a characteristic expongnt; = 2 — d/4 whered is the spatial dimension.

PACS numbers: 64.60.Ht, 05.40.+j, 05.70.Jk, 87.10.+e

Many systems in nature, such as earthquake zones [1] In our model, evolutionary activity is simulated in
or sandpiles [2,3], are driven by an external force out oterms of mutation of the “least fit" species and interde-
equilibrium into a highly correlated, critical state. Con- pendencies in a food chain, much like in the original Bak-
secutive metastable states that the system inhabits aBneppen model. In addition, we consider the survivability
punctuated by avalanches, which dissipate the accumwf each species to be conditioned upon a numBbegr ¢f
lated stress. These intermittent bursts eventually may b@dependent traits associated with the different tasks that
correlated over all sizes, indicating scale-free dynamicst has to perform [14]. Our model is defined as follows:
This picture of self-organized criticality (SOC) [2] has led A species is represented by a single site on a lattice. The
to intense studies of the dynamics of nonequilibrium sys<¢ollection of traits for each species is represented by a
tems. Much insight has been gained from the numericadet of M numbers in the unit interval. A larger number
investigation of models, for example, for invasion per-represents a better ability to perform that particular task,
colation [4], flux creep [5], depinning in quenched ran-while smaller numbers pose less of a barrier against muta-
dom media [6], biological evolution [7], and earthquakestion. Therefore, we “mutate” at every time step the small-
[8]. A scaling theory has been developed for this broadest number among all species and among all traits. This
range of models which is based on a few exact resultaumber is replaced by a new number that is randomly
[9] together with a scaling ansatz [10]. In addition, adrawn from a flat distribution in the unit interv&@l. The
mean-field theory has been proposed for the infinite rangémpact of this event on neighboring species is simulated
random-neighbor evolution model [11,12]. For systemdy also replacing one of th& numbers on each neigh-
with punctuated equilibrium, though, the existence of sim-boring site with a new random number drawn frdbh
ple power laws in the critical state has not been provenWhich one of theM numbers is selected for such an up-
Also, one would like to verify the scaling relations baseddate is determined at random since a mutation in the traits
on microscopic considerations, as is possible in equilibef one species can lead to adaptive change in any one of
rium systems. the traits of an interacting species. As a consequence of

Here, we introduce a SOC model of punctuated equithe nearest-neighbor interaction, even species that possess
librium which is similar to that proposed by Bak and well-adapted abilities, with high barriers, can be under-
Sneppen in the context of biological evolution [7]. Our mined in their existence by weak neighbors.
model specifies simple rules that may be plausible for For the special casd = 1, we obtain the original Bak-

a coarse grained description of evolution at the longesBneppen model where each species has a single internal
time scales, yet yields analytical results for robust feadegree of freedom to represent its overall fitness. It has
tures such as punctuated equilibrium which has been oliseen shown [9,10], via the “gap” equation, that the se-
served in the fossil record [13], and recently also inquence of selective updates at extremal sites drives the
earthquake data [8]. Our main results are as followssystem from any initial state to a self-organized critical
(1) From microscopic dynamical considerations we de-state where species exhibit punctuated equilibrium behav-
rive equations of motion for the macroscopic observ-ior with bursts of evolutionary activity correlated over
ables. (2) We solve these nonlinear equations of motiomll spatial and temporal extents. In this state almost all
exactly, finding power laws with specific scaling coeffi- species have reached fitnesses above a critical threshold,
cients. Punctuated equilibrium is described by a devil'senjoying long periods of quiescence, interrupted by in-
staircase with dimension-dependent, non-mean-field bdermittent activity when changes in neighboring species
havior. (3) These results verify general scaling relationgorce a readjustment in their own barriers. These generic
for avalanche dynamics in systems out of equilibrium.  features are preserved for arbitra.
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To understand the nature of the SOC state, it is usefubver all possible products of two avalanches of combined
to consider the case where, at a certain time 0, the  durations — 1.

smallest random number in the system has a valueA A generating functiorp(x) = > ._, P(s)x* with
A avalanche is defined as the collection of barrier values 5 s
at subsequent times > 0 which are belowA; the A plx) = [1 - \/1 —4r(1 — A)x} /(4)l x) (2

avalanche that started at= 0 ends at the first instant
s > 0 when the number of barriers in the system below
vanishes. All barriers that are below the threshold value Py(s) (1 =) +1/2)
A at any one instant in time are called “active” because ALS AL(1/2)T(s + 2)
they make up the avalanche. When the system reachesA critical point exists forA = A, = 1/2. Near A, the
the state that almost all barriers are evenly distribute(aistribution of avalanche sizes hcas the écaling focrm

above A = A., the vanishingly small fraction of active
levels below), form A, avalanches that are distributed  Pa(s) ~ s 32G(s(AA)?), Ad =X —A. (4

according to power laws in their spatial and temporakp,e average size of an avalanche is given (oy =
extents; i.e., they possess no cutoff. The lack of a cutoffs sP(s) = p'(1). The divergence close to the critical
which leads to divergent expectation values, indicates th t;te defines the critical exponent (s) ~ (AA)~7 with
a critical state has been reached. , y =1. It is easy to see that Eq. (4) is not changed
We introduce a cascade mechanism that describes thig nigher dimensions [15]. Our results for the temporal
dynamics ofA avalanches foM — o. The casé —  pehayior agree with the exact results in Refs. [12] where
 of our model is special because the existing activgne gynamics of a random-neighbor (infinite range) model
barriers that any species possesses can only be changggds solved using different methods. That model, though,

if th_ese barriers themselves_ becom_e the global minimunyges not possess any spatial correlations or punctuated
While the nearest-neighbor interaction chooses one out Qefquilibrium behavior.

the M barriers at every site next to the minimal site for 45 our model. we can use the same mechanism to
an update, there are infinitely many barriers each site  gq\ve for the spatial correlations in the critical state.
and no existing active barrier is ever likely to be chosen INgain, consider a\ avalanche initiated at time = 0
this way. To S|mpI|.fy.the algebra, a §I|ght modification is 4t tne origin(r = 0). For the one-dimensional model,
made ywthout restricting the generality of the results: Atwe defineN,(r) as the probability that the avalanche
each time step during the avalanche, the smallest actiMgat ensues will never have a minimum at a particular site
barrier is set to unity instead of being replaced by a newt gistancer away from the origin, before the avalanche
random number. . terminates. Because of the initial stat,(0) = 0. If no
Now, consider the probability,(s) for a A avalanche, ne\y active barriers are created in the first update, ithe
which started at times =0, to end at times. The  gyajanche ends and will not spread to distances0. If
properties of such an avalanche can be related to smallgrsingle new active barrier is created to either side of the
avalanches by considering thg state of the system after ORRigin, then the probability foN,(r) is related tav,(r +
update. ClearlyP,(0) = 0. First, we examine the one- 1) anqn, (r — 1), respectively. If two active barriers are
dimensional case. The avalanche ends at 1 only if  ¢reated, two avalanches ensue that evolve independently.
the initial active barrier places two new barriers abave Thus the probability that neither one spreads to site

solves Egs. (1) [15], and we find

[4A(1 — V. ()

This happens with probabilityl — )%, so thatPi(1) = s the product of their individual probabilities. Then, for
(1 — 22 Fors =1, r=1
Py(s + 1) = 2A(1 — A)Px(s) Na(r) = (1 = A)* + A1 = DINA(r — 1) + Na(r + 1)]
s + A2 - +1).
+ )\2 Z P)L(S/)P,\(S _ sl) , (l) /\ N)t(r I)N/\(r 1) (5)
5'=0 When r — o, N,(r) — 1 since any given avalanche

where an avalanche of duratienis obtained in various C¢annot spread to an infinitely distant site. Defining
ways from smaller avalanches that are initiated after thé/a(r) =1 — f», we find

first update. If exactly one new active barrier is created, _

with probability A(1 — A), an avalanche of durationis fret = 2fr + fro1 = <7 - 2>fr + Afr=1fr+1. (6)
obtained by following the first update with an avalancherq thresholds below the critical valug, falls exponen-
of durations — 1. If two new barriers are created, with tially fast for larger. The nonlinear difference equa-

it 2 : o !
probability A%, two avalanches ensue. Both of thesejon (6) can be solved exactly at the critical point:
avalanches evolve in atatistically independenmanner 1 )

for M — . Since only one of these avalanches can be fi=————— fora=At=—. (7)
updated at each time step, their combined duration has (r+3)(r+4) 2
to add up tos — 1 for this process to contribute to the Close to the critical point, this quantity also obeys a
avalanche of duration. Thus, we simply need to sum scaling formf, ~ 1/r2H(r(A)'/?) for larger.

349



VOLUME 76, NUMBER 3 PHYSICAL REVIEW LETTERS 15 ANUARY 1996

Since only avalanches of spatial extent larger than  In the SOC state, the distribution of distances between
can contribute tgf,, the probability to have an avalanche subsequent minimal sites scales as a poweAgw, (r) ~
of total spatial extent exactly of is P, (r) ~ r~™ with  r~7 for larger [7]. Its exponent is obtained through =
7r = 3. Numerical measurements [16] Afare in perfect 1 + D2 — 7) [10], i.e., # = 3 in the M — « model.
agreement with the exact result in Eq. (7) and a simulatioWe findz = 3.03 = 0.08 in simulations involving=10'°
of P, gaverg = 3.0 = 0.1 for one dimension. We also updates of the one-dimensional model.
find 7 = 3 in higher dimensions. There, the equation In a long-lived avalanche, each site is visited many
corresponding to Eg. (6) is asymptotically dominated bytimes, leading to punctuated equilibrium behavior. The
2 in the Laplacian, and by the quadratic nonlinearity.  intervals between subsequent returns to a given site are
In the SOC state, spatial and temporal correlations aranalogous to periods of stasis for a given species. As
profoundly interrelated. This interrelation is expressedshown in Fig. 2, the accumulated number of returns to
via scaling relations. In a broad class of SOC modelsa given site forms a “devil’'s staircase”; the plateaus in
the knowledge of just two scaling coefficients, such aghe staircase are the periods of stasis for that species.
7 and 7, is sufficient to determine any other known The punctuations, i.e., the times when the number of
coefficient of the SOC state, including the approach taeturns increases, occupy a vanishingly small fraction
the attractor, through these scaling relations [10]. Foof the time scale on which the evolutionary activity
example, the activity in the SOC state spreads in groceeds. The distribution of plateau sizes is the same
subdiffusive mannen; ~ s'/2, whereD is the avalanche as the distribution of first returns of the activity to a given
dimension. Normalization of probability requires that site, Psis(s). It has been found thaPy.(s) ~ s~ st
7k — 1 =D(7r — 1), soD = 4 for the M — « model. for large s with 74, =2 — d/D [10]. For M — oo,
Figure 1 shows that numerical calculations confirm ourr and 7¢, and henceD, do not change with dimension
analytical result forD. In fact, this exponent can be d, and it is 74 = 2 — d/4 for all d = 4. Thus for
calculated directly, without resorting to scaling relations,d = 1 we predict 7,5, = 7/4. Numerically, we find
from a more general recursion relation for the probabilityrs;,c = 1.73 = 0.05. We present numerical calculations
N, (r,s) that ax avalanche of duratiom does not spread in agreement with the exact result feg;,, and other

to a particular site at distance In Ref. [17] we will  features of thé/ — o model, ind > 1 elsewhere [17].
discuss this quantity and show that it contains both Exact results for individual scaling coefficients help
Egs. (1) and (5) as special cases. to separate models of SOC, and the phenomena they

represent, into different universality classes. For instance,
comparison of the exact results for thé — o model

with the numerically obtained scaling coefficients for the
M = 1 Bak-Sneppen model shows that they belong to
different universality classes. Numerical results suggest
that any finite M model crosses over at large scales
to M = 1 behavior. The robustness of the model for
SOC and punctuated equilibrium behavior with respect to
changing internal parameters indicates that these features
may underlie the dynamical behavior of more complicated
systems in nature. For instance, the— o limit of

the model can be used to show that many changes in the
microscopic rules do not affect the universality class.

The cascade mechanism we used to derive the distribu-
tion functions for spatiotemporal correlations of the evo-
lutionary activity has some similarity to the path integral
approach used in the fixed scale transformation method
[18]. For M — «, we explicitly calculate the statisti-

06 L1 1 1 I S B cal weight of each configuration in terms of the sum over
0 200 400 600 800 all histories that lead to the particular configuration. It
s is straightforward to generalize the cascade mechanism
FIG. 1 Plot of the mean-square distan¢e?) covered by the [0 the case of finite/, although not to solve it. Taking
activity in a A, avalanche as a function of time The mean- into account interactions between active barriers in Eq. (5)
square distan(;:et.was ;:alctﬂateld us{!ng th(f—} E)rr]obabili;y dlistbribu_tiogivesN 1(0) = 0and, forr = 1,
In space an Ime T10r € location o e minima arrier
in %Sag)lg?.nchg_s tlr;)at.are initiated alt Ejheboriginlsa}i= 0. Th?‘] NA(r) = (1 = 27 + A1 = DINA(r = 1) + Na(r + 1)
robabilit istribution was sample evolvin Suc 2/A) A
gvalanchgs up te = 800. To emp?hasizeythat the l%}I)istribution N A <NA(Ar B I)N)‘(r_ * 1».' ) - (8,)
asymptotically scales as/s'/2 with D = 4, we have rescaled Here,(N (r — 1)N,(r + 1)) is the joint probability dis-
the mean-square distance by'/*. tribution function for an avalanche that has two active
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FIG. 2 Punctuated equilibrium behavior for the evolution of a single species in the one-dimengieralc model. The vertical
axis is the total number of returns of the activity to site 100 as a function of iim&ote the presence of plateaus (periods of
stasis) of all sizes. The distribution of plateau sizes scales ds.
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