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We describe a numerical procedure that clearly indicates whether or not a given statistical mechanical
system is solvable (in the sense of being expressible in termsfofite functions). If the system is not
solvable in this sense, any solution that exists must be expressible in terms of functions that possess a
natural boundary. We provide compelling evidence that the susceptibility of the two-dimensional Ising
model, the generating function of square lattice self-avoiding walks and polygons and of hexagonal
lattice polygons, and directed animals are in the “unsolvable” class.

PACS numbers: 05.20.—y, 02.60.—x, 05.50.+q

Some of the most famous results in mathematics The first question we wish to address in studying this
involve a proof of the intrinsic unsolvability of certain latter class is what is meant by a solution. Restricting con-
problems—such as the determination of the roots obideration to functions of a single variable, such as tem-
polynomial equations of a degree greater than 4. Irperature or perimeter, one ideally desires a simple closed
theoretical physics such results are largely unknown. Irfiorm expression, such as that obtained [2] for the Ising
this Letter we take a first step towards filling this gap bymodel spontaneous magnetization. Less restrictively, one
providing a powerful numerical technique that providesmay seek a differential or difference equation which can
strong evidence for the unsolvability of certain prominentbe solved to yield the analytic structure. A more restric-
problems in equilibrium statistical mechanics in terms oftive class is formed by thB-finite functions [17], defined
the “standard” functions of mathematical physics. Whileas those functions which are solutions of a linear ordinary
falling short of a proof, the method is of widespreaddifferential equation of finite order with polynomial coef-
applicability. ficients. This class contains most of the solved models

There is a short but celebrated list of models in statistimentioned above. Certainly the zero-field partition func-
cal mechanics for which closed form solutions are availtion and magnetization of the Ising model fall into this
able. These include the zero-field partition function [1]class. However, we provide compelling evidence below
and spontaneous magnetization [2] of the two-dimensionghat the susceptibility does not.

Ising model, the square lattice dimer model [3,4], the six- We first consider the zero-field reduced partition
vertex model [5], the eight-vertex model [6], and the hardfunction for the anisotropic model, defined byA X
hexagon model [7]. (1, 12) = limy_[Z(K}, K»)/2cosIK, coshk, ]V, where

There are other models which are perhaps more obviy, = tanhk; andV is the number of lattice sites. Writing
ously viewed as combinatorial problems, rather than as
models in statistical mechanics, for which the exact so- INA(t1,12) = D aput?" 3" = D R, (13",
lution is also known. These include a range of polygon nm n
enumeration problems by both perimeter and area, sudBaxter [18] has shown that
as staircase polygons, convex polygons, and row-convex R,(12) = Py 1(12)/(1 — (221
polygons [8,9], also walk models, such as the partially di- nil =1 1 :
rected self-avoiding walk [10], the solid-on-solid model That is to say, the function®, are rational, with numer-
with field and surface interactions [11], and lattice ani-ators and denominators of degrge — 1, and with the
mal models such as the enumeration of directed columrdenominator having a particularly simple structure. In the
convex animals [12] and directed animals on the squareomplex:; plane, there is a singularity only gt = 1.
and triangular lattices [13]. In fact [18], due to the existence of the inversion

There is an even longer list of celebrated unsolvedelation

roblems, prominent among which are the susceptibilit . )
gf the twoPdimensionaI Isir?g model [14], the pa?titiony At 12) + InAQ/11, —12) = In(l = 17),
function of the two-dimensional Ising model in a field, and the obvious symmetry relatiaf(z;, ;) = A(tp, 11),
the three-dimensional Ising model, the two-dimensionathe form of the denominator is sufficient to determine,
self-avoiding walk and polygon model, two-dimensionalorder by order, the numerator polynomids. That is
percolation, two-dimensional directed percolation [15],to say, the complete Onsager solution is implicitly de-
and directed animals on the hexagonal lattice [16] to nam&rmined by these two functional equations and the fact
but a few. that the only singularity of the denominator occurs at
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## = 1. It was this realization that prompted a corre-recently reported the calculation &f,(x) for n < 14 by

sponding study [19] of the susceptibility. the finite-lattice method [23]. The first few values are
The zero-field susceptibility of the triangular lattice

Ising model, with coupling constanss,, K», K3, ands; = 1+ ¢

tanh(K;), satisfies [20] an inversion relatiop(t, 12, t3) + Ho(t) = =

x(—=t,—1,1/13) = 0. Since the anisotropic square lat-

tice can be obtained by setting one of the anisotropic

coupling constants to zero, it follows that the anisotropic 2(1 + 1)
square lattice susceptibility satisfies the inversion relation Hy(t) = W
x(t1, 1) + x(1/t1, — 1) = 0, as well as the symmetry re-

lation x(t1, 1) = x(f2, ;). We may write the susceptibil-

ity as p() = 20 61+ 80 + 68 + 1)
joe} o] 2 = — 3 .
X(tls t2) = Z Cm,nt;ntlzl = Z Hn(tl)tg- (1 t) (1 + t)
m,n=0 n=0
The first three valuedd, (x),n = 1,2,3, were given in 2 3 4
RAEDIE T 2(1 + 8¢ + 10t~ + 8 + ¢
[21], Hs5(x) (but not H4) was given in [19], and we [22] Hi(t) = ( )

(1 — 04 ’
|
_ 20+ 10+ 15(r + ) + 712 + 8) + 192(£2 + ¢7) + 326(* + %) + 388¢°)
(1 — )1 — )*(1 + 1)3 ’

Hy(t)

2(1 + 16(r + t7) + 64(s> + %) + 144(£3 + ) + 166t* + 8)
(1 — 1)o(1 + )2 ’
He(r) = [2(1 + '8 + 25(+ + ¢'7) + 220(¢> + ') + 1149(> + '9) + 4081(¢* + '*) + 10768(> + '3)
+ 22083(1° + 1'2) + 36283(¢+7 + ') + 48543(:® + 119) + 53446¢°) /[(1 — £)°(1 — )*(1 + 1)°].

Hs(t) =

In all cases enumerated, the numerator ponnoﬂi&lear. The lowest order terms of the series expansion are
is unimodal and symmetric with positive coefficients. obtained from the 1-particle contribution. TRBeparticle
The denominator polynomial clearly has zeros atcontribution starts a(:3)—corresponding to the first
t =1 for all n, as well as att = —1 for n =2 and occurrence of the factofl — ¢°) in the denominator of
n = 4. Our results show that fom =4 and n = 6  H,(t), while the5-particle contribution starts ab(z>*)—

(at least up ton = 14) there are zeros af = 1, and corresponding to the first occurrence of the fadtor ¢

at n = 12 the first occurrence of zeros at = 1 ap- in the denominator ofH,(r). Now the susceptibility
pears. The numerator and denominator polynomialexpansion in terms dfk + 1 particle excitations is a sum
(with no common factors) are of equal degree, no-of infinite series, each series contributing only at steadily
tably 1,2,4,4,10,8,18,20,26,28,34,36,48,44,62 for increasing powers of the high-temperature expansion
n=0,1,2,---,14, respectively. The rate of increase of variablez. As we have seen above, the contribution of
degree withn is such that even if we knew the form of the the terms from the2k + 1 particle excitations, which
denominator, the inversion relation and symmetry relatiorfirst contribute at, sayQ(t>"), correspond to poles at
would be insufficient to implicitly yield the solution, %*! =1 in H,(¢) in the anisotropic expansion above.
unlike the case of the free energy. This is because thElence we can identify the first occurrence of the factor
symmetry property gives the value ofcoefficients from 1 — (2**1 in the denominator with the first occurrence of
the previousH,’s, while the inversion relation means a2k + 1 particle excitation.

that only half the coefficients are needed. Together, From this observation, we see that the structure of
this means thafn coefficients of the numerator can be H,(r) is that of a rational function whose poles all lie
identified. This is precisely the number of numeratoron the unit circle in the complex plane, such that
coefficients in the case of the free energy, but it is cleapoles become dense on the unit circle ragets large.
that the degree of the numerator polynomial in the case ofhis behavior implies (unless miraculous cancellation of
the susceptibility is increasing faster thamn almost all poles occurs at high order) that the functions

Nevertheless, we can obtain important informationH,(z), and hencey(z;,7,) as a function ofs; for r,
about the analytic structure of the solution. From [14].fixed, (a) has a natural boundary, (b) is not algebraic,
in which the susceptibility of the Ising model is expressedand (c), more loosely, cannot be expressed in terms
as an expansion in terms @k + 1 particle excitations, of the “usual” functions of mathematical physics, such
the structure of the denominator of th&, functions is as elliptic integrals or solutions of the hypergeometric
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equation in general. More precisely, Befinite function  function also fails to beD finite. This statement appears
is a candidate. One family of functions that does suggestlso to be true for hexagonal lattice directed animals
itself as a possible candidate is thegeneralization of [10,26]. Earlier work [19] on the three-dimensional
the standard functions of mathematical physics, which weanisotropic zero-field Ising model gives a strong hint that
have seen in a number of solutions already [7,11]. Thehis model too is notD finite, though longer series are
g functions date back to Euler and Gauss, blossomedeeded to be unequivocal. Full details of all the above
with the work of Ramanujan, and in recent years havecalculations will be given elsewhere.
migrated from number theory to the forefront of statistical Finally, we note that a number of solvable problems,
mechanics [24,25]. including staircase, convex, and row convex polygons, as
This observed behavior suggests a new and powerfwlell as the triangular lattice Ising model susceptibility
tool to investigate the analytic structure of a wide varietyalong the disorder line, can be studied similarly. We
of problems. By generalizing to the anisotropic model first generalize to the anisotropic model and look at
and studying the distribution of zeros of the denominatorghe structure of theH, functions in the two-variable
in the H,,(r) functions and their analogs, we can distinguishseries. All are found to have a pole at only one point
between those that appear to be solvable in terms of stam the complex: plane (or its analog), consistent with
dard functions—when there is just a finite number of sin-our observation that this is a hallmark of a readily
gularities on the unit circle (usually just one)—and thosesolvable model. The method is also applicable to three-
which are not, with an infinite number of such singulari- dimensional systems, and to nontranslationally invariant
ties (signified numerically of course by a growing numberproblems such as directed animals (referred to above) and
of singularities as the number &f, functions calculated directed percolation [27].
grows). The partition function and susceptibility of the Thus we believe that we have introduced a new and
two-dimensional zero-field Ising model are paradigms, repowerful numerical tool in the study of lattice statistical
spectively, of each class, as we have just shown. models. It allows one to clearly distinguish between
We have applied this approach to a number of othemodels that aré finite—and hence likely to be readily
unsolved problems in statistical mechanics of two-solvable— and those that are not only ratfinite, but
dimensional systems, notably self-avoiding polygons ordisplay a natural boundary on the unit circle. The solution
the square and hexagonal lattices. In both cases we cafi this latter class will require more subtle mathematical

write the polygon generating function as approaches, the most obvious candidate for whichgare
o generalizations of the standard functions.
P(x,y) = Z R, (x%)y*". We have benefited from discussions on this topic with
n=1 many people. Notable among them are Rodney Baxter,

For square lattice polygons we find thRt is a rational Richard Brak, Omar Foda, Jean-Marie Maillard, Barry
function of x2, with numerator and denominator of equal McCoy, Aleks Owczarek, Robert Shrock, Alan Sokal,
degree. The denominator ($ — x?)>"~! for n = 4, but  Colin Thompson, and Dominic Welsh. We are particu-
for n > 4 powers ofl — x* enter, and fom > 6 we see larly indebted to Andrew Conway and lwan Jensen, who
powers ofl — x® entering, whilen = 8 marks the first communicated their preliminary results on anisotropic
occurrence of powers df — x8. self-avoiding walks, hexagonal lattice directed animals,

For hexagonal lattice polygons (on a brickwork lattice,and anisotropic directed percolation, and to Mireille
so that there are only two types of bond, horizontalBousquet-Mélou, David Gaunt, Aleks Owczarek, and
and vertical) a similar pattern is observed, except thafllan Sokal for helpful comments on the manuscript.
the numerator and denominator of the rational functions
R, (x?) are not of equal degree. The denominators always

have zeros only on the unit circle in the complex
plane, just at> = 1 for n = 3, with powers ofl — x* [1] L. Onsager, Phys. Rew5, 117 (1944).
appearing in the denominatorat= 4, powers ofl — x° [2] C.N. Yang, Phys. Re\85, 808 (1952).
entering atz = 7 and so on. [3] P.W. Kasteleyn, Physica (UtrecH2y, 1209 (1961).

Thus we see the same pattern as in the Ising susceptil4] H.N.V. Temperley and M. E. Fisher, Philos. Maf.1061

bility, with the zeros of the denominator becoming dense _ (1961).
on the unit circle. (Of course, we have nmovedthat ~ [@] E-H. Lieb, Phys. Rev. Lett18, 1046 (1967);19, 108
this occurs, but the evidence is most persuasive). As be- (1967).

SN S . [6] R.J. Baxter, Phys. Rev. Let26, 832 (1971).
fore, this implies that the solution is not algebraic, and not [7] R.J. Baxter, J. Phys. A3, L61 (1980).

D finite. _ [8] M.P. Delest, J. Math. Cheng, 3 (1991).

A similar situation has been noted for square lattice [9] A, J. Guttmann,Computer-Aided Statistical Physica|P
anisotropic self-avoiding walks [26]. That is, a buildup Conf. Proc. No. 248 (AIP, New York, 1992), p. 12.
of zeros of the denominator of th#,(¢) functions on the [10] R.J. Brak, A.J. Guttmann, and S. G. Whittington, J. Phys.
unit circle in the complex plane. This implies that this A 25, 2437 (1992).
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