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Exact Results for Spatiotemporal Correlations in a Self-Organized Critical Model of
Punctuated Equilibrium

Stefan Boettcher and Maya Paczuski
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973

(Received 25 May 1995)

We introduce a self-organized critical model of punctuated equilibrium with many internal degrees of
freedom (M) per site. We find exact solutions forM ! ` of cascade equations describing avalanche
dynamics in the steady state. This proves the existence of simple power laws with critical exponent
that verify general scaling relations for nonequilibrium phenomena. Punctuated equilibrium is described
by a devil’s staircase with a characteristic exponenttfirst  2 2 dy4 whered is the spatial dimension.

PACS numbers: 64.60.Ht, 05.40.+j, 05.70.Jk, 87.10.+e
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Many systems in nature, such as earthquake zone
or sandpiles [2,3], are driven by an external force ou
equilibrium into a highly correlated, critical state. Co
secutive metastable states that the system inhabits
punctuated by avalanches, which dissipate the accu
lated stress. These intermittent bursts eventually ma
correlated over all sizes, indicating scale-free dynam
This picture of self-organized criticality (SOC) [2] has l
to intense studies of the dynamics of nonequilibrium s
tems. Much insight has been gained from the numer
investigation of models, for example, for invasion p
colation [4], flux creep [5], depinning in quenched ra
dom media [6], biological evolution [7], and earthquak
[8]. A scaling theory has been developed for this bro
range of models which is based on a few exact res
[9] together with a scaling ansatz [10]. In addition,
mean-field theory has been proposed for the infinite ra
random-neighbor evolution model [11,12]. For syste
with punctuated equilibrium, though, the existence of s
ple power laws in the critical state has not been prov
Also, one would like to verify the scaling relations bas
on microscopic considerations, as is possible in equ
rium systems.

Here, we introduce a SOC model of punctuated e
librium which is similar to that proposed by Bak an
Sneppen in the context of biological evolution [7]. O
model specifies simple rules that may be plausible
a coarse grained description of evolution at the long
time scales, yet yields analytical results for robust f
tures such as punctuated equilibrium which has been
served in the fossil record [13], and recently also
earthquake data [8]. Our main results are as follo
(1) From microscopic dynamical considerations we
rive equations of motion for the macroscopic obse
ables. (2) We solve these nonlinear equations of mo
exactly, finding power laws with specific scaling coe
cients. Punctuated equilibrium is described by a dev
staircase with dimension-dependent, non-mean-field
havior. (3) These results verify general scaling relati
for avalanche dynamics in systems out of equilibrium.
0031-9007y96y76(3)y348(4)$06.00
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In our model, evolutionary activity is simulated in
terms of mutation of the “least fit” species and interd
pendencies in a food chain, much like in the original Ba
Sneppen model. In addition, we consider the survivabil
of each species to be conditioned upon a number (M) of
independent traits associated with the different tasks t
it has to perform [14]. Our model is defined as follow
A species is represented by a single site on a lattice. T
collection of traits for each species is represented by
set of M numbers in the unit interval. A larger numbe
represents a better ability to perform that particular ta
while smaller numbers pose less of a barrier against mu
tion. Therefore, we “mutate” at every time step the sma
est number among all species and among all traits. T
number is replaced by a new number that is random
drawn from a flat distribution in the unit intervalP . The
impact of this event on neighboring species is simula
by also replacing one of theM numbers on each neigh
boring site with a new random number drawn fromP .
Which one of theM numbers is selected for such an up
date is determined at random since a mutation in the tr
of one species can lead to adaptive change in any on
the traits of an interacting species. As a consequence
the nearest-neighbor interaction, even species that pos
well-adapted abilities, with high barriers, can be unde
mined in their existence by weak neighbors.

For the special caseM  1, we obtain the original Bak-
Sneppen model where each species has a single inte
degree of freedom to represent its overall fitness. It h
been shown [9,10], via the “gap” equation, that the s
quence of selective updates at extremal sites drives
system from any initial state to a self-organized critic
state where species exhibit punctuated equilibrium beh
ior with bursts of evolutionary activity correlated ove
all spatial and temporal extents. In this state almost
species have reached fitnesses above a critical thresh
enjoying long periods of quiescence, interrupted by
termittent activity when changes in neighboring spec
force a readjustment in their own barriers. These gene
features are preserved for arbitraryM.
© 1996 The American Physical Society
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To understand the nature of the SOC state, it is us
to consider the case where, at a certain times  0, the
smallest random number in the system has a valuel. A
l avalanche is defined as the collection of barrier val
at subsequent timess . 0 which are belowl; the l

avalanche that started ats  0 ends at the first instan
s . 0 when the number of barriers in the system belowl

vanishes. All barriers that are below the threshold va
l at any one instant in time are called “active” becau
they make up thel avalanche. When the system reach
the state that almost all barriers are evenly distribu
above l  lc, the vanishingly small fraction of active
levels belowlc form lc avalanches that are distribute
according to power laws in their spatial and tempo
extents; i.e., they possess no cutoff. The lack of a cut
which leads to divergent expectation values, indicates
a critical state has been reached.

We introduce a cascade mechanism that describes
dynamics ofl avalanches forM °! `. The caseM °!

` of our model is special because the existing act
barriers that any species possesses can only be cha
if these barriers themselves become the global minim
While the nearest-neighbor interaction chooses one ou
the M barriers at every site next to the minimal site f
an update, there are infinitely many barrierson each site
and no existing active barrier is ever likely to be chosen
this way. To simplify the algebra, a slight modification
made without restricting the generality of the results:
each time step during the avalanche, the smallest ac
barrier is set to unity instead of being replaced by a n
random number.

Now, consider the probabilityPlssd for a l avalanche,
which started at times  0, to end at times. The
properties of such an avalanche can be related to sm
avalanches by considering the state of the system after
update. Clearly,Pls0d  0. First, we examine the one
dimensional case. The avalanche ends ats  1 only if
the initial active barrier places two new barriers abovel.
This happens with probabilitys1 2 ld2, so thatPls1d 
s1 2 ld2. For s $ 1,

Plss 1 1d  2ls1 2 ldPlssd

1 l2
sX

s00

Plss0dPlss 2 s0d , (1)

where an avalanche of durations is obtained in various
ways from smaller avalanches that are initiated after
first update. If exactly one new active barrier is creat
with probability ls1 2 ld, an avalanche of durations is
obtained by following the first update with an avalanc
of durations 2 1. If two new barriers are created, wit
probability l2, two avalanches ensue. Both of the
avalanches evolve in astatistically independentmanner
for M °! `. Since only one of these avalanches can
updated at each time step, their combined duration
to add up tos 2 1 for this process to contribute to th
avalanche of durations. Thus, we simply need to sum
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over all possible products of two avalanches of combin
durations 2 1.

A generating functionpsxd ;
P

`
s0 Plssdxs with

psxd 

∑
1 2

q
1 2 4ls1 2 ldx

∏
2

¡
s4l2xd (2)

solves Eqs. (1) [15], and we find

Plssd 
s1 2 ldGss 1 1y2d
lGs1y2dGss 1 2d

f4ls1 2 ldgs . (3)

A critical point exists forl  lc  1y2. Near lc the
distribution of avalanche sizes has the scaling form

Plssd , s23y2GsssssDld2ddd, Dl  lc 2 l . (4)

The average size of an avalanche is given byksl P
s sPlssd  p0s1d. The divergence close to the critica

state defines the critical exponentg: ksl , sDld2g with
g  1. It is easy to see that Eq. (4) is not change
in higher dimensions [15]. Our results for the tempor
behavior agree with the exact results in Refs. [12] whe
the dynamics of a random-neighbor (infinite range) mod
was solved using different methods. That model, thoug
does not possess any spatial correlations or punctua
equilibrium behavior.

For our model, we can use the same mechanism
solve for the spatial correlations in the critical stat
Again, consider al avalanche initiated at times  0
at the origin sr  0d. For the one-dimensional model
we defineNlsrd as the probability that thel avalanche
that ensues will never have a minimum at a particular s
of distancer away from the origin, before the avalanch
terminates. Because of the initial state,Nls0d  0. If no
new active barriers are created in the first update, thel

avalanche ends and will not spread to distancesr . 0. If
a single new active barrier is created to either side of t
origin, then the probability forNlsrd is related toNlsr 1

1d andNlsr 2 1d, respectively. If two active barriers are
created, two avalanches ensue that evolve independe
Thus, the probability that neither one spreads to siter
is the product of their individual probabilities. Then, fo
r # 1,

Nlsrd  s1 2 ld2 1 ls1 2 ldfNlsr 2 1d 1 Nlsr 1 1dg

1 l2Nlsr 2 1dNlsr 1 1d . (5)

When r °! `, Nlsrd °! 1 since any given avalanche
cannot spread to an infinitely distant site. Definin
Nlsrd  1 2 fr , we find

fr11 2 2fr 1 fr21 

µ
1
l

2 2

∂
fr 1 lfr21fr11 . (6)

For thresholds below the critical value,fr falls exponen-
tially fast for large r. The nonlinear difference equa
tion (6) can be solved exactly at the critical point:

fr 
12

sr 1 3d sr 1 4d
for l  lc 

1
2

. (7)

Close to the critical point, this quantity also obeys
scaling formfr , 1yr2HsssrsDld1y2ddd for larger .
349
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Since only avalanches of spatial extent larger thanr
can contribute tofr , the probability to have an avalanch
of total spatial extent exactly ofr is Plc srd , r2tR with
tR  3. Numerical measurements [16] offr are in perfect
agreement with the exact result in Eq. (7) and a simulat
of Plc gavetR  3.0 6 0.1 for one dimension. We also
find tR  3 in higher dimensions. There, the equatio
corresponding to Eq. (6) is asymptotically dominated
≠2

r in the Laplacian, and by the quadratic nonlinearity.
In the SOC state, spatial and temporal correlations

profoundly interrelated. This interrelation is express
via scaling relations. In a broad class of SOC mode
the knowledge of just two scaling coefficients, such
t and tR , is sufficient to determine any other know
coefficient of the SOC state, including the approach
the attractor, through these scaling relations [10]. F
example, the activity in the SOC state spreads in
subdiffusive manner,r , s1yD, whereD is the avalanche
dimension. Normalization of probability requires th
tR 2 1  Dst 2 1d, so D  4 for the M ! ` model.
Figure 1 shows that numerical calculations confirm o
analytical result forD. In fact, this exponent can be
calculated directly, without resorting to scaling relation
from a more general recursion relation for the probabil
Nlsr , sd that al avalanche of durations does not spread
to a particular site at distancer. In Ref. [17] we will
discuss this quantity and show that it contains bo
Eqs. (1) and (5) as special cases.

FIG. 1 Plot of the mean-square distance
p

kr2l covered by the
activity in a lc avalanche as a function of times. The mean-
square distance was calculated using the probability distribu
in space and time for the location of the minimal barri
in avalanches that are initiated at the origin ats  0. The
probability distribution was sampled by evolving106 such
avalanches up tos  800. To emphasize that the distributio
asymptotically scales asrys1yD with D  4, we have rescaled
the mean-square distance bys21y4.
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In the SOC state, the distribution of distances betwe
subsequent minimal sites scales as a power lawPjumpsrd ,
r2p for larger [7]. Its exponent is obtained throughp 
1 1 Ds2 2 td [10], i.e., p  3 in the M ! ` model.
We findp . 3.03 6 0.08 in simulations involvingø1010

updates of the one-dimensional model.
In a long-lived avalanche, each site is visited man

times, leading to punctuated equilibrium behavior. Th
intervals between subsequent returns to a given site
analogous to periods of stasis for a given species.
shown in Fig. 2, the accumulated number of returns
a given site forms a “devil’s staircase”; the plateaus
the staircase are the periods of stasis for that spec
The punctuations, i.e., the times when the number
returns increases, occupy a vanishingly small fracti
of the time scale on which the evolutionary activit
proceeds. The distribution of plateau sizes is the sa
as the distribution of first returns of the activity to a give
site, Pfirstssd. It has been found thatPfirstssd , s2tfirst

for large s with tfirst  2 2 dyD [10]. For M °! `,
t and tR, and henceD, do not change with dimension
d, and it is tfirst  2 2 dy4 for all d # 4. Thus for
d  1 we predict tfirst  7y4. Numerically, we find
tfirst  1.73 6 0.05. We present numerical calculation
in agreement with the exact result fortfirst, and other
features of theM °! ` model, ind . 1 elsewhere [17].

Exact results for individual scaling coefficients hel
to separate models of SOC, and the phenomena t
represent, into different universality classes. For instan
comparison of the exact results for theM °! ` model
with the numerically obtained scaling coefficients for th
M  1 Bak-Sneppen model shows that they belong
different universality classes. Numerical results sugg
that any finite M model crosses over at large scale
to M  1 behavior. The robustness of the model fo
SOC and punctuated equilibrium behavior with respect
changing internal parameters indicates that these featu
may underlie the dynamical behavior of more complicat
systems in nature. For instance, theM °! ` limit of
the model can be used to show that many changes in
microscopic rules do not affect the universality class.

The cascade mechanism we used to derive the distri
tion functions for spatiotemporal correlations of the ev
lutionary activity has some similarity to the path integr
approach used in the fixed scale transformation meth
[18]. For M °! `, we explicitly calculate the statisti-
cal weight of each configuration in terms of the sum ov
all histories that lead to the particular configuration.
is straightforward to generalize the cascade mechan
to the case of finiteM, although not to solve it. Taking
into account interactions between active barriers in Eq.
givesNls0d  0 and, forr $ 1,

Nlsrd  s1 2 ld2 1 ls1 2 ldfNlsr 2 1d 1 Nlsr 1 1dg

1 l2kN̂lsr 2 1dN̂lsr 1 1dl . (8)

Here, kN̂lsr 2 1dN̂lsr 1 1dl is the joint probability dis-
tribution function for an avalanche that has two activ
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FIG. 2 Punctuated equilibrium behavior for the evolution of a single species in the one-dimensionalM °! ` model. The vertical
axis is the total number of returns of the activity to site 100 as a function of times. Note the presence of plateaus (periods
stasis) of all sizes. The distribution of plateau sizes scales ass27y4.
-
o
s
h
.

la
e

O
d
i

n
6
e

y

t

n

s.
d

tt.
tt.

d

he
e

tic
ic

tt.
barriers, each one step to the left and to the right
the origin, to never spread tor before it terminates. In
M ! `, this two-point correlation function factors be
cause there is no interference between avalanches. F
nite M, however, this two-point correlation function mu
be determined by the next equation in the hierarchy t
includes all possible evolutions up to two update steps
is straightforward to deduce this equation and show tha
will introduce three-point (and eventually higher) corre
tion functions. We do not currently know how to solv
the resulting cascade hierarchy in a systematic way.
exact results suggest that introducing many internal
grees of freedom per site may also be useful in study
other models for nonequilibrium phenomena.
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