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A theory is presented for the diffusion-controlled coupling of end-functionalizedA and B
homopolymers at anA-B interface. The effective reaction rate coefficientke is shown to exhibit a
surprising degree of universality associated with the small center-of-mass diffusivity of high molecula
weight polymers. For polymers below the entanglement thresholdsN , Ned, ke scales with molecular
weight aske , 1y lnN , and above the threshold,ke , 1yN lnN . [S0031-9007(96)00023-3]

PACS numbers: 82.35.+t, 61.25.Hq, 68.10.–m
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It is well known that chemical reactions occurring i
complex fluid media such as polymer solutions or me
are frequently under diffusion control, a consequen
of the small translational diffusivity of macromolecules
The theoretical framework to describe such phenome
in homogeneousreacting polymer systems is now quit
mature [1–5] and is in satisfactory agreement wi
experiment [6–8].

In contrast, few theoretical studies exist of diffusion
controlled reactions ininhomogeneouspolymer systems
[9(a),9(b)]. This is particularly surprising given the
extensive commercial application of reactive blending.
reactive blending [10], a melt of type-A homopolymer
chains is mechanically mixed with a second melt
type-B chains. During the blending operation, reactiv
groups onA chains react with complementary functiona
groups onB chains in theA-B interfacial regions. These
interfacial coupling reactions produce a third species, gr
(or block) copolymer. The copolymer subsequently pla
a dual role: First, as an emulsifying agent that lowers t
A-B interfacial tension and permits a finer dispersion
the two phases, and second, as a “glue” that by virtue
entanglements strengthens the interfaces [11].

In the present Letter, I develop a formalism for trea
ing diffusion-controlled reactions in inhomogeneous pol
meric fluids and apply it to the case of a planar interfa
betweenA and B homopolymer phases, each bulk pha
containing a small concentration of reactive chains. E
pressions are developed for the effective reaction rate
efficient ke, which describes the bimolecular reaction ra
after transients have relaxed, but at times short enou
that the interface is not perturbed by the copolymer r
action product and the bulk phases are not depleted
reactive groups. Under such conditions, ifrA and rB

denote the densities of type-A and -B reactive chains in
the two bulk phases, the reaction rate is described
ÙrA ­ ÙrB ­ 2kerArB.

The specific model system under consideration
shown in Fig. [1]. The bulkA phase consists of molten
chains with degree of polymerizationNA and also
contains a small concentration (number densityrA) of
otherwise identical chains that have a reactive group
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one end. Similarly, the bulkB phase consists of chains
of length NB, mixed with a low concentrationsrBd of
end-functionalized type-B chains. TheA reactive groups
can couple only withB groups to form diblock copolymer
at the interface. I further assume that the two phases
strongly segregated, so that the interfacial thicknessj is
much smaller than a characteristic chain radius of gy
tion, R ­ bsNy6d1y2. (Here, b is a statistical segment
length [12] andN ­ NA or NB is a characteristic degree
of polymerization.) In particular, the Flory interaction pa
rameter [13] betweenA andB monomers,x, is assumed
to be small compared with unity, but I takexN ¿ 1.
In this “Helfand-Tagami” regime [14], the equilibrium
interfacial thickness given byj ­ 2bys6xd1y2 is much
larger than the monomer sizeb, but much smaller thanR.
The two bulk phases are pure inA andB.

To describe the dynamics of reaction and diffusion
the interfacial region, I adapt a formalism introduced fo
homogeneous systems by de Gennes [3]. Because of
assumption that the reactive species are dilute, it is su
cient to consider the behavior of a pair distribution fun
tion csrA, rB; td describing the joint probability density

FIG. 1. SymmetricA-B polymer interface and coordinate sys
tem employed. The interfacial region (shaded) correspon
to the region2jy2 # x # jy2 in which loops of A and B
polymers overlap. The bulkA phase sx ! `d consists of
type-A homopolymer chains (solid curves) mixed with a low
concentrationrA of end-functionalized (solid circle) type-A
chains. The bulkB phase sx ! 2`d consists of type-B
homopolymer chains (dashed curves) mixed with a low co
centrationrB of end-functionalized (open circle) type-B chains.
Solid circles react with open circles irreversibly on contact
the interfacial region.
© 1996 The American Physical Society
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that at timet a type-A reactive end group is located atrA

and a type-B group is atrB. The initial ensemble corre
sponds to thermodynamic equilibrium in the absence
interfacial reaction

csrA, rB; 0d ­ rArB expf2VAsxAd 2 VBsxBdg , (1)

where VK sxKd sK ­ A or Bd is the potential (units of
kBT ) felt by a type-K chain with reactive end group
located at positionxK measured normal to the midplane o
the interfacesxK ­ 0d. The zero of potential is taken to
correspond to the bulk phases, e.g., limxA!` VAsxAd ­ 0.
At time t ­ 01, the interfacial reaction is turned on an
time evolution ofcsrA, rB; td proceeds according to

≠

≠t
c 2 L c ­ 2Q0dsrA 2 rBdc . (2)

Here, L is an appropriate diffusive operator describin
spatial evolution of reactive groups located nearrA andrB

(e.g.,L ­ DA=
2
A 1 DB=

2
B for simple diffusion) andQ0

is a parameter proportional to the reaction rate of a pai
A andB reactive groups in contact.

The next step is to invert the differential operator o
the left-hand side of Eq. (2), affecting a transformation
an integral equation. Invoking the diluteness assumpti
the kernel of the inverse operator (a two-particle prop
gator) can be factored into a product of single-partic
Green’s functions [3]. Furthermore, only the diagon
elements ofc are relevant to the present discussio
Introducing Csx, td ; csr, r; td, which represents the
probability density that a pair ofA andB reactive groups
are coincident at positionx measured from the center o
the interface, the integral equation reduces to

Csx, td ­ rArBe2VAsxd2VBsxd

2 Q0

Z t

0
dt

Z
dr0 GAsr, r0; t 2 td

3 GBsr, r0; t 2 tdCsx0, td , (3)

where GK sr, r0; td is a single-particle Green’s function
representing the probability density that the reactive e
of a type-K chain has undergone a diffusive displaceme
[in the potential fieldVK sxd] from positionr0 at t ­ 0 to
positionr at timet.

In order to further simplify Eq. (3), I next assume th
GK can be factored into terms corresponding to prop
gation along the interface normal (alongx) and in the
transversey-z plane. (This is exact for both simple dif
fusion and Rouse dynamics [12]; for entangled polym
see the discussion below.) Invoking translational inva
ance in the transverse coordinatesr' ­ sy, zd, it follows
that GKsr, r0; td ­ G'

K sr' 2 r0
'; tdGK sx, x0; td. Laplace

transforming both sides of the resulting integral equat
over time (Laplace variables; transformed quantities are
denoted by a hat) leads to the Fredholm equation

Ĉsx, sd ­ s21rArBe2VAsxd2VBsxd

2 Q0

Z
dx0 K̂sx, x0; sdĈsx0, sd , (4)
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with kernel

K̂sx, x0; sd ;
Z `

0
dt e2stH'stdGAsx, x0; tdGBsx, x0; td ,

(5)

and whereH'std ;
R

dr' G'
A sr'; tdG'

B sr'; td.
In the present Letter, I restrict consideration to case

of instantaneous, irreversible reaction on contact of tw
reactive groups,Q0 ! `, and ignore transients in the
approach to steady state,s ! 0. Noting that a frequency-
dependent reaction rate coefficient can be defined
k̂ssd ­ SV Q0srArBd21

R
dx Ĉsx; sd, whereSV is the ratio

of the interfacial area to the volume of the system,
follows that the effective reaction rate coefficient is given
by

ke ; lim
t!`

kstd ­ SV

Z
dx Msxd , (6)

whereMsxd satisfies the following Fredholm equation of
the first kind:

expf2VAsxd 2 VBsxdg ­
Z

dx0 K̂sx, x0; 0dMsx0d . (7)

As a first application of these equations, I conside
a symmetric A-B polymer interface fNA ­ NB ; N,
VAsxd ­ VBs2xd ; V sxdg consisting of chains below
their entanglement molecular weight [12,13]sN , Ned.
The Rouse model [12] is appropriate for describin
the reactive end dynamics under such circumstance
Helfand and Tagami [14] discussed the equilibrium
properties of symmetric polymer interfaces. Of particula
interest here is the potential associated with locating th
end of a type-A chain at positionx in the interfacial
region, V sxd ­ s1y2d lnf1 1 exps24xyjdg. To simplify
the subsequent calculations, I approximate this potent
by a linear expression,V sxd ­ 1y2 2 xyj, within the
interfacial region,2jy2 , x , jy2, and setV sxd ­ 0
for x . jy2 and V sxd ­ ` (reflecting boundary) for
x , 2jy2. (It will soon become apparent thatke is
insensitive to approximations of this sort.) An impor-
tant consequence of this approximation is that bothx
and x0 in Eqs. (6) and (7) are restricted to thefinite
interval, s2jy2, jy2d. Moreover, the left-hand side
of Eq. (7) is x independent within that interval; i.e.,
expf2VAsxd 2 VBsxdg ­ e21.

For Rouse dynamics, the transverse reactive end m
tion is potential-free and it can be easily demonstrate
[3] that H'std ­ 1y4px2std, wherexstd is the root-mean-
square displacement of a chain end along either of the tw
transverse coordinates. This object has distinct asym
totic behavior for times less or greater than the longe
Rouse relaxation time [12],t1 , N2. In particular [12],
x2std ø 2Dt for t ¿ t1, whereD ­ D0yN is the center-
of-mass (COM) diffusion coefficient of a reactive chain
andD0 is a monomeric diffusivity. In contrast, for times
much smaller thant1, the chain end dynamics are subdif-
fusive [12,15],x2std ø 1.303bsD0td1y2.
3441
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The other ingredient necessary for evaluation of t
kernel K̂sx, x0; 0d is an expression for the propagato
G sx, x0; td ; GAsx, x0; td. [Note that GBsx, x0; td ­
G s2x, 2x0; td for a symmetric interface of equal lengt
chains.] An important time scale for discussing the pro
erties ofG is t0 ; b2yD0x2, which scales as the time
required for a chain end to diffuse out of the interfac
region fxst0d , jg. For t ø t0, the propagatorG is
insensitive to both the reflecting boundary atx ­ 2jy2
and the finite range of the potentialsx ­ jy2d. (From
the above it should be clear thatG is only required for
2jy2 , x, x0 , jy2.) Thus, an approximate expressio
for G at t ø t0 is obtained from the exact Green’
function solution of the Rouse model in anunbounded
linear potential field,

G sx, x0; td ø
1

p
2pxstd

3 exph2fx 2 x0 2 sD0xyjdtg2y2x2stdj .

(8)
This is evidently a Gaussian wave packet of wid
,xstd and traveling to lower potential (positivex) at
constant velocityy ­ D0xyj. This velocity is easily
understood: a type-A chain end at positionx ­ 2jy2
experiences a force equal to2V 0sxd ­ 1yj associated
with the action of the chemical potential on all [14
n , 1yx monomers in the chain strand spanning t
interface. (Each monomer feels a force proportional
xyj.) Balancing the total force on the strand,1yj,
against the product of the velocityy and the friction
coefficient of the strand,nyD0 , 1yxD0 recoversy ­
D0xyj. It is also important to note that at timet0 the
forced displacement of the packet,yt0, is comparable in
a scaling sense to both the width of the packet,xst0d, and
the interfacial width,j.

If the reactive polymers are long,N ¿ 1, then theN-
independent time scalet0 is much smaller than the longes
Rouse relaxation timet1 , N2, which is the time re-
quired for the polymer COM to diffuse a distance of ord
the radius of gyration,R ­ bsNy6d1y2. Thus, a chain end
that is initially in the interfacial region will achieve a loca
equilibrium with regard to its position in the interface o
a time scale comparable tot0 and much less thant1. For
t ¿ t0, the chain end distribution has equilibrated ove
rangexstd ¿ j; i.e., expfV sxdgG sx, x0; td , 1yxstd. The
numerical prefactor can be estimated by noting that Ro
dynamics cross over to classical diffusion att ø t1. Use
of the t ¿ t1 asymptotic prefactor leads to the follow
ing approximate representation ofG over the interval
s2jy2, jy2d and fort ¿ t0:

G sx, x0; td ø
2

p
2pxstd

expf2V sxdg . (9)

The factor of 2 difference in the prefactor of this e
pression from Eq. (8) arises from the reflecting bound
at x ­ 2jy2, which slows decay out of the interfacia
region.
3442
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I now turn to consider thes ! 0 limit of the kernel
defined by Eq. (5). Breaking the integral overt at a
time tc of order t0 yields two integrals that can be
approximately evaluated with Eqs. (8) and (9). (Th
final answer forke does not depend on the precise choic
of tc.) The first contribution,K̂1sx, x0; 0d, arising from
the time intervals0, tcd, is highly localized aboutx0 and
can be approximated by a delta function,K̂1sx, x0; 0d ,
jysb2D0ddsx 2 x0d. The second contribution toK̂
represents the time intervalstc, `d and arises from sub-
stitution of Eq. (9) into Eq. (5). Asymptotic evaluation
of the integral fort1ytc ø t1yt0 , N2 ! ` leads to
K̂2sx, x0; 0d ø 0.001008e21sD2t1d21 lnN2. The reader
should note that sinceD , N21 andt1 , N2, K̂2 , lnN
for N ! `. BecauseK̂1 is N independent,K̂2 provides
the dominant contribution toK̂ for large N. Solving
Eqs. (6) and (7), I find the following asymptotic resu
for ke: ke ø 992.1sD2t1y lnN2dSV . Using the identity
[12] Dt1 ­ s2yp2dR2, this can be rewritten in the more
illuminating form

ke ø 50.3DRs2RSV y lnNd . (10)

Previous studies [3,15] of diffusion-controlled reaction
between end-functionalized chains inhomogeneouspoly-
mer melts have established a reaction rate coefficient
the formkh ø 50.3DR. Evidently, the factor2RSV y lnN
in Eq. (10) can be interpreted as the volume fractionfa

of an inhomogeneoussystem that is accessible toA-B
coupling. The combination2RSV is natural because any
reactive chain with its COM withinR of the interface (on
either side—hence the factor of 2) is capable of partic
pating in a coupling reaction. Reduction of this acce
sible volume fraction by the factor of1y lnN , 1y lnt1
is associated with the subdiffusive Rouse dynamics th
are operative on the time scale that local equilibrium
achieved inside the interface. Overall, it is clear th
Eq. (10) has the simple interpretationke ø khfa and
scales with molecular weight in the present Rouse regim
aske , 1y lnN.

Next, I turn to consider melts with reactive chains th
are longer than the entanglement thresholdsN . Ned and
for which the reptation model is appropriate [12,13]. T
discuss this situation, it is helpful to recall [12] the be
havior of the mean-square end displacement of a fre
reptating chain. At times less thante , a4yD0b2, the
time for the end to explore a distance of order the tu
diametera, the end moves but subdiffusive Rouse dynam
ics, x2std , bsD0td1y2. At times intermediate between
te and the longest Rouse timet1 , N2, te ø t ø t1,
the constraints of chain entanglements produce an unus
Rouse dynamics,x2std , ab1y2sD0td1y4. A third dynami-
cal regime is entered at times betweent1 and the reptation
time td , N3. For t1 ø t ø td , x2std , R2stytdd1y2.
Finally, at times exceedingtd classical diffusion is recov-
ered,x2std , R2stytdd , Dt, whereD , D0saybd2N22

is the COM diffusion coefficient of the reptation model.
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In the typical situation, the tube diametera is larger
than the interfacial thicknessj, so I will proceed on that
assumption, even though the final result is insensitive
such sub-R scales. Unlike the Rouse model, longitud
nal and transverse diffusion in the reptation model are
general coupled when a potential field is present. Nev
theless, an approximate factorization occurs in the pres
application on time scales greater thant0, at which lo-
cal equilibrium is achieved within the interfacial region
For t ¿ t0, the product ofGA and GB in Eq. (3) is to
a good approximation independent ofx andx0 within the
interface, and is a function only ofr' 2 r0

'. Note that
the assumptiona . j implies that the end equilibration
dynamics proceed according to the Rouse model, sot0 is
still given byb2yD0x2. As before, arguing that the domi
nant N-dependent contributions to the kernelK̂sx, x0; 0d
arise from times greater thant0, K̂ can be estimated as
K̂sx, x0; 0d , e21

R`

t0
dt x24std. The numerical prefactor

in this expression is unspecified because the end displa
ment is not a Gaussian random variable at arbitrary tim
in the reptation model. Nevertheless, the Gaussian p
factor of 1y2p2 might be employed as an estimate i
applications.

Next, I evaluate this integral for̂K by dividing up
the domain of integration. Becausea is assumed greater
thanj, te . t0. The first contribution toK̂ comes from
the time interval st0, ted, but is N independent. The
next time interval to contend with isste, t1d. Inserting
the expression given above forxstd over this interval
leads to a contribution to the kernel that scales asK̂ ,
Nya2D0. Finally, I consider the time intervalst1, `d.
The contribution of this interval toK̂ is qualitatively
the same as was observed previously for the Rou
model. The integral is convergent fort ! `, but exhibits
a logarithmic dependence on the lower limit due
the xstd , t1y4 behavior in the intervalt1 , t , td .
The contribution to the kernel is estimated asK̂ ,
sDR2d21 lnstdyt1d , N lnN, whereD , N22 is now the
COM diffusivity of a reptating chain. Clearly this las
contribution to the kernel is the largest and can be us
as in Eqs. (6) and (7) to obtain an asymptotic estima
of ke for N ! `. I find an expression strictly analogou
to Eq. (10),ke ø DRsRSV y lnNd , 1yN lnN, except that
now D is reduced by a factor proportional to1yN .
Moreover, if the Gaussian estimate of the numeric
prefactor for K̂ is used, the overall prefactor forke

corresponding to entangled chains is a factor of 2 larg
than that shown in Eq. (10), i.e., 100.6.

Overall, the rate coefficient describing coupling rea
tions at polymer-polymer interfaces exhibits a surprisin
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insensitivity to interfacial structure and dynamics. Th
occurs because the rate limiting step in such reaction
the slow diffusive transport of reactive chain COM’s t
within R of the interface. Once this has occurred, su
diffusive transport into the interfacial region and the a
tual coupling reaction take place on faster time scales
am hopeful that extensions of the present analysis (e.g
asymmetric systems, or to include convective transpo
will prove fruitful in developing models of practical reac
tive blending operations.
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