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We develop here a dynamic linear response theory of many-body nonextensive systems based on the
maximization of the Tsallis entropy associated with the density matrix and the concomitant suitably
defined mean total energy, number, etc., where the averaging is oveththmower of the density
matrix, q being a parameter characterizing the nonextensivity. This formulation is shown to preserve
causality (Kramers-Kronig), time reversal, and Onsager reciprocity, while a different form of fluctuation-
dissipation theorem is obtained. The traditional theory for extensive systems is obtained in the special
case whergg = 1. [S0031-9007(96)00087-7]

PACS numbers: 05.70.Ce, 05.30.—d

There are many physical systems where spatial and/dhe Kubo theory proved to be an extremely valuable
temporallong-rangeinteractions are present which make tool in its ability to give quick estimates of many
their behavior nonextensive. This may occur (a) in largeypes of transport properties for extensive systems, the
systems such as those in astrophysics with long-rangeorresponding formulas derived here are expected to
(gravitational) interactions, (b) in small nanometric sys-be similarly useful in examining nonextensive system
tems in condensed matter, for example, where the rangeroperties. While the static fluctuation-dissiption theorem
of interactions is comparable to system size, (c) in situain this framework exists [18] in the literature, the dynamic
tions wherdong-time memoryersists, and (d) in systems theory does not. With this development we hope to
with fractally structured space-time. These situations deprovide here the dynamic linear response and hence also
mand an enlargement of the standard statistical mechaniesGreen function formulation of many-body nonextensive
and thermodynamics [1]. Tsallis [2] has proposed a gensystems within the Tsallis prescription. We explore all the
eralization which retains [3] much of the formal structureramifications of this prescription in much the same way as
of the standard theory and has successfully been appligd the work of Kubo [1,17]. Such a theory is expected
in recent years to explain many of the above types of situto be of immense value in understanding the anomalous
ations. We cite here a few of these among the many: stefrequency dependence in amorphous systems, in glasses,
lar polytropes [4,5], Ising chain [6,7] and ferrofluids [8], and in fractal systems, for example.
fractal random walks [9] and anomalous diffusion [10], In developing the traditional linear-response formalism
two-dimensional Euler turbulence [5], cosmic microwaveone deals with a Hermitian operatd, whose average
background radiation [11], quantum uncertainty principleis driven away from its equilibrium average valgg),

[12], exatic quantum statistics [13,14], Lévy-type anoma-by means of a time-dependent external figld). In the
lous superdiffusion [15], and an overview [16]. There standard quantum-mechanical formulation, the average of
are novel applications of this framework in other contextsB — (B), = AB is given by

which we do not mention here. R R R .

The purpose of the present work is to develop the  (AB(1)) = Tr[p(1)B] — Tr(poB) = Tr[p(t)AB],
corresponding generalization of the statistical-mechanical ,, AN 1 Tra
theory of irreversible processes based on the Tsallis with Trp(#) = 1 Trbo. @
prescription which, in the special casepf= 1 recovers Herep, is the equilibrium density matrix determined from
the well-known formulation of Kubo [1,17]. Just as the maximum von Neumann entropy of the system for
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given constraints ang(z) is the time-dependent density then found by standard procedures:
matrix obeying a quantum Liouville—von Neumann equa-

tion determined by a Hamiltonian that incorporates the . A | =k
effect of X (¢): P@t) = P(H;q, ) = Effoo dre

H - AX(r). 2) X [A, P(H: q. B)IX (e ™ RIT (8)
The operator conjugate () is here denoted by. Thus we obtain

We now depart from this traditional approach here
by employing the Tsallis prescription [2,3] as follows. t
The equilibrium density matrixpo is determined by (AB(1)), =f dt' pealt — X1,
maximizing the Tsallis entropy defined by -

1 A n A
S = kel — T . wih T — 1. () bualt) = ——Tr{A. P g, IBW}  (9)

1 A, A A
whereq is a parameter which characterizes the nonexten- - ﬁTr{[A’B(t)]P(H; 4. B)}-
sive nature of the system, and thus depends on the long-
range nature of interactions present in the system. WH X(r) = X, coswt, we may define
take kg to be the usual Boltzmann constant, for simplic- . '
ity of presentation here, and may in principle depend on (AB(t)), = Re{xpa(w)Xoe''},

q (C. Tsallis, the last reference in [3]). The equilibrium " (10)
canonical ensemble prescription requires the constraint of  \here yp,(w) = lim f dt dga(t)e et
fixed g mean energy defined by e—0J0

U, = Tr(lpY). (4) We can prove the following identity for the commutator

occurring in Eg. (8) which is a generalization of the

Henceforth we shall use the notatidhfl; q) = p?(H),  corresponding one due to Kubo [17].
in order to keep in focus the Tsallis prescription and ldentity A:
not to confuse it with the traditional method. Note
that T® = Trp? # 1 for ¢ # 1. Thus the equilibrium . . . e B 4
density matrix with a temperature (Lagrange) parameter[A’P(H’q’B)] = qP(H:q.B) 0 dALP(H:q, A)]
B is found to be W

X [H,A\]P(H;q, ), (11)

P(H:q.B) = O(H;q,B)/[Z(H;q, B)), . | 5 |

1= AMl-@A 1 -1 - @A

whereQ(H;4,8) = [1 — B — @HI/179,  (5)

From this we obtain another expression for the response

Z(H;q,8) = Tr[1 — B — g)A]/1-2. function

The corresponding entropy is given by calculating it

using Eq. (5). We also modify the definition of the 4. (1) = — qTrﬁ’(ﬁ;q,,B)fﬂdA[ﬁ(Ifl;q,A)]‘l
linear response to conform to the Tsallis prescription by o
employing theg averages: X A P(H: g, M)B(1) . (12)

(AB(1)), = Tr[P(t)B] — Tr[P(H;q,B)B]. (6) The overdot on operatdd represents its time derivative.
o N ~___ Similarly the isothermal admittance is obtained by consid-
Eq. (1) because Br = Trp # 1 for ¢ # 1.
The traditional quantum principles allow us to write T _ TP — YA- A _ TeD(FT- 2
the Liouville—von Neumann equation for thieoperator (AB), = TrP(H — XA;q,B)B — TrP(H; 4, B)B,
introduced above as (13)

) A0) . . to leading order inX. To calculate this we need another
th—— = [H,P(1)] — [A, P(1)]X(2), (7)  identity, which is a generalization of that due to Karplus
and Schwinger [19] for the exponential operators. This is
with the initial conditionP(r = —x) = P(H;q, B) given  proved in a straightforward way and it is as follows.
by Eg. (5). The solution of this to linear order ¥1(z) is Identity B:
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” A . . ” A B oA Cia) A .
OH — AX;q.8) = Q(H;q,B) + qXQ(H;q,B)fO dALQ(H; q, )] 'ALO(H — AX;q, M),
(14)
whered, = [1 — X(1 — q)(H — XA)]"'[1 — A1 — ¢)H]A,,
with A, defined in Eq. (11) . Her@ is the operator defined in Eq. (5). Working to linear ordeKijrin Eq. (14), we
obtain the isothermal response function, corresponding to the dynamical one obtained in Eq. (10):

B o o R B 3 o X
Xga = Q[Trfo dAP(H;q,B)P(H;q, /\)]_IAAP(H;CI,A)B’ - 61<Tff0 dA R(H;q,ﬁ)AA>[TrP(H;q,B)B],

HereR(H;q,B8) = [1 — B(1 — @)A1 "9/Z(H; 4, B) . (15)

A discussion of the equality between the zero frequerllcyheory. Some of the finer aspects of the linear response
limit and this expression involves the same subtleties atheory discussed recently in [20], namely, that one is us-
in the extensive case given in detail in [1,17]. In gen-ing near-equilibrium density matrices and that the source
eral yga(w = 0) # ysa, unless one makes ergodicity of irreversibility is the introduction of a nonunitary com-
assumption, etc. We would also like to remark here thatponent in the undriven dynamics, carry over here as well.
for ¢ = 1, these results go over to their counterparts in We can also define the “relaxation function” as the re-
the theory for extensive systems given originally by Kubolaxation of<B)q after removal of the external disturbance
[17]. In this way we have placed the Tsallis prescrip-and is given as in [17]:
tion on par with the traditional approach to linear respor‘rse

; OO/ N, —et PG) = P\ var oy o1l it(E—E;
Dpa(r) = SIerg+fl dt' ¢ppa(t)e " = %(%EEJ))MA“)(”BM@ (E;=E)/h (16)

whereP(i) = [1 — B(1 — q)E;17"~9/(Z)".

We have used the complete set of eigenfunctions| ofunctions:

the Hamiltonian operatof|i) = E;i), in deriving the (s /) = a(=9:) + al9,) i3, + 8,)Ppalt, 1)
second expression in Eq. (16). From this expression, we ’ 2la(=ay) — a(9,)] (’18),
deduce three important relations, all of which are proveg{,herea(at) =[1 + B(1 — q)ika, ]9,
quite easily: (1)Pgpa(?) is real; (2) Dga(—1) = Ppp(r)
(time-reversal symmetry); and by defining

Thus the general fluctuation-dissipation theorem for finite
frequencies for the nonextensive system is found to be
% A a little more involved, even though we recover the well-
opa(w) = ] dt Dpa(t)e "7, known result forg = 1. This generalizes a result due to
0 Kubo [17] for extensive systems, with the same notations,

Wpalt) = Eg(—id,)Dpal?),

we obtain (3) the Onsager relationships
Reoap(w) = Reopa(—w),
IMoap(w) = —IMopa(—w). Eg(w) = ho o Bhe (18)

One may also define a correlation function involving Equation (18) reduces to this simple form for extensive
the q average over the anticommutator combination of thesystems wherg = 1.

operators A fluctuation-dissipation theorem for zero frequency
| was obtained in [18]; the same result is obtained from the
Wpalt) = 3Trjf)(lfl;q,ﬁ){A]}(z) + B(n)A} isothermal result in Eg. (15), as can be proved by con-

sidering theg-free energy of the system, as follows. We
_ Z(P(i) + P(j)><iIA|j><j|B|i>e”(Ef‘E')/ﬁ consider a time independent constant fovoeorrespond-
2 : ing to the operatoB and consider a new Hamiltonian

" (A7) A — xA — YB. Following Eq. (5), we find the-free en-
Now we derive in a formal way the dynamical fluctuation- €rgy associated with the system in the Tsallis prescription
dissipation theorem by formally writing is [3] given by

N o N 1
F(H - XA —YB;q,B) =

it/ (E-E) _ it/ NE; ,=ilt/ DE; Blg — 1)
. . 2 A D. 1-
and settings = ¢ at the end of the calculation. Then X{[Z(H — XA = YB;q,B)] " — 1}.
we obtain the interesting relation between these two (29)
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From this we find by differentiating with respectYathat — —2F/0XdY|x—y—o = xsa. This is the result of Chame
the g mean value oB is given by and de Mello [18]. Thisis also the result obtained by Tsal-
OF(H — XA — YB;q, B) lis [16] for |sotherma_l static spin sgscept|b|llty where the
- Y operators refer to spin. In the static case, the Onsager re-
B v vh. P lations have been proved in [21].
= TrP(H = XA = YB:q.B)B = (B)g.  (20) Another point of interest is to note that the real and
Another derivative of this with respect ¥and evaluating imaginary parts of the susceptibility defined in Eg. (10)
the result forx = Y = 0, we obtain a different but equiva- obeys the Kramers-Kronig relation because
lent form of the result for the isothermal response function,
Eq. (15), which may now be expressed in the familiar for|m

|AL))IBIMPG) — P(j)]
how + Ei - Ej

xBa(@) = XRA(@) + ixha(@), xha(@) =P 4
ij

. R (21)

xialw) = 7 Y GIALY GBI PG) — P(j)6(he + E; — E)).
v
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