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Random Matrix Theory of a Chaotic Andreev Quantum Dot
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A new universality class distinct from the standard Wigner-Dyson class is identified. This cla
realized by putting a metallic quantum dot in contact with a superconductor, while applying a mag
field so as to make the pairing field effectively vanish on average. A random-matrix description o
spectral and transport properties of such a quantum dot is proposed. The weak-localization cor
to the tunnel conductance is nonzero and results from the depletion of the density of states
the coupling with the superconductor. Semiclassically, the depletion is caused by a singular m
phase-coherent long-range propagation of particles and holes. [S0031-9007(96)00025-7]

PACS numbers: 74.80.Fp, 05.45.+b, 72.10.Bg, 74.50.+r
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Wigner-Dyson level statistics is found in physic
systems as diverse as highly excited molecules, atoms
nuclei, mesoscopic systems in the ballistic or diffus
regime, and chaotic Hamiltonian systems such as
stadium or Sinai’s billiard. The reason for the ubiqu
and universality of Wigner-Dyson statistics is the relat
of the Gaussian ensembles [1] to attractive fixed po
of the renormalization group flow for an effective fie
theory (nonlinears model) [2]. Depending on whethe
time-reversal and/or spin-rotation invariance is broken
not, the relevant ensemble has orthogonal, unitary
symplectic symmetry.

Although the Wigner-Dyson ensembles are gene
ensembles, new universality classes may arise when
ditional symmetries or constraints are imposed. One
ample of this is provided by systems withA-B sublattice
structure or chiral symmetry [3]. Another example, p
sented in this Letter, are metallic systems in contact wi
superconductor. Our considerations were inspired in
by work [4] on Anderson localization of normal excit
tions in a dirty superconductor or a superconducting gl

The system we have in mind is depicted in Fig.
A metallic (normal-conducting) quantum dot (N) with
the shape of, say, a stadium billiard is surrounded b
superconductor (S) and contacted by a normal-metal le
(L) via a tunnel barrier (T ). A Schottky (or potential)
barrier forms at theNS interface. The quantum dot i
pierced by a weak magnetic flux of the order of one
several flux quanta. The temperature is so low that
phase-coherence length exceeds the system size by fa
will help our argument if the quantum dot is not perfec
shaped, but contains some defects and/or impurities.

The unique feature that distinguishes our quantum
from conventional mesoscopic systems is the proces
Andreev reflection [5], by which an electron incident
the NS interface is retroreflected as a hole, and v
versa. The drastic consequences of this process fo
thermodynamics and the transport of the quantum dot
be anticipated from a semiclassical argument. Cons
the periodic orbit of Fig. 2. An electron starts out fro
point A, undergoes several normal reflections off t
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Schottky barrier, and eventually returns toA, with the
final velocity being roughly the negative of the initia
one. At the point of return, the electron gets convert
into a hole by Andreev reflection. Because the magne
field is too weak to cause any significant bending
classical trajectories, the hole then simply tracks down
path laid out by the electron. The charge of the hole
opposite to that of the electron, so the magnetic ph
accumulated along the total path is zero. Moreover, si
a hole is not just the charge conjugate but also the ti
reverse of an electron, the dynamical phases cancel,
provided that electron and hole are at the same ene
(the Fermi energy). The two Andreev reflections add
to a total phase shift ofp. Thus, the periodic orbit of
Fig. 2 contributes to the periodic-orbit sum for the dens
of stateswith the negative sign. Orbits of this type reduce
the mean density of states (“Weyl term”) and are expec
to put our “Andreev quantum dot” in a universality clas
distinct from the standard Wigner-Dyson class. We sh
identify this universality class in the sequel.

In a microscopic mean-field treatment, we would st
from the Bogoliubov–de Gennes (BdG) Hamiltonian

H ­

µ
H0 D

Dp 2Hp
0

∂
,

FIG. 1. Metallic quantum dot (N) in contact with a super-
conductor (S). A tunnel barrier (T ) separates the dot from a
normal-metal lead (L) attached for the purpose of making cu
rent and voltage measurements.
© 1996 The American Physical Society
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FIG. 2. (Almost) periodic orbit involving several norm
reflections (N) and one Andreev reflection (A). An electron
runs through the closed loop twice. Before reachingA it is a
particle and afterward a hole.

whereH0 ­ sp 2 eAd2y2m 1 V sxd 2 m is a Hamilton-
ian for “particles,”2Hp

0 is the corresponding Hamiltonia
for “holes,” and the pairing fieldDsxd, whose magnitude
rises from zero inside the quantum dot to a nonzero va
in the superconductor, converts particles into holes.
potential V sxd includes the Schottky barrier. Energy
measured relative to the chemical potentialm.

Universality classes are characterized by their sym
tries. Notice therefore thatH obeys the relation

H ­ 2CH T C 21, C ­

µ
0 1

21 0

∂
. (1)

This symmetry originates from the electron being
spin-1/2 fermion and from spin-rotation invarian
[6]. The transformation H ! CH TC 21 will be
called CT conjugation as it combines time revers
(H ! H p ­ H T ) with a kind of charge conjugatio
(H ! CH C

21).
By design, the classical motion of particles and ho

in the billiard-shaped dot is chaotic and fills the availa
phase space ergodically. Now observe that every t
a particle or hole is Andreev reflected from theNS
interface, its wave function acquires an extra ph
determined by the superconducting order parameter.
this context it is important that the applied magne
field is screened by a supercurrent circulating along
NS interface inside the superconductor. The supercur
flow, in turn, is concomitant with a spatial variation
the phasef of the order parameter [7]. As a result
this and the chaotic dynamics, the extra phase picked
during Andreev reflection varies randomly along a typi
semiclassical trajectory. So everything is quite rando
and we expect some kind of random-matrix theory
apply. The question is now: What random-matrix theo

Because the presence of the magnetic field makes
pairing field experienced by particles and holes van
on average,D can be modeled by a stochastic varia
with zero mean. Moreover, since the system has b
designed to be chaotic, there exist no integrals of mo
except for energy. The only symmetry (apart fro
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Hermiticity of the Hamiltonian) of relevance for the long
time [8] or ergodic limit we shall consider is theCT

oddness (1). Experience with similar problems then te
us that we can model the ergodic limit by a Gaussia
or maximum-entropy, ensemble with probability densi
exps2TrH 2y2y2ddH subject to the constraint (1). This
implies that, in any orthonormal basis of statesca sa ­
1, 1, ..., N, N̄d with CT -conjugate basisca ­ C cp

a , the
variances of the random Hamiltonian matrix elements
given by the correlation law

kHabHcdl ­ y2sdaddbc 2 dac̄dbd̄d . (2)

To complete the definition of our random-matrix mode
we add toH a term2iG which accounts for the coupling
to the normal-metal lead and will be specified later.

As a first step, let us close off the contact with the le
sG ­ 0d. What can we say about the spectral statisti
the central characteristic of the ergodicisolatedquantum
dot? If ck is an eigenstate ofH with eigenvalue1Ek ,
then, by (1), so isC c

p
k with eigenvalue2Ek. Thus,

there is an exact pairing between positive and nega
eigenvalues. By diagonalizingH and computing the
Jacobian of the transformation to diagonal form, w
obtain the (unnormalized) joint probability density of th
positive eigenvaluesEk sk ­ 1, ..., Nd:

PsE1, . . . , EN d ­
Y
i,j

sE2
i 2 E2

j d2
NY

k­1

E2
ke2E2

k y2y2

, (3)

which is manifestly invariant underEk °! 2Ek [9].
To calculate the spectral statistics, it is convenie

to view (3) as a Gaussian unitary ensemble (GUE)
2N levels E1, E1, . . . , EN , EN̄ with the mirror constraint
Ek̄ ­ 2Ek. The correlation functions of the GUE ar
known to coincide with those of a one-dimensional g
of free fermions in the large-N limit [10]. Now, when a
fermion (i.e., an energy level) gets close toE ­ 0, so does
its mirror image. Because Fermi statistics makes the w
function vanish as two fermions approach, the constra
Ek̄ ­ 2Ek amounts to hard wall boundary conditions
E ­ 0. Hence, we can compute the eigenvalue dens
and its correlations for (3) as theparticle density and its
correlations for a free Fermi gas with a hard wall at th
origin. In this way we obtain

rsEd ­ kTrdsE 2 H dl ­ 1yd 2 sins2pEyddy2pE ,

(4)
whered is the level spacing forE ¿ d. We see that the
coupling to the superconductor depletes the mean den
of states and makes it vanish quadratically atE ­ 0
[11]. The states pushed away fromE ­ 0 cause density
oscillations, which ebb off as1yE. Note that the result
(4) applies when bothE andd are much smaller than the
characteristic energy uncertainty set by the frequency
Andreev reflection.
3421
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To understand better the mechanism of depletion,
turn to diagrammatic perturbation theory. LetG :­
ksE 1 i´ 2 H d21l denote the ensemble average of th
Gorkov Green’s function. We expand it in a geometr
series with respect toH as usual. To do the ensem
ble average, we distinguish between two types of co
tractions,PD

ac,bd ­ y2daddbc andP
C
ac,bd ­ 2y2dac̄dbd̄ ,

corresponding to the first and second terms in the ba
law (2). Making this distinction is useful for organizing
the perturbation series, sincePD causes pure GUE be-
havior, whereasPC generates the corrections to the GUE
By summing all nestedPD self-energy graphs, we ge
Pastur’s equation,G ­ sE 1 i´ 2 y2TrGd21, which is
exact forE ¿ d andN °! `. The solution,G0, of this
equation yields Wigner’s semicircle law for the densi
of states:2ImTrG0yp ­

p
2N 2 sEyyd2ypy. Accord-

ing to (4), corrections to this result, which is stationa
and equal to

p
2Nypy ­: 1yd up to uninteresting terms

of order1yN , should appear as we approach zero ener
It turns out that these arise from summing a geomet
series of ladder graphs built solely fromPC contrac-
tions. The ladder sum,Cac,bd, satisfies Dyson’s equa-
tion C ­ C0 1 C0PCC with C0

ac,bd ­ dabdcdG0
aaG0

cc.
Its solutionC ­ C0s1 2 PCC0d21 is singularat E ­ 0:

C ­ C0 1 C0sPC2iNdypEdC0 1 O sEyNd0.

By evaluating the graph shown in Fig. 3, we ge
TrGyp ­ 2iyd 2 1y2pE 1 · · ·, which are the leading
terms in a1yE expansion. (There is a renormalization b
a factor of 1/2 coming from the possibility of connectin
the external legs in Fig. 3 by a nonsingularPD ladder.)
This perturbative result is to be compared with the exa
formula TrGyp ­ 2iyd 2 f1 2 exps2piEyddgy2pE
reconstructed from (4) by causality. We see that d
grammatic perturbation theory properly reproduces t
smooth part of the1yE correction. (The oscillatory term
is nonanalytic in the expansion parameter1yE and cannot
be recovered by the perturbative summation of graphs.

What is the semiclassical meaning of the modeC?
Our diagrammatic analysis suggests an interpretation

FIG. 3. Diagram contributing to the average Green’s functio
in order1yE. The shaded region symbolizes theC mode.
3422
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a mode of phase-coherent propagation of a partic
hole pair. To gain further insight, recall the periodi
orbit shown in Fig. 2. In diagrammatic language, th
orbit corresponds to connecting Green’s function lin
in Fig. 3 by just a singlePC contraction, and thus
is the simplest semiclassical building block of theC
mode. More generally, an arbitrary number of Andree
reflections may be inserted into the loop. The on
condition is that theparticle-hole character of the states
during the first and second traversal of the loop beCT

conjugate to each other. BecauseC T conjugate states
carry opposite charge and the loop is traversed twicein
the same direction, the C mode is ignorant of a weak
magnetic field [12]. Note, however, that theC mode is
sensitive to energyE (or voltage), which breaks the phas
relation between particles and holes.

With a solid understanding of the spectral properti
in hand, we finally open up the tunnel barrier and tu
to the prime experimental observable, the conductan
g. Our treatment will be based on the linear respon
formulag ­ 4se2yhdTrS

y
phShp [13], whereShp is the part

of the scattering matrixS that maps incoming electrons
onto outgoing holes. We suppress elastic phase shifts
parametrize theS matrix by S ­ 1 2 2iW̃si´ 1 iG 2

H d21W [14] at E ­ 0. Here W is a matrix coupling
2M channels (particles and holes) in the lead with2N
levels in the quantum dot,̃W is its adjoint, andG ­ WW̃ .
W is diagonal in particle-hole space. For a simple mod
we takeW̃W to be a multiple of the identity in channe
space:W̃W ­ g1. ThenG ­ gP whereP is a rank-2M
projector in level space. We assumeN ¿ M.

We begin by discussing the limit of an open quantu
dot sM ¿ 1d where all structure in the density of state
is washed out by the large level width. LetT denote
the probability for an electron in an incoming chann
to be transmitted through the tunnel barrier, in this ve
limit. For our simple model,T ­ 4lgysl 1 gd2 with
l2 ­ 2Ny2 [14]. Having entered the quantum dot, th
electron spends a long time there, undergoing ma
Andreev reflections, and finally returns to the lead eith
as a particle or as a hole, with equal probabilities. Hen
kTrS

y
phShpl ­ MTy2, which we refer to as the “classical”

value. To confirm this result diagrammatically, one h
to sum a geometric series ofPD ladder graphs, producing
the diffuson [15]. On approaching the opposite (close
limit, we expect a reduction relative to the classical valu
The reason is simply as follows: the density of states
the isolated dot vanishes atE ­ 0, so that an electron
trying to enter cannot find any state to go to and
immediately rejected into the lead. This effect shou
announce itself as a negativeO sM0d correction (“weak
localization”). Such a correction in fact exists and is du
to the graph shown in Fig. 4, featuring two diffusons an
oneC mode. Evaluation of this graph leads to

kgl ­ sMT 2 1 1 Td2e2yh 1 O s1yMT d . (5)
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FIG. 4. Diagram contributing to the average conductance
orderM0. The shading of the vertex center indicates unitari
conserving (Hikami box) corrections.

Note that the weak localization correction in the corr
spondingN system vanishes. A result similar to (5) wa
recently found in a related context [16].

Although the calculation of the graph of Fig. 4
somewhat technical, the result can easily be chec
and interpreted. Consider first the limit of many weak
coupled channels (T °! 0, MT fixed). In this limit
the absolute square of Green’s function becomes
dependent of the level and particle-hole indices,
average [17]. By conservation of probability, th
conductance is then fully determined by a one-po
function kgl ­ 2s4e2yhdgImkTrsig 2 H d21l, where
g ­ gMyN is the mean level width. Analytic con
tinuation of our result for the average Green functi
to E ­ iyg gives kgl ­ sMT 2 1 1 e2MT d 2e2yh, in
agreement with (5).

To understand the other limit of strongly couple
channelssT ­ 1d, it is easiest to argue directly at theS-
matrix level. By its definition as a “sticking probability,
T ­ 1 2 jkScclj2 1 O s1yMT d. PuttingT ­ 1 therefore
amounts to assuming a fully randomS matrix that
vanishes on average:kSl ­ 0. The symmetries ofS
are the same as those of expiH , so that from (1) we
deduceS ­ C S21T C 21, which is the defining equation
of the symplectic group Sps2M, Cd. (C is now meant to
operate in channel space.) Unitarity fixes a subgro
Sps2Md. We are thus led to postulate anS-matrix
ensemble with probability distributionkk≤ll given by the
Haar (or invariant) measure of Sps2Md. This ensemble
is Dyson’s circular unitary ensemble [1] adapted to
our particle-hole symmetric situation. By elementa
group theory,kkSabll ­ 0 and kkSabSp

cdll ­ dacdbdy2M,
so kkgll ­ 2Me2yh, with no correction of orderM0.
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In conclusion, we mention that the singular modes, t
diffuson and theC mode, translate into low-energy degree
of freedom of a corresponding nonlinears model. They
determine the attractive (metallic or free) renormalizatio
group fixed point of this field theory. Ultimately, the exis
tence of such singular modes, which are forgetful of micr
scopic detail and saturate the long-time and long-distan
physics, is the reason why we predict with confidence th
the ergodic limit of the chaotic Andreev quantum dot
universal and our random-matrix theory applies.
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