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We prove a new result limiting the amount of accessible information in a quantum channel. Th
generalizes Kholevo’s theorem and implies it as a simple corollary. Our proof uses the strong suba
tivity of the von Neumann entropy functionalSsrd and a specific physical analysis of the measurement
process. The result presented here has application in information obtained from “weak” measureme
such as those sometimes considered in quantum cryptography. [S0031-9007(96)00060-9]
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When a measurement is performed on a quantum
tem, information is acquired about the preparation of
system. In a quantum communication channel, for
ample, the receiver uses a “decoding observable” to
fer something about the “signal state” of the channel [
One of the central problems of quantum information th
ory is the extent to which the laws of quantum mechan
provide limitations and opportunities for information a
quisition in various contexts.

A theorem stated by Levitin [2] and proved by Kholev
[3] provides an upper bound on the amount of informat
that may be obtained about the preparation of a quan
system by the measurement of any observable. LetQ be
a quantum system which is prepared in the mixed s
rk with a priori probability pk. The overall ensemble o
states is just

r ­
X
k

pkrk .

The information acquired in a measurement is represe
by the mutual informationIsA:Kd between the measure
ment outcomeA and the preparationK . The mutual in-
formation is given by

IsA:Kd ­ HsKd 2 HsKjAd ,
that is, the difference between thea priori uncertainty
in K [measured by the Shannon entropyHsKd ­
2

P
k pk lnpk] and the average uncertainty inK after the

measurement outcomeA is known. Kholevo’s theorem
states that

IsA:Kd # Ssrd 2
X
k

pkSsrkd , (1)

where Ssrd ­ 2Trr lnr, the von Neumann entropy o
the density operatorr. The quantity on the right-hand
side of the inequality,

x ­ Ssrd 2
X

k

pkSsrk d , (2)

bounds the accessible information in the quantum ens
ble. x and its properties will be of central importance
this paper.

The standard proof of Kholevo’s theorem is fairly di
ficult (see [3,4]). In this paper we provide an alternati
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deviation that is better in several respects: (1) The pr
is based on a well-known property of the entropy fun
tional Ssrd known asstrong subadditivity. [This prop-
erty is not itself easy to prove, but it is a property ofSsrd
itself, without reference to measurements.] (2) We e
ploy a physical model of the measurement process inst
of a mathematically defined “observable.” This model
sufficient to describe any “generalized” measurement
POVM) [5], where distinct outcomes are represented
positive operators instead of projections. (3) Because
model of measurement includes the effect of the measu
ment process on the systemQ, we are in fact able to ar-
rive at a stronger result than Eq. (1). Our version is mu
sharper than Kholevo’s theorem in the case of “wea
measurements that acquire only a small fraction of
available information.

Strong subadditivity.—SupposeX and Y are a pair of
quantum systems whose joint state is given by the den
matrix rsXYd. The individual systems are described b
statesrsXd andrsYd, which are given by partial traces o
the joint state:

rsXd ­ TrY rsXYd ,

rsYd ­ TrXrsXYd .

Subadditivity[6] is a property of the entropy functiona
that states that

SsrsXYdd # SsrsXdd 1 SsrsYdd . (3)

A stronger property of entropy calledstrong subadditivity
[7] is clearly related. SupposeX, Y , and Z are three
quantum systems. Then

SsrsXYZdd 1 SsrsXdd # SsrsXYdd 1 SsrsXZdd , (4)

where rsXd, rsXYd, etc. are states of various subsystem
obtained by partial traces of the global statersXYZd. This
is a nontrivial property to establish for the von Neuma
entropyS; see, for example, Wehrl’s review paper on th
properties of entropy [6]. The strong subadditivity ofS
© 1996 The American Physical Society
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implies, among other things, thatS is subadditive; simply
consider a state of the form

rsXYZd ­ jc sXdl kc sXdj ≠ rsYZd

for a pure statejc sXdl of X and an arbitrary joint state
rsYZd of systemsY andZ.

Our interest in strong subadditivity is in proving a
important property of the Kholevo bound functionalx,
defined in Eq. (2) above. Suppose the joint stater

sXYd
k of

systemsX andY is produced with probabilitypk . Then
rsXYd ­

P
k pkrsXYd

k
, and

x sXYd ­ SsrsXYdd 2
X

k

pkSsrsXYd
k d .

We can ignore systemY entirely, and consider the state
rsXd

k
of systemX alone. Then the Kholevo bound woul

be

x sXd ­ SsrsXdd 2
X

k

pkSsrsXd
k d .

We now wish to establish thatx sXd # x sXYd. This is
a sensible inequality; sincex is the upper bound on the
accessible information, it is reasonable that this bou
does not increase when part of the system is discard
Our model of the measurement process, described in
next section, includes a unitary evolution (during whichx

is constant) and a discarding of the “environment” degre
of freedom. The fact thatx cannot increase during suc
a process will be the key to our main result.

The proof thatx cannot increase when part of th
system is discarded is based on the following fact. L
A andB be two systems in a state of the form

rsABd ­
X

k

qija
sAd
i l kasAd

i j ≠ r
sBd
i ,

where the statesja
sAd
i l are orthogonal. Then the entrop

of the joint state is

SsrsABdd ­ Hs $qd 1
X

i

qiSsr
sBd
i d .

The quantityHs $qd is the classical (Shannon) entropy o
the probability distributionqi .

Consider the state

rsXYZd ­
X

k

pkrsXYd
k ≠ jksZdl kksZdj (5)

for an orthogonal set of statesjksZdl. Various terms in the
strong subadditivity relation [Eq. (4)] can be calculated

SsrsXYZdd ­ Hs $pd 1
X

k

pkSsrsXYd
k d ,

SsrsXZdd ­ Hs $pd 1
X

k

pkSsrsXd
k d .

Strong subadditivity therefore yields
n
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:

Hs $pd 1
X

k

pkSsrsXYdd1SsrsXdd

# Hs $pd 1
X

k

pkSsrsXd
k d 1 SsrsXYdd ,

SsrsXdd 2
X

k

pkSsrsXd
k d # SsrsXYdd 2

X
k

pkSsrsXYd
k d ,

x sXd # x sXYd , (6)

which is what we wished to prove.
Measurement.—Our discussion of measurement will

be based on a specific physical model of measureme
to which we now turn. Suppose we have a quantum
systemQ with an initial statersQd. The measurement
process will involve two additional quantum systems: a
apparatus systemA and an environment systemE. The
systemsA and E are initially in a joint stater

sAEd
0 , so

that the overall initial state of everything isrsAEQd ­
r

sAEd
0 ≠ rsQd. The measurement process proceeds in tw

successive stages. (1) A dynamical evolution includin
interactions amongA, E, andQ, represented by a unitary
operatorU:

rsAEQd ! p̂sAEQd ­ UrsAEQdUy .

(2) Discarding of the environment, represented by a parti
trace over the systemE:

r̂sAEQd ! r̂sAQd ­ TrEr̂sAEQd .

For the process to constitute a measurement, we requ
that, after these two stages, the stater̂sAQd be of the
following form:

r̂sAQd ­
X
a

PsadjfsAd
a l kfsAd

a j ≠ wsQd
a , (7)

where the statesjfsAd
a l are a fixed orthogonal set of

apparatus states, independent of the input statersQd.
[Psad andwsQd

a may depend onrsQd.]
We note several things about this model. The state

jfsAd
a l are interpreted as the “pointer states” of the mea

surement apparatus, which label measurement outcom
For ordinary measurement apparatus, these states
macroscopically distinguishable and therefore orthogona
The choice of pointer states is not determined by the sta
of the system being measured, but is fixed for a give
measurement device in a given environment.

It may be objected that it is unrealistic to suppose
that a given measurement outcome corresponds to apure
state of the apparatus systemA, which may after all
be macroscopic. ButA represents only the “pointer”
degree of freedom of the apparatus; other degrees
freedom (including thermal degrees of freedom) may b
considered to be part of the environmentE. Furthermore,
if the pointer state is not completely resolved by an
outside observer, that observer will simply “bin” various
values ofa together, resulting in a decrease in the ac
quired information.
3453
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Coherences between different measurement outcom
do not remain in the joint state of systemsA andQ. Any
such coherences have “leaked away” into the environm
during the dynamical evolution. The pointer states a
in fact determined by the requirement that differe
measurement outcomes decohere via interaction with
environment [8].

The numbersPsad are interpreted as the probabilitie
of the various outcomes of the measurement, indexed
a. The stateswsQd

a are the possible states ofQ after
the measurement.

The model we have described for measurement see
very general. Any interaction of the measuring app
ratus and the environment with the systemQ is pre-
sumably described by unitary dynamics, and coheren
between measurement outcomes are then lost. The dif
ent apparatus readings are distinguishable and there
orthogonal. We therefore adopt this as a general pict
applicable to any measurement.

Information acquisition.—As before, we suppose tha
the systemQ is initially prepared in the stater

sQd
k with

a priori probability pk. The state of the apparatusA
and environmentE is r

sAEd
0 , independent of the prepa

ration of Q. (The independence assumption simply sa
that no additional information about the preparation of t
system is available except that which resides inQ itself.)
The initial state of the entire system given thekth prepa-
ration forQ is

rsAEQd
k ­ r

sAEd
0 ≠ rsQd

k .

Averaging over the possible preparations, we obtain

rsAEQd ­
X

k

pkrsAEQd
k .

Because r
sAEd
0 is independent of the preparationk,

x sAEQd ­ x sQd.
A measurement process as described in the previ

section now takes place. In the first stage of the measu
ment process, the statesr

sAEQd
k evolve unitarily into the

statesr̂
sAEQd
k . In the second stage,̂r

sAEQd
k is reduced to

r̂
sAQd
k by partial trace. These states are of the form

r̂sAQd
k ­

X
a

PsajkdjfsAd
a l kfsAd

a j ≠ w
sQd
ak . (8)

Psajkd is theconditional probabilityfor the measurement
outcomea given thekth preparation forQ, and the states
w

sQd
ak are the resulting states ofQ when the kth pre-

paration leads to the measurement outcomea. [The w
sQd
ak

need only be defined whenPsajkd fi 0.] The average
stater̂sAQd of A andQ after the measurement process is

r̂sAQd ­
X
a,k

Psa, kdjfsAd
a l kfsAd

a j ≠ w
sQd
ak ,

wherePsa, kd ­ pkPsajkd, the joint probability of mea-
surement outcomea and preparationk. We can do thek
3454
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sum and write this as

r̂sAQd ­
X
a

PsadjfsAd
a l kfsAd

a j ≠ wsQd
a , (9)

wherePsad ­
P

k Psa, kd is the total probability for the
measurement outcomea and

wsQd
a ­

X
k

PskjadwsQd
ak

is the final state ofQ, averaged over preparations, give
the outcomea. [Of course,Pskjad ­ Psa, kdyPsad.]

x̂ sAEQd must be the same asx sAEQd, since entropies
are preserved under unitary evolution. But becausex is
nonincreasing under the partial trace operation [Eq.
above], we know that̂x sAQd # x̂ sAEQd. Thus, we con-
clude that

x̂ sAQd # x sQd . (10)

We now evaluatêx sAQd ­ Ssr̂sAQdd 2
P

k pkSsr̂
sAQd
k d.

The form ofr̂sAQd given in Eq. (9) yields that

Ssr̂sAQdd ­ HsAd 1
X
a

PsadSswsQd
a d . (11)

where HsAd ­ 2
P

a Psad lnPsad, the Shannon entropy
of the (average) probability distributionPsad over the
measurement outcomes. Similarly, given Eq. (8) f
r̂

sAQd
k ,

Ssr̂sAQd
k d ­ HsAjkd 1

X
a

PsajkdSswsQd
ak d , (12)

whereHsAjkd is the Shannon entropy of the measureme
outcome conditional on a particular preparationk. The
conditional informationHsAjKd ­

P
k pkHsAjkd.

We therefore have

x sQd $ Ssr̂sAQdd 2
X

k

pkSsr̂sAQd
k d

­ HsAd 1
X
a

PsadsswsQd
a d 2 HsAjKd

2
X
a,k

Psa, kdSswsQd
ak d .

The mutual informationIsA:Kd ­ HsAd 2 HsAjKd. We
can rewrite this inequality as

x sQd $ IsA:Kd 1
X
a

Psad

3

"
SswsQd

a d 2
X
k

PskjadSswsQd
ak d

#
.

The quantity in square brackets isx sQd
a , the value ofx

for the systemQ after the measurement is conclude
conditional on the outcomea for the experiment. We
have therefore shown that

IsA:Kd # x sQd 2
X
a

PsadxsQd
a . (13)
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Equation (13) is our central result. Since the quan
ties x sQd

a are non-negative, Kholevo’s theorem [Eq. (1
is a corollary to this more general theorem.

The information obtained about the preparation of t
systemQ by means of a measurement procedure is th
bounded by the average amount that the quantityx de-
creasesin the course of the measurement. This fa
expresses a new and potentially useful relationship
tween thepowerof the measurement to provide informa
tion aboutQ and the physicaleffectof the measurement
process uponQ.

Suppose, for example, that our measurement is
scribed by a set of one-dimensional projectionspa, and
that the effect of the procedure is given by the “projectio
postulate.” That is, if the outcomea is obtained for an in-
put statersQd, then the final state is simplypa. Then
x sQd

a ­ 0 for all a. In other words, the final state o
the systemQ depends only upon the measurement ou
come and not upon the preparation (except inasmuch
the preparation determines the probabilities of the vario
outcomes). In this case, we simply haveIsA:Kd # x sQd.

However, if the measurement is not complete, and t
“outcome operators”pa are projections onto subspaces o
many dimensions, then the natural generalization of t
projection postulate yields final states (given inputrsQd)

wsQd
a ­

parsQdpa

TrparsQdpa
.

These may depend upon the preparation directly, a
thus Eq. (13) yields a stronger bound forIsA:Kd than
Kholevo’s theorem. Another example where Eq. (1
may improve upon the Kholevo bound is the “tran
lucent” measurements [9] that have been studied
connection with eavesdropping in quantum cryptograp
ti-
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[10]. Whenever a measurement “leaves some informa
behind” in the systemQ, Eq. (13) will in general be
a stronger statement about the informationIsA:Kd that
is obtained.
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with Richard Jozsa, Carlton Caves, Chris Fuchs, a
Howard Barnum.
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