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We prove a new result limiting the amount of accessible information in a quantum channel. This
generalizes Kholevo's theorem and implies it as a simple corollary. Our proof uses the strong subaddi-
tivity of the von Neumann entropy functiondl p) and a specific physical analysis of the measurement
process. The result presented here has application in information obtained from “weak” measurements,
such as those sometimes considered in quantum cryptography. [S0031-9007(96)00060-9]

PACS numbers: 89.70.+c, 03.65.Db

When a measurement is performed on a quantum sysleviation that is better in several respects: (1) The proof
tem, information is acquired about the preparation of thes based on a well-known property of the entropy func-
system. In a quantum communication channel, for extional S(p) known asstrong subadditivity. [This prop-
ample, the receiver uses a “decoding observable” to inerty is not itself easy to prove, but it is a propertyStip)
fer something about the “signal state” of the channel [1].itself, without reference to measurements.] (2) We em-
One of the central problems of quantum information theploy a physical model of the measurement process instead
ory is the extent to which the laws of quantum mechanic®f a mathematically defined “observable.” This model is
provide limitations and opportunities for information ac- sufficient to describe any “generalized” measurement (or
quisition in various contexts. POVM) [5], where distinct outcomes are represented by

A theorem stated by Levitin [2] and proved by Kholevo positive operators instead of projections. (3) Because our
[3] provides an upper bound on the amount of informationmodel of measurement includes the effect of the measure-
that may be obtained about the preparation of a quantumment process on the systefh we are in fact able to ar-
system by the measurement of any observable. @ be  rive at a stronger result than Eq. (1). Our version is much
a quantum system which is prepared in the mixed statsharper than Kholevo’s theorem in the case of “weak”
p, With a priori probability p,. The overall ensemble of measurements that acquire only a small fraction of the
states is just available information.

_ Z Strong subadditivity—SupposeX andY are a pair of
P k PicPi gquantum systems whose joint state is given by the density
The information acquired in a measurement is representesatrix p*¥). The individual systems are described by
by the mutual informatiorf (4:K) between the measure- statesp®) and p¥), which are given by partial traces of
ment outcomed and the preparatioR. The mutual in- the joint state:
formation is given by
I(A:K) = H(K) — H(K|A), p
that is, the difference between tle priori uncertainty p") = TrypXV)
in K [measured by the Shannon entrogy(K) =
—>« P« Inp,] and the average uncertainty i after the  Subadditivity[6] is a property of the entropy functional
measurement outcomé is known. Kholevo’'s theorem that states that

states that
S(p™) = 5(p%) + (o). ®3)
I(AK) = S(p) = > piS(py). 1)
where S(p) = —Trp Inp, the von Neumann entropy o
the density operatop. The quantity on the right-hand
side of the inequality,

x =50p) — > piS(py), ) S(pX) + 8(p™) = S(p™) + (D), (4)

bounds the accessible inforr]%ation in the quantum ensemwhere pX), p(X¥) etc. are states of various subsystems
ble. y and its properties will be of central importance in obtained by partial traces of the global stat&?). This
this paper. is a nontrivial property to establish for the von Neumann
The standard proof of Kholevo’s theorem is fairly dif- entropyS; see, for example, Wehrl's review paper on the
ficult (see [3,4]). In this paper we provide an alternativeproperties of entropy [6]. The strong subadditivity ©f

®) = Try p®")

" A stronger property of entropy callesirong subadditivity
[7] is clearly related. Suppos¥®, Y, and Z are three
quantum systems. Then
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implies, among other things, thatis subadditive; simply  H(p) + > p,S(p*")+S(p™)

consider a state of the form k
p(XYZ) _ |¢(X)><¢//(X)| ® p(YZ) = H(ﬁ) + ZPkS(pz((X)) + S(p(XY))’
k
for a pure statdyX)) of X and an arbitrary joint state
p%) of systemsY andZ. S(pX) — ZPkS(P;(CX)) = S(pXM) — ZPkS(P;EXY))’
Our interest in strong subadditivity is in proving an k k
important property of the Kholevo bound functiongl XX = X (6)

defined in Eq. (2) above. Suppose the joint sﬁa(fey) of

systemsX andY is produced with probability,. Then which is what we wished to prove.

Measurement—Our discussion of measurement will

xXY) _ (XY) - ;
P 2 pip s and be based on a specific physical model of measurement,
to which we now turn. Suppose we have a quantum
XY) — ¢(,(XV)y _ (XY) . o
X =8(p"") gpks(pk ). systemQ with an initial statep@. The measurement

process will involve two additional quantum systems: an

(X) . . .
ﬁé of systemX alone. Then the Kholevo bound would systemsA and E are initially in a joint statep(()AE), so

that the overall initial state of everything jgA#2) =

x) _ S( () — Z S( (x)) p(()AE) ® p(Q). The measurement process proceeds in two
X P T PiotPy ) successive stages. (1) A dynamical evolution including

interactions amongd, E, andQ, represented by a unitary

We now wish to establish thggX) = y*¥)_ This is operatorU:

a sensible inequality; sincg is the upper bound on the
accessible information, it is reasonable that this bound p
does not increase when part of the system is .d'sca?fde 2) Discarding of the environment, represented by a partial
Our model of the measurement process, described in th[ )
o . ) ; . ace over the systeifi:

next section, includes a unitary evolution (during whjeh
is constant) and a discarding of the “environment” degrees pUED) — U — Try pAED)
of freedom. The fact thay cannot increase during such
a process will be the key to our main result.

The proof thaty cannot increase when part of the
system is discarded is based on the following fact. Le

(EQ) _, ((UEQ) — 17, (AEQ) T

For the process to constitute a measurement, we require
that, after these two stages, the st@é? be of the
{ollowing form:

A andB be two systems in a state of the form HUAQ) — Zp(a)|¢l(lA)><¢l(JA)| ® w@, @)
a
pWB = ZqilaEA)Ma,(A)l & p, where the stategp?) are a fixed orthogonal set of

oF apparatus states, independent of the input sjstd.
where the statek:\”)) are orthogonal. Then the entropy [P(a) andw'? may depend op(?)]

of the joint state is We note several things about this model. The states
5 |¢l(;‘)> are interpreted as the “pointer states” of the mea-
S(p“P) = H(g) + ZqiS(pE )). surement apparatus, which label measurement outcomes.
i

For ordinary measurement apparatus, these states are
The quantityH(g) is the classical (Shannon) entropy of macroscopically distinguishable and therefore orthogonal.

the probability distributiory; . The choice of pointer states is not determined by the state
Consider the state of the system being measured, but is fixed for a given
measurement device in a given environment.
p X = p o™ @ k) (k) (5) It may be objected that it is unrealistic to suppose
k that a given measurement outcome correspondspiore

for an orthogonal set of statéls?)). Various terms inthe state of the apparatus systeay which may after all
strong subadditivity relation [Eq. (4)] can be calculated: be macroscopic. Bu# represents only the “pointer”
degree of freedom of the apparatus; other degrees of
S(p*Yy = H(p) + ZPkS(P;iXY))’ freedom (including thermal degrees of freedom) may be
% considered to be part of the environmént Furthermore,
if the pointer state is not completely resolved by an

S(p*?) = H(p) + > p,S(pX). outside observer, that observer will simply “bin” various
k values ofa together, resulting in a decrease in the ac-
Strong subadditivity therefore yields quired information.
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Coherences between different measurement outcomasim and write this as
do not remain in the joint state of systeth@andQ. Any
such coherences have “leaked away” into the environment pA9 => Pa)leP)(pW @ W@, (9)
during the dynamical evolution. The pointer states are a
in fact determined by the requirement that differentwhereP(a) = >, P(a, k) is the total probability for the
measurement outcomes decohere via interaction with th@easurement outcomeand
environment [8].

The numbersP(a) are interpreted as the probabilities wi@ = ZP(kla)Wig)
of the various outcomes of the measurement, indexed by k
a. The statesw? are the possible states @ after Is the final state oD, averaged over preparations, given
the measurement. the outcomez. [Of course,P(k|la) = P(a,k)/P(a).]

The model we have described for measurement seems ¢ “*¢’ must be the same ag“#?), since entropies
very general. Any interaction of the measuring appaare preserved under unitary evolution. But becauss
ratus and the environment with the systepnis pre- honincreasing under the partial trace operation [Eq. (6)
sumably described by unitary dynamics, and coherencedPove], we know thaty?) = $“£2). Thus, we con-
between measurement outcomes are then lost. The diffeglude that

ent apparatus readings are distinguishable and therefore U0 < @ (10)
orthogonal. We therefore adopt this as a general picture ’
applicable to any measurement. We now evaluatg“2) = §(p%9) — ¥, p. s(p¢?).

Information acquisition—As before, we suppose that The form of pA2) given in Eq. (9) yields that

the systemQ is initially prepared in the stat;e,EQ) with

a priori probability p,. The state of the apparatus S(p“9) = H(A) + Y P(a)S(w'?). (11)
and environment is p(()AE), independent of the prepa- ¢

ration of 0. (The independence assumption simply saydvhere H(4) = —>, P(a)InP(a), the Shannon entropy
that no additional information about the preparation of the®f the (average) probability distributio®(a) over the
system is available except that which residegititself.) m(c:g)surement outcomes. Similarly, given Eq. (8) for
The initial state of the entire system given thié prepa- P«

ration forQ is

A (0)
S(pU9) = H(Alk) + D P(alk)S(w (12)
(AE) k)s
pIEAEQ) = i @ p](CQ)' k -~ a
Averaging over the possible preparations, we obtain ~ WhereH(Ak) is the Shannon entropy of the measurement
outcome conditional on a particular preparation The
pAEQ) — Zpkpl((AEQ)' conditional informationH (A|K) = >, p, H(Alk).
k

We therefore have
Becausep(()AE) is independent of the preparatioh,

A measurement process as described in the previous k
section now takes place. In the first stage of the measure-
P g = H(A) + > P(a)s(w!?) — H(AIK)
a

ment process, the stateéAEQ) evolve unitarily into the

statesf),((AEQ). In the second stag@,iAEQ) is reduced to ©)
+ (A0) , = > P(a,k)S(wai ).
pr by partial trace. These states are of the form =

The mutual informatiod (A:K) = H(A) — H(A|K). We

5(A40) _ Ay (@ Q) mal YT ,
P = Zp(alk)|¢a b ® wa - () can rewrite this inequality as
a
P(alk) is theconditional probabilityfor the measurement Y9 = 1a:K) + ZP(a)
outcomea given thekth preparation folQ, and the states a
W%:) are the resulting states @ when the kth pre- % |:S(W(Q)) _ ZP(kla)S(w(%) }
a a .

paration leads to the measurement outcamgThe w;%) k

need only be defined wheR(alk) # 0.] The average The quantity in square brackets jg?, the value ofy
statep“?) of A andQ after the measurement process is for the systemQ after the measurement is concluded,
conditional on the outcome for the experiment. We

PO =3 P(a,k)p®) (] @ Wi, have therefore shown that
a,k
where P(a, k) = p,P(alk), the joint probability of mea- I(AK) = 9 — Zp(a)Xo(lQX (13)
surement outcome and preparatio. We can do th& a
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Equation (13) is our central result. Since the quanti{10]. Whenever a measurement “leaves some information
ties XL(,Q) are non-negative, Kholevo’s theorem [Eq. (1)] behind” in the systemQ, Eq. (13) will in general be
is a corollary to this more general theorem. a stronger statement about the informatiti@d:K) that
The information obtained about the preparation of thds obtained.
systemQ by means of a measurement procedure is thus The authors wish to acknowledge helpful conversations
bounded by the average amount that the quantitle-  with Richard Jozsa, Carlton Caves, Chris Fuchs, and
creasesin the course of the measurement. This factHoward Barnum.
expresses a new and potentially useful relationship be-
tween thepowerof the measurement to provide informa-
tion aboutQ and the physicaéffectof the measurement
process upo.
Suppose, for example, that our measurement is de
scribed by a set of one-dimensional projectieng and
that the effect of the procedure is given by the “projection 2]
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