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Quasirandom Spanning Tree Model for the Early River Network
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We consider a model for the formation of a river network in which the erosion process plays a
role only at the initial stage. Once a global connectivity is achieved, no further evolution takes place.
In spite of this, the network reproduces approximately most of the empirical statistical results of the
natural river network. It is observed that the resulting network is a spanning tree graph and therefore
this process could be looked upon as a new algorithm for the generation of spanning tree graphs in
which different configurations occur quasirandomly. A new loopless percolation model is also defined
at an intermediate stage of evolution of the river network.

PACS numbers: 92.40.Gc, 05.20.-y, 05.40.+j, 64.60.Ht

A river network consists of a main river accompanied d,, = d, logrs ) (2)
by a hierarchy of side streams of decreasing lengths log r;
and flow capacities. Ignoring the ground absorption and
evaporation, the network drains out the whole amount offhe mean annual discharge at any link or its surrogate
rain water dropped uniformly on every small piece ofvariable, the cumulative area contributing to the link,
land in the river basin and therefore necessarily spanfollows a power law probability distribution aB(a) ~
the whole drainage area. In addition, though it is quitea™ "« [7]. The length/ of a typical stream of certain
common that two rivers join together, it is hardly observedorder also follows a power law distributioR(/) ~ =™
that a river bifurcates into two smaller streams (ignoring[8]. Another empirical result is that the average length
small delta islands) because of the fact that water flows i/ ) of the river with maximum ordef) varies with the
the direction of steepest descent. Therefore, the generbhsin area: asig ~ a“ [9].
structure of a river network is like a tree on which two Scheidegger proposed a lattice model of directed river
points are connected by a distinct path. Because of thesetwork defined on a slope [10]. This model was shown
properties, a river network qualifies to be described by do be identical to the one-dimensional random particle
spanning tree graph, the loopless graph which covers atlggregation model [11]. More recently, following the idea
nodes, a well known example in graph theory [1]. Theof self-organized criticality [12], a number of river network
aim of this paper is to propose a quasirandom spanningodels are proposed which successfully produce spatial
tree model for the formation of a river network from the scale invariance in the self-organized critical states [13].
very early stage. The problem of spanning tree graphs is well known
The geometrical structure of the network consideringn statistical physics. Kirchhoff related the spanning tree
different streams as linear segments has been of consigraphs to the problem of determining the effective resis-
erable interest for a long time. Quite commonly differenttance between two nodes of a resistor network [14]. For-
rivers are classified according to Strahler’s ordering procetuin and Kasteleyn showed that it is related to the> 0
dure [2]. In this recursive ordering scheme, two streamdimit of the ¢-state Potts model [15]. Recently the corre-
of ordersn; andn, meet to produce a stream of ordeas  spondence between the spanning tree graphs and the steady
state configurations of the Abelian sandpile model in the
if  ny #ny then n = maxny,ny), self-organized criticality [16] is established. In the case
else n=n +1, 1) qf the random span_ning tree problem_ all possible tree con-
figurations occur with equal probability and this model is
where the streams which start from sources are assigned arery well studied. We compare the results of our model
dern = 1. Horton empirically observed that the averagewith those of random spanning trees and conclude that our
number and length of rivers of different orders in a net-model belongs to a new universality class.
work follow geometric series with approximately constant The process of erosion is the underlying mechanism
bifurcationr;, and the length ratie; [3]. Mandelbrot sug- for the evolution of a river network. Erosion takes place
gested that the river network might be a self-similar fractalduring the flow of streams which modifies the river
with fractal dimensiond,, = 2 because of the spanning beds and therefore causes changes in the flow pattern.
nature of the network [4]. Later, fractal dimensions of theWe consider here the evolution of a network to its full
individual riversd. are related to the Horton’s ratios by connected form starting from the very initial stage of
[5,6] isolated lakes.
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Continuously variable heights with uniform random Hoshen and Kopelman’s algorithm for cluster numbering
distributions are assigned to all sites of a square latticen percolation theory [18] to identify different lakes and
We first assume that rain falls only along the bonds ofto restrict loop formations. Finally, a single connected
the lattice and flows downwards on the slope along thaetwork in the form of a spanning tree graph covers the
bond. Because of this unidirectional flow, an intensivewhole lattice (Fig. 1).
erosion process takes place which reduces the slope alongWe first exactly calculate the probabilities of occur-
the bond. We assume that this reduction of slope due teence of different spanning trees generated from ran-
the erosion is a very slow process since huge amountiom permutations on a X 3 cell and observe that they
of sediments are transported from one place to the otheare nonuniformly distributed (Fig. 2). We conclude that
When the slope decreases water gets accumulated @panning trees obtained from random bond permutations
different places along the bond and finally when the slop@ccur with nonuniform probabilities and therefore we call
is very small a little further rain fall in a very short time them “quasirandom.”
floods the whole length of the bond, forming a lake of Periodic boundary conditions are used in all four di-
the smallest size of only one bond. We assume that thigections of the square lattice and the outlet of the net-
transition time is much smaller than the time required forwork is chosen at theoor of the spanning tree. We
the whole erosion process. first study the connectivity of a randomly chosen site.

Rain falls simultaneously along all the bonds of theThe average fractions of sites connected to 1, 2, 3,
lattice, the erosion process takes place in parallel, andnd 4 bonds are obtained as 0.30681, 0.42698, 0.22557,
lattice bonds become lakes one after another sequentialgnd 0.04061, slightly different from their counterparts
occurring with uniform probability. Several one bond 0.29454, 0.44699, 0.22239, and 0.03608 in random span-
lakes join together and form bigger lakes. We assumaing trees.
that all sites of one lake have approximately equal heights The drainage area at the siteis defined asa; =
and, since the water in a lake is stagnant, no significant_; w;;a; + 1 wherej runs over the nearest neighbor sites
erosion takes place to change their heights further. andw;; = 1 if the flow direction is fromj to i, otherwise

For the case of a bond which does not belong to anyt is zero. Area values are calculated using a systematic
lake but the adjacent two sites belong to the same lakeleleting procedure. Leaf sites of the network are the set
the situation is different. Since the sites are approximatelypf sites connected by only one bond; initially unit area
of the same height, there is no significant height gradientalues are assigned to them. At the deleting tinadl the
along the bond and the erosion process will not be fadeaf sites are deleted simultaneously and area values are
enough to equalize the level of the bond with the sites.
Therefore, this bond will never be included into the lake — |
forbidding the possibility of loop formation. I

The role of a lake is to store rain water in the initial _ 1
stage, until it gets connected to a flowing river when it By B |
also starts flowing and becomes part of the river network ~1____

The first site on the boundary of the lattice which becomes Ba =~ !
the member of a particular lake is connected to the ocea Lj _|_[__'_ l
outside. This creates a net directed flow in every bond o
this lake which forms a small cluster of rivers. In a similar |_ ﬂ '? _L_|
manner all other lakes also eventually become connecte —
among themselves and to this small cluster of rivers ant
therefore will start flowing. Positive slopes against the | 2
=1

flow are created due to erosion along all the bonds whict
completes the formation of the river network. I

A random list of all bondsB of the lattice is generated
from an ordered sequence by a large number of randor ] 1
pair interchanges. Here the computational effort increase |__l

linearly with B to obtain a most uncorrelated configura-

tion, compared taBlogB in the Broder's algorithm for

generating the random spanning trees [17]. | [ i 8w
Numbers are called sequentially from this random list 7 | |_

and corresponding bonds on the lattice are tested for the _ ) _ _

lake formation. A bond is allowed to be a lake if it is FIC- 1 (color). A typical quasirandom spanning tree configu-

th llest lake. b t of the bi lak . . _ration for modeling the river network on th&2 X 32 lattice.
€ Smallest lake, becomes part of the bigger 1ake, or J0Ngjyers of order 1 (black), 2 (yellow), 3 (blue), 4 (green), and
two distinct lakes. A bond is forbidden to be occupied bys (red) are shown. Connection to the ocean is through the site

a lake if it connects two sites of the same lake. We usevith a circle at the bottom.
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get the exponent; = 2.65 = 0.03, to be compared with
its empirical value 2.9 [8].

The average lengtki) of the rivers with maximum
order numberQ varies with the whole basin areb?
with a powera = 0.636 = 0.005. Empirically one gets
a = 0.58 = 0.03 [9].

We also studied the statistics of the longest river
flowing into a site. The deleting time of any site is
the length of the longest rivel, at that site. This
length also follows a power law distributia®(l,,) ~ 1, ™
with 7,, = 1.628 = 0.005. A similarly defined exponent
a, in I, ~ {(a)* is obtained a€).608 = 0.005. This
gives a connection betweea and [,, as P(a)da =
P(l,,)dl,, and the scaling relatiow,, = (7, — 1)/(7,, —

1) gives approximately the same valueaf as measured
numerically.

The chemical distance between any two points is defined

FIG. 2. The fifteen distinct spanning tree configurations on ags the length of the shortest connecting path. Therefore, to

2 X 3 lattice. The nine type (a) configurations occur 360 timesg . |ate the fractal dimension of the rivers in our model
and the six type (b) configurations occur 300 times in all the

spanning tree configurations generated by exact enumeration &f

the7! = 5040 permutations of the seven bonds of the lattice.

e calculate the dimension of the chemical paths. A re-
verse deleting of the network is done from the root of the
tree. The deleting time of a site is the length of the river

carried over to the connected sites. This creates a new sgf that site from the root. The probability that an arbitrar-

of leaf sites to be deleted in the timet- 1. The root gets
an areal?. In Fig. 3 we plot the probability distribution
of the drainage are®(a) for L = 1024 and obtain a
very nice straight line. We estimatg = 1.392 = 0.010
and compare with 1/8 for random spanning trees [19]
and to 43 of the directed river network model [10,11].
Empirical values of-, vary from 1.41 to 1.44 for different
river basins [7].

To calculate the stream length distributigt(l) we

ily selected site is at a chemical distangerom the root
follows a scaling formP(l,, L) = L% f(I,/L%). From an
excellent data collapse of this distribution data for=
64, 256, and 1024 we geaf. = 1.217. The scaling func-
tion also fits very well to the fornf(x) = ax” exp(—cx?)
wherea = 1.30,b = 0.59,¢ = 0.60, andd = 2.62. We
also get another value af. = 1.222 by directly calcu-
lating the average length of the rivé.(L)) ~ L%. We
concluded,. = 1.220 = 0.010 and compare it with the

delete different streams sequentially one after the othefgndom spanning tree valug4[20].

Deletion starts from a leaf site, proceeds along the river, |n Fig. 4 we plot the average number of rivéng,) and
and stops when the river meets a higher order river. Whethe average length of the rivets,) for different orders

all first order rivers are deleted, we get another set of leaf for a lattice of lengthl. = 1024. We obtain an almost
sites, all of which correspond to the second order rivers,

which are also eventually deleted. Usidg= 1024 we

10° . . . ,

107 [ 1

10-8 Lol R | 2ol L reriul P
10° { 2 3 4 5

FIG. 3. The probability distribution?(a) of finding an arbi-
trarily selected site of drainage areas shown forL = 1024,
which givesr, = 1.392.
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FIG. 4. The average number of rivergv,) (denoted by
circles) and the average length of the riveds) (denoted
by crosses) for different order numbers are plotted against
n. The bifurcation ratior, = (N,)/(N,+;) and length ratio
r; = (l,+1)/{l,) are obtained as 4.39 and 2.44, respectively.
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