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Diffusion-Controlled Reactions at Polymer-Polymer Interfaces
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A theory is presented for the diffusion-controlled coupling of end-functionaliZzecand B
homopolymers at ai\-B interface. The effective reaction rate coefficidntis shown to exhibit a
surprising degree of universality associated with the small center-of-mass diffusivity of high molecular
weight polymers. For polymers below the entanglement threstlet N.,), k. scales with molecular
weight ask, ~ 1/InN, and above the thresholé, ~ 1/N InN. [S0031-9007(96)00023-3]

PACS numbers: 82.35.+t, 61.25.Hq, 68.10.—m

It is well known that chemical reactions occurring in one end. Similarly, the bullB phase consists of chains
complex fluid media such as polymer solutions or meltf length Ng, mixed with a low concentratioipg) of
are frequently under diffusion control, a consequencend-functionalized typ® chains. TheA reactive groups
of the small translational diffusivity of macromolecules. can couple only wittB groups to form diblock copolymer
The theoretical framework to describe such phenomenat the interface. | further assume that the two phases are
in homogeneouseacting polymer systems is now quite strongly segregated, so that the interfacial thickngss
mature [1-5] and is in satisfactory agreement withmuch smaller than a characteristic chain radius of gyra-
experiment [6—8]. tion, R = b(N/6)'/2. (Here,b is a statistical segment

In contrast, few theoretical studies exist of diffusion-length [12] andN = N4 or N3 is a characteristic degree
controlled reactions innhomogeneougolymer systems of polymerization.) In particular, the Flory interaction pa-
[9(a),9(b)]. This is particularly surprising given the rameter [13] betweeA and B monomers,y, is assumed
extensive commercial application of reactive blending. Into be small compared with unity, but | takeN > 1.
reactive blending [10], a melt of typ&-homopolymer In this “Helfand-Tagami”’ regime [14], the equilibrium
chains is mechanically mixed with a second melt ofinterfacial thickness given by = 2b/(6x)"/? is much
typeB chains. During the blending operation, reactivelarger than the monomer sibg but much smaller thaR.
groups onA chains react with complementary functional The two bulk phases are pureAnandB.
groups onB chains in theA-B interfacial regions. These  To describe the dynamics of reaction and diffusion in
interfacial coupling reactions produce a third species, grafthe interfacial region, | adapt a formalism introduced for
(or block) copolymer. The copolymer subsequently playshomogeneous systems by de Gennes [3]. Because of the
a dual role: First, as an emulsifying agent that lowers thessumption that the reactive species are dilute, it is suffi-
A-B interfacial tension and permits a finer dispersion ofcient to consider the behavior of a pair distribution func-
the two phases, and second, as a “glue” that by virtue dfion ¢ (rs,rp; ) describing the joint probability density
entanglements strengthens the interfaces [11].

In the present Letter, | develop a formalism for treat-
ing diffusion-controlled reactions in inhomogeneous poly-
meric fluids and apply it to the case of a planar interface
betweenA and B homopolymer phases, each bulk phase
containing a small concentration of reactive chains. Ex-
pressions are developed for the effective reaction rate co-
efficientk,, which describes the bimolecular reaction rate
after transients have relaxed, but at times short enough B | b= A
that the interface is not perturbed by the copolymer re- _th o £/
action product and the bulk phases are not depleted in . . .
reactive groups. Under such conditions,gf and p FIG. 1. SymmetricA-B polymer interface and coordinate sys-
denote the densities of type-and B reactive chains in tem emp"?ye‘i The interfacial region (shaded) corresponds

. . . to the region—¢/2 = x = £/2 in which loops of A and B
the two bulk phases, the reaction rate is described bjolymers overlap. The bulkA phase (x — =) consists of
oA = pp = —kepaps. type-A homopolymer chains (solid curves) mixed with a low

The specific model system under consideration igoncentrationp, of end-functionalized (solid circle) typa-

shown in Fig. [1]. The bulkA phase consists of molten ¢hains. The bulkB phase (x — —x) consists of type
hains with dearee of bolvmerizatio, and also homopolymer chains (dashed curves) mixed with a low con-
c g poly A centrationpp of end-functionalized (open circle) tyggehains.

contains a small concentration (number dengif) of  Solid circles react with open circles irreversibly on contact in
otherwise identical chains that have a reactive group othe interfacial region.
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that at timet a typeA reactive end group is locatedst  with kernel

and a typeB group is atrz. The initial ensemble corre- %

sponds to thermodynamic equilibrium in the absence of K(x,x';s) = [ dte *'H (1)Galx,x";1)Gp(x,x'; 1),
interfacial reaction 0 (5)

#(ra,rp;0) = pappexfd—Valxa) — Va(xp)], (1) and whereH | (1) = [dr, Gi(r ;)G (r.;1).

where Vg (xg) (K = A or B_) is the potential (units of In the present Letter, | restrict consideration to cases
kgT) felt by a typeK chain with reactive end group of instantaneous, irreversible reaction on contact of two
located at positiony measured normal to the midplane of reactive groups,Qy — *, and ignore transients in the
the interface(xx = 0). The zero of potential is taken to approach to steady state;~ 0. Noting that a frequency-
correspond to the bulk phases, e.g.,Jim: Va(xa) = 0.  dependent reaction rate coefficient can be defined by
At time + = 0+, the interfacial reaction is turned on and k(s) = Sy Qo(paps)~" [ dx W (x; 5), whereSy is the ratio
time evolution ofy(r,, rg; 1) proceeds according to of the interfacial area to the volume of the system, it
d follows that the effective reaction rate coefficient is given
U = Ly = —00d(rs — xa)i. 2) g

Here, £ is an appropriate diffusive operator describing

spatial evolution of reactive groups located neaandrg k, = limk(r) = SV[ dx M(x), (6)

(eg.. L = DAVi + DBV§; for simple diffusion) andQ, _ ’__’°° _ '

is a parameter proportional to the reaction rate of a pair ovhereM (x) satisfies the following Fredholm equation of

A andB reactive groups in contact. the first kind:

The next step is to invert the differential operator on R . ,

the left-hand side of Eq. (2), affecting a transformation to €XH—Va(x) — Vp(x)] = j dx' K(x,x50)M(x) . (7)

?hne";(t:%gl gg?ﬁél?g{/elrg\éogggr;?;Oégu:\?vgegzr?iilsﬁ?g;)o;’ As a first application of these equations, | consider
; e "“a symmetric A-B polymer interface[Ns = Nz = N,

gator) can be factored into a product of single-particle y POy [N B

, i | Va(x) = Va(—x) = V(x)] consisting of chains below
Green’s functions [3]. Furthermore, only the. dlago.nal,[heir entanglement molecular weight [12,13] < N,).
elements ofy are relevant to the present discussion

; O ) . ‘The Rouse model [12] is appropriate for describing
Introduqng ‘P(x.’ f = ¢(r’r’.t)’ which represents the the reactive end dynamics under such circumstances.
probability density that a pair ok andB reactive groups Helfand and Tagami [14] discussed the equilibrium
are coincident at position measured from the center of

. : ; properties of symmetric polymer interfaces. Of particular
the interface, the integral equation reduces to interest here is the potential associated with locating the

W(x,1) = papge D 7Ve end of a typeA chain at positionx in the interfacial
' region, V(x) = (1/2)In[1 + exp(—4x/£&)]. To simplify
- Qof dr] dr' G4(r,r';t — 1) the subsequent calculations, | approximate this potential
0 by a linear expressiony(x) = 1/2 — x/&, within the
X Gg(r,r';t — 1)K, 1), (3) interfacial region,—£&/2 < x < £/2, and setV(x) = 0

where Gg(r,r'; 1) is a single-particle Green’s function for x > &/2 and V(x) = « (reflecting boundary) for
representing the probability density that the reactive end < —¢/2. (It will soon become apparent that is
of a typeK chain has undergone a diffusive displacemen{nsensitive to approximations of this sort.) An impor-
[in the potential fieldVk (x)] from positionr’ atz = 0 to tant consequence of this approximation is that brth
positionr at timet. and x’ in Egs. (6) and (7) are restricted to ttimite

In order to further simplify Eq. (3), | next assume thatinterval, (=¢/2,¢£/2).  Moreover, the left-hand side
Gk can be factored into terms corresponding to propa®f Ed. (7) is x independent within that interval; i.e.,
gation along the interface normal (alongy and in the &XH—Va(x) = Vp(x)] =e". _
transversegy-z plane. (This is exact for both simple dif-  For Rouse dynamics, the transverse reactive end mo-
fusion and Rouse dynamics [12]; for entangled polymerdion s potential-free and it can be easily demonstrated

see the discussion below.) Invoking translational invari{3] that 7 (r) = 1/4w%*(1), wherex(r) is the root-mean-

that Gg(r,r’;t) = Ge(r. — r';1)Gk(x,x";1). Laplace transverse coordinates. This object has distinct asymp-
transforming both sides of the resulting integral equatiorfotic behavior for times less or gzreater than the longest
over time (Laplace variabls; transformed quantities are Rouse relaxation time [12f;; ~ N*=. In particular [12],

denoted by a hat) leads to the Fredholm equation (1) ~ 2Dt for t > 71, whereD = Dy/N is the center-
N 0 V-V of-mass (COM) diffusion coefficient of a reactive chain
\I/(x S) =5 pappe A(x)=Va(x) K X . .. .
’ and D, is a monomeric diffusivity. In contrast, for times

A PN much smaller tham, the chain end dynamics are subdif-
- QO[ dx' K(x, x5 s)Ws), (4 fusive [12,15]7%(r) =~ 1.3036(Dor)'/>.
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The other ingredient necessary for evaluation of the | now turn to consider the — 0 limit of the kernel
kernel K(x,x;0) is an expression for the propagator defined by Eq. (5). Breaking the integral overat a
G(x,x';t) = Galx,x';1). [Note that Gp(x,x';1) = time 7. of order 7y yields two integrals that can be
G(—x,—x';t) for a symmetric interface of equal length approximately evaluated with Egs. (8) and (9). (The
chains.] An important time scale for discussing the prop-inal answer fork, does not depend on the precise choice
erties of G is 7o = b?/Dyx?, which scales as the time of r..) The first contribution,k, (x, x’;0), arising from
required for a chain end to diffuse out of the interfacialthe time interval(0, 7..), is highly localized about’ and
region [x(r9) ~ £]. For r < 7, the propagatorG is can be approximated by a delta functidfy,(x, x’; 0) ~
insensitive to both the reflecting boundaryxat= —£/2  £/(b?D¢)6(x — x'). The second contribution tak
and the finite range of the potentiad = £/2). (From represents the time intervét., ) and arises from sub-
the above it should be clear thét is only required for stitution of Eq. (9) into Eq. (5). Asymptotic evaluation
—&/2 < x,x' < £/2.) Thus, an approximate expression of the integral forr,/7. = 7,/79 ~ N> — o leads to
for G at t < 7o is obtained from the exact Green’s K,(x,x’;0) = 0.001008¢'(D%7;)"!InN2. The reader
function solution of the Rouse model in ambounded should note that sincB ~ N~ ! andr; ~ N2, K, ~ InN

linear potential field, for N — ». Becausek, is N ipdependentf(z provides
Glrx'1) ~ 1 the dominant contribution tX for large N. Solving
X X V27x(t) Egs. (6) and (7), | find the following asymptotic result

, 5 jmd for k,: k, = 992.1(D*r,/InN?)Sy. Using the identity
X expl—[x — x" = (Dox /&Y /2 ()} [12] D7, = (2/7*)R?, this can be rewritten in the more
(8) illuminating form
This is evidently a Gaussian wave packet of width
~%x(t) and traveﬁng to lower potentialp(positivg) at ke = 50.3DR(2RSy/InN). (10)
constant velocityv = Doy /£. This velocity is easily Previous studies [3,15] of diffusion-controlled reactions
understood: a typé- chain end at positionr = —¢/2  between end-functionalized chainstiomogeneoupoly-
experiences a force equal teV/(x) = 1/£¢ associated mer melts have established a reaction rate coefficient of
with the action of the chemical potential on all [14] the formk, ~ 50.3DR. Evidently, the facto2RSy/InN
n ~ 1/xy monomers in the chain strand spanning thein Eq. (10) can be interpreted as the volume fractifin
interface. (Each monomer feels a force proportional tef an inhomogeneousystem that is accessible #-B
x/€.) Balancing the total force on the strandl/¢, coupling. The combinatioBRSy is natural because any
against the product of the velocity and the friction reactive chain with its COM withirR of the interface (on
coefficient of the strands/Dy ~ 1/xD, recoversv =  either side—hence the factor of 2) is capable of partici-
Dox /€. Itis also important to note that at timg the  pating in a coupling reaction. Reduction of this acces-
forced displacement of the packetr,, is comparable in sible volume fraction by the factor of/InN ~ 1/In7;
a scaling sense to both the width of the packeét,), and is associated with the subdiffusive Rouse dynamics that
the interfacial width£. are operative on the time scale that local equilibrium is
If the reactive polymers are long] > 1, then theN-  achieved inside the interface. Overall, it is clear that
independent time scalg is much smaller than the longest Eq. (10) has the simple interpretation =~ k,¢, and
Rouse relaxation timer; ~ N%, which is the time re- scales with molecular weight in the present Rouse regime
quired for the polymer COM to diffuse a distance of orderask, ~ 1/InN.
the radius of gyrationR = b(N/6)!/2. Thus, a chain end Next, | turn to consider melts with reactive chains that
that is initially in the interfacial region will achieve a local are longer than the entanglement threshdld> N, ) and
equilibrium with regard to its position in the interface on for which the reptation model is appropriate [12,13]. To
a time scale comparable tg@ and much less than,. For  discuss this situation, it is helpful to recall [12] the be-
t > 79, the chain end distribution has equilibrated over ahavior of the mean-square end displacement of a freely
rangex(r) > ¢&;i.e., expV(x)]G(x,x';t) ~ 1/x(r). The reptating chain. At times less than ~ a*/Dyb?, the
numerical prefactor can be estimated by noting that Roustéme for the end to explore a distance of order the tube
dynamics cross over to classical diffusiorvat 7;. Use diametera, the end moves but subdiffusive Rouse dynam-
of the r > 7, asymptotic prefactor leads to the follow- ics, x(t) ~ b(Dor)'/2. At times intermediate between
ing approximate representation & over the interval 7. and the longest Rouse timg ~ N?, 7, < t < 7y,

(=&/2,&/2) and fort > 7¢: the constraints of chain ente}nglements produce an unusual
2 Rouse dynamlcsxz(t) ~ ab'2(Dyr)'/*. A third dynami-
Gl x"s1) = Norsa) x(t exd—V()]. ©)  cal regime is entered at times betwegrand the reptation

The factor of 2 difference in the prefactor of this ex- time 7, ~ N3. Forr; < 1 < 74, ¥2(t) ~ R(t/74)"/2.
pression from Eq. (8) arises from the reflecting boundaryFinally, at times exceeding, classical diffusion is recov-
at x = —&/2, which slows decay out of the interfacial ered,x*(t) ~ R*(t/74) ~ Dt, whereD ~ Dy(a/b)*N 2
region. is the COM diffusion coefficient of the reptation model.
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In the typical situation, the tube diametaris larger insensitivity to interfacial structure and dynamics. This
than the interfacial thickness, so | will proceed on that occurs because the rate limiting step in such reactions is
assumption, even though the final result is insensitive téhe slow diffusive transport of reactive chain COM'’s to
such subR scales. Unlike the Rouse model, longitudi- within R of the interface. Once this has occurred, sub-
nal and transverse diffusion in the reptation model are irdiffusive transport into the interfacial region and the ac-
general coupled when a potential field is present. Nevertual coupling reaction take place on faster time scales. |
theless, an approximate factorization occurs in the presemaim hopeful that extensions of the present analysis (e.g., to
application on time scales greater thapn at which lo- asymmetric systems, or to include convective transport)
cal equilibrium is achieved within the interfacial region. will prove fruitful in developing models of practical reac-
For r > 7, the product ofG, and Gy in Eq. (3) is to tive blending operations.

a good approximation independentofind x” within the This work was supported by the National Science
interface, and is a function only af, — r|. Note that Foundation under Grant No. NSF-DMR 9505599.
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