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We consider a model for the formation of a river network in which the erosion process pla
role only at the initial stage. Once a global connectivity is achieved, no further evolution takes p
In spite of this, the network reproduces approximately most of the empirical statistical results o
natural river network. It is observed that the resulting network is a spanning tree graph and the
this process could be looked upon as a new algorithm for the generation of spanning tree gra
which different configurations occur quasirandomly. A new loopless percolation model is also de
at an intermediate stage of evolution of the river network.
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A river network consists of a main river accompanie
by a hierarchy of side streams of decreasing leng
and flow capacities. Ignoring the ground absorption a
evaporation, the network drains out the whole amount
rain water dropped uniformly on every small piece
land in the river basin and therefore necessarily sp
the whole drainage area. In addition, though it is qu
common that two rivers join together, it is hardly observ
that a river bifurcates into two smaller streams (ignori
small delta islands) because of the fact that water flows
the direction of steepest descent. Therefore, the gen
structure of a river network is like a tree on which tw
points are connected by a distinct path. Because of th
properties, a river network qualifies to be described b
spanning tree graph, the loopless graph which covers
nodes, a well known example in graph theory [1]. T
aim of this paper is to propose a quasirandom spann
tree model for the formation of a river network from th
very early stage.

The geometrical structure of the network consideri
different streams as linear segments has been of con
erable interest for a long time. Quite commonly differe
rivers are classified according to Strahler’s ordering pro
dure [2]. In this recursive ordering scheme, two strea
of ordersn1 andn2 meet to produce a stream of ordern as

if n1 fi n2 then n ­ maxsn1, n2d,

else n ­ n1 1 1, (1)

where the streams which start from sources are assigne
der n ­ 1. Horton empirically observed that the avera
number and length of rivers of different orders in a ne
work follow geometric series with approximately consta
bifurcationrb and the length ratiorl [3]. Mandelbrot sug-
gested that the river network might be a self-similar frac
with fractal dimensiondrn ­ 2 because of the spannin
nature of the network [4]. Later, fractal dimensions of t
individual riversdc are related to the Horton’s ratios b
[5,6]
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drn ­ dc
logrb

logrl
. (2)

The mean annual discharge at any link or its surrog
variable, the cumulative area contributing to the lin
follows a power law probability distribution asPsad ,
a2ta [7]. The length l of a typical stream of certain
order also follows a power law distributionPsld , l2tl

[8]. Another empirical result is that the average leng
klVl of the river with maximum orderV varies with the
basin areaa aslV , aa [9].

Scheidegger proposed a lattice model of directed ri
network defined on a slope [10]. This model was show
to be identical to the one-dimensional random partic
aggregation model [11]. More recently, following the ide
of self-organized criticality [12], a number of river networ
models are proposed which successfully produce spa
scale invariance in the self-organized critical states [13

The problem of spanning tree graphs is well know
in statistical physics. Kirchhoff related the spanning tr
graphs to the problem of determining the effective res
tance between two nodes of a resistor network [14]. F
tuin and Kasteleyn showed that it is related to theq ! 0
limit of the q-state Potts model [15]. Recently the corr
spondence between the spanning tree graphs and the s
state configurations of the Abelian sandpile model in t
self-organized criticality [16] is established. In the ca
of the random spanning tree problem all possible tree c
figurations occur with equal probability and this model
very well studied. We compare the results of our mod
with those of random spanning trees and conclude that
model belongs to a new universality class.

The process of erosion is the underlying mechani
for the evolution of a river network. Erosion takes plac
during the flow of streams which modifies the rive
beds and therefore causes changes in the flow patt
We consider here the evolution of a network to its fu
connected form starting from the very initial stage
isolated lakes.
© 1996 The American Physical Society
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Continuously variable heights with uniform rando
distributions are assigned to all sites of a square latt
We first assume that rain falls only along the bonds
the lattice and flows downwards on the slope along
bond. Because of this unidirectional flow, an intensi
erosion process takes place which reduces the slope a
the bond. We assume that this reduction of slope due
the erosion is a very slow process since huge amou
of sediments are transported from one place to the ot
When the slope decreases water gets accumulate
different places along the bond and finally when the slo
is very small a little further rain fall in a very short tim
floods the whole length of the bond, forming a lake
the smallest size of only one bond. We assume that
transition time is much smaller than the time required
the whole erosion process.

Rain falls simultaneously along all the bonds of th
lattice, the erosion process takes place in parallel,
lattice bonds become lakes one after another sequent
occurring with uniform probability. Several one bon
lakes join together and form bigger lakes. We assu
that all sites of one lake have approximately equal heig
and, since the water in a lake is stagnant, no signific
erosion takes place to change their heights further.

For the case of a bond which does not belong to a
lake but the adjacent two sites belong to the same la
the situation is different. Since the sites are approximat
of the same height, there is no significant height gradi
along the bond and the erosion process will not be f
enough to equalize the level of the bond with the sit
Therefore, this bond will never be included into the la
forbidding the possibility of loop formation.

The role of a lake is to store rain water in the initi
stage, until it gets connected to a flowing river when
also starts flowing and becomes part of the river netwo
The first site on the boundary of the lattice which becom
the member of a particular lake is connected to the oc
outside. This creates a net directed flow in every bond
this lake which forms a small cluster of rivers. In a simil
manner all other lakes also eventually become connec
among themselves and to this small cluster of rivers a
therefore will start flowing. Positive slopes against t
flow are created due to erosion along all the bonds wh
completes the formation of the river network.

A random list of all bondsB of the lattice is generated
from an ordered sequence by a large number of rand
pair interchanges. Here the computational effort increa
linearly with B to obtain a most uncorrelated configur
tion, compared toB logB in the Broder’s algorithm for
generating the random spanning trees [17].

Numbers are called sequentially from this random l
and corresponding bonds on the lattice are tested for
lake formation. A bond is allowed to be a lake if it i
the smallest lake, becomes part of the bigger lake, or jo
two distinct lakes. A bond is forbidden to be occupied
a lake if it connects two sites of the same lake. We u
ce.
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Hoshen and Kopelman’s algorithm for cluster numberi
in percolation theory [18] to identify different lakes an
to restrict loop formations. Finally, a single connecte
network in the form of a spanning tree graph covers t
whole lattice (Fig. 1).

We first exactly calculate the probabilities of occu
rence of different spanning trees generated from r
dom permutations on a2 3 3 cell and observe that they
are nonuniformly distributed (Fig. 2). We conclude th
spanning trees obtained from random bond permutati
occur with nonuniform probabilities and therefore we ca
them “quasirandom.”

Periodic boundary conditions are used in all four d
rections of the square lattice and the outlet of the n
work is chosen at theroot of the spanning tree. We
first study the connectivity of a randomly chosen sit
The average fractions of sites connected to 1, 2,
and 4 bonds are obtained as 0.30681, 0.42698, 0.22
and 0.04061, slightly different from their counterpar
0.29454, 0.44699, 0.22239, and 0.03608 in random sp
ning trees.

The drainage area at the sitei is defined asai ­P
j wijaj 1 1 wherej runs over the nearest neighbor site

andwij ­ 1 if the flow direction is fromj to i, otherwise
it is zero. Area values are calculated using a system
deleting procedure. Leaf sites of the network are the
of sites connected by only one bond; initially unit are
values are assigned to them. At the deleting timet all the
leaf sites are deleted simultaneously and area values

FIG. 1 (color). A typical quasirandom spanning tree config
ration for modeling the river network on the32 3 32 lattice.
Rivers of order 1 (black), 2 (yellow), 3 (blue), 4 (green), an
5 (red) are shown. Connection to the ocean is through the
with a circle at the bottom.
3461
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FIG. 2. The fifteen distinct spanning tree configurations on
2 3 3 lattice. The nine type (a) configurations occur 360 tim
and the six type (b) configurations occur 300 times in all t
spanning tree configurations generated by exact enumeratio
the 7! ­ 5040 permutations of the seven bonds of the lattice

carried over to the connected sites. This creates a new
of leaf sites to be deleted in the timet 1 1. The root gets
an areaL2. In Fig. 3 we plot the probability distribution
of the drainage areaPsad for L ­ 1024 and obtain a
very nice straight line. We estimateta ­ 1.392 6 0.010
and compare with 11y8 for random spanning trees [19
and to 4y3 of the directed river network model [10,11
Empirical values ofta vary from 1.41 to 1.44 for different
river basins [7].

To calculate the stream length distributionPsld we
delete different streams sequentially one after the oth
Deletion starts from a leaf site, proceeds along the riv
and stops when the river meets a higher order river. W
all first order rivers are deleted, we get another set of l
sites, all of which correspond to the second order rive
which are also eventually deleted. UsingL ­ 1024 we

FIG. 3. The probability distributionPsad of finding an arbi-
trarily selected site of drainage areaa is shown forL ­ 1024,
which givesta ­ 1.392.
3462
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get the exponenttl ­ 2.65 6 0.03, to be compared with
its empirical value 2.9 [8].

The average lengthklVl of the rivers with maximum
order numberV varies with the whole basin areaL2

with a powera ­ 0.636 6 0.005. Empirically one gets
a ­ 0.58 6 0.03 [9].

We also studied the statistics of the longest riv
flowing into a site. The deleting time of any site i
the length of the longest riverlm at that site. This
length also follows a power law distributionPslmd , l2tm

m
with tm ­ 1.628 6 0.005. A similarly defined exponent
am in lm , kalam is obtained as0.608 6 0.005. This
gives a connection betweena and lm as Psadda ­
Pslmddlm and the scaling relationam ­ sta 2 1dystm 2

1d gives approximately the same value ofam as measured
numerically.

The chemical distance between any two points is defin
as the length of the shortest connecting path. Therefore
calculate the fractal dimension of the rivers in our mod
we calculate the dimension of the chemical paths. A r
verse deleting of the network is done from the root of th
tree. The deleting time of a site is the length of the riv
to that site from the root. The probability that an arbitra
ily selected site is at a chemical distancelr from the root
follows a scaling formPslr , Ld ­ Ldc fslryLdc d. From an
excellent data collapse of this distribution data forL ­
64, 256, and 1024 we getdc ­ 1.217. The scaling func-
tion also fits very well to the formfsxd ­ axb exps2cxdd
wherea ­ 1.30, b ­ 0.59, c ­ 0.60, andd ­ 2.62. We
also get another value ofdc ­ 1.222 by directly calcu-
lating the average length of the riverklr sLdl , Ldc . We
concludedc ­ 1.220 6 0.010 and compare it with the
random spanning tree value 5y4 [20].

In Fig. 4 we plot the average number of riverskNnl and
the average length of the riversklnl for different orders
n for a lattice of lengthL ­ 1024. We obtain an almost

FIG. 4. The average number of riverskNnl (denoted by
circles) and the average length of the riversklnl (denoted
by crosses) for different order numbers are plotted agai
n. The bifurcation ratiorb ­ kNnlykNn11l and length ratio
rl ­ kln11lyklnl are obtained as 4.39 and 2.44, respectively.
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constant value of Horton’s bifurcation ratiorb ­ 4.39 and
the length ratiorl ­ 2.44 in the region fromn ­ 2 to
7. We compare these values with Shreve’s calculatio
rb ­ 4 andrl ­ 2 for the equally weighted river network
[21]. Using Eq. (2) and the fractal dimension of the rive
dc ­ 1.220 we calculate that fractal dimension of the riv
networkdrc ­ 2.02 which is quite close to its exact valu
2 for our quasirandom spanning tree river network.

Finally, we consider the situation where rain fa
nonuniformly or the basin area contains some rando
positioned dry lands using a new percolation mod
We randomly throw bonds on the lattice in the sa
way as before but keep checking if the connectivity
formed between any two opposite sites of the lattice. T
moment it is formed we stop dropping of bonds. We s
that pcs`d 2 pcsLd , L21yn where pcs`d ­ 0.4511 6

0.0005 andn ­ 1.334 6 0.005, which is very close to the
value of n ­ 4y3 but the value ofdc ­ 1.119 6 0.005
is distinctly different from1.1307 6 0.0004 for ordinary
percolation [22]. Percolation on the Bethe lattices
previously considered by Straley [23].

To summarize, we have considered the formation o
globally connected river network starting from the ve
early stage of water accumulation in the microscopic lak
Lakes grow in size and eventually get connected to
ocean when its different branches become rivers. Fin
the river network spans the basin. We model the ri
network by a quasirandom spanning tree belonging
a new universality class. We see that though we h
not considered the temporal development of rivers,
first connected network closely reproduces the statistic
the natural river network. We also study a new loopl
percolation model at an intermediate stage of evolution
the river network.

We thank D. Dhar for many useful suggestion
H. Kallabis for much help in graphics, and A. Giacome
and D. Wolf for the critical reading of the manuscript.

Note added.—After finishing this work we came to
know about the work of Cieplaket al. [24] who consid-
ered disorder-dominated river basins and obtained re
similar to ours.
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