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Random Matrix Theory of a Chaotic Andreev Quantum Dot
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A new universality class distinct from the standard Wigner-Dyson class is identified. This class is
realized by putting a metallic quantum dot in contact with a superconductor, while applying a magnetic
field so as to make the pairing field effectively vanish on average. A random-matrix description of the
spectral and transport properties of such a quantum dot is proposed. The weak-localization correction
to the tunnel conductance is nonzero and results from the depletion of the density of states due to
the coupling with the superconductor. Semiclassically, the depletion is caused by a singular mode of
phase-coherent long-range propagation of particles and holes. [S0031-9007(96)00025-7]

PACS numbers: 74.80.Fp, 05.45.+b, 72.10.Bg, 74.50.+r

Wigner-Dyson level statistics is found in physical Schottky barrier, and eventually returns A9 with the
systems as diverse as highly excited molecules, atoms afficial velocity being roughly the negative of the initial
nuclei, mesoscopic systems in the ballistic or diffusiveone. At the point of return, the electron gets converted
regime, and chaotic Hamiltonian systems such as th&to a hole by Andreev reflection. Because the magnetic
stadium or Sinai’s billiard. The reason for the ubiquity field is too weak to cause any significant bending of
and universality of Wigner-Dyson statistics is the relationclassical trajectories, the hole then simply tracks down the
of the Gaussian ensembles [1] to attractive fixed pointpath laid out by the electron. The charge of the hole is
of the renormalization group flow for an effective field opposite to that of the electron, so the magnetic phase
theory (nonlinear model) [2]. Depending on whether accumulated along the total path is zero. Moreover, since
time-reversal and/or spin-rotation invariance is broken oa hole is not just the charge conjugate but also the time
not, the relevant ensemble has orthogonal, unitary, oreverse of an electron, the dynamical phases cancel, too,
symplectic symmetry. provided that electron and hole are at the same energy

Although the Wigner-Dyson ensembles are generidthe Fermi energy). The two Andreev reflections add up
ensembles, new universality classes may arise when atb a total phase shift ofr. Thus, the periodic orbit of
ditional symmetries or constraints are imposed. One exFig. 2 contributes to the periodic-orbit sum for the density
ample of this is provided by systems withB sublattice  of stateswith the negative signOrbits of this type reduce
structure or chiral symmetry [3]. Another example, pre-the mean density of states (“Weyl term”) and are expected
sented in this Letter, are metallic systems in contact with @ put our “Andreev quantum dot” in a universality class
superconductor. Our considerations were inspired in padistinct from the standard Wigner-Dyson class. We shall
by work [4] on Anderson localization of normal excita- identify this universality class in the sequel.
tions in a dirty superconductor or a superconducting glass. In a microscopic mean-field treatment, we would start

The system we have in mind is depicted in Fig. 1.from the Bogoliubov—de Gennes (BdG) Hamiltonian
A metallic (normal-conducting) quantum doN) with o A
the shape of, say, a stadium billiard is surrounded by a H = (AQ —H*>’
superconductory) and contacted by a normal-metal lead 0
(L) via a tunnel barrier ). A Schottky (or potential)
barrier forms at theVS interface. The quantum dot is
pierced by a weak magnetic flux of the order of one or R @___5
several flux quanta. The temperature is so low that the g - ha
phase-coherence length exceeds the system size by far. It || .
will help our argument if the quantum dot is not perfectly i
shaped, but contains some defects and/or impurities. oot

The unique feature that distinguishes our quantum dot (
from conventional mesoscopic systems is the process of e
Andreev reflection [5], by which an electron incident on
the NS interface is retroreflected as a hole, and vice
versa. The drastic consequences of this process for the
tbheeg?]ggi}gﬁgnécfsr Oamndi;hsee;:?quggiggf;?gu%s:ttun&gﬁ;ﬁiglG. 1. Metallic quantum dotX) in contact with a super-

' onductor §). A tunnel barrier T) separates the dot from a

the periodic orbit of Fig. 2. An electron starts out from normal-metal lead() attached for the purpose of making cur-
point A, undergoes several normal reflections off therent and voltage measurements.
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A N Hermiticity of the Hamiltonian) of relevance for the long-
time [8] or ergodic limit we shall consider is th€ T
oddness (1). Experience with similar problems then tells
us that we can model the ergodic limit by a Gaussian,

N or maximum-entropy, ensemble with probability density
exp(—TrH 2/2v?)d H subject to the constraint (1). This
implies that, in any orthonormal basis of staigs (a =
1,1,..,N,N) with CT -conjugate basigyz = C ¢, the
variances of the random Hamiltonian matrix elements are

N N given by the correlation law

FIG. 2. (Almost) periodic orbit involving several normal (Hop Hoi) = v*2(80a0pe — 8az0p7) . (2)
reflections V) and one Andreev reflectiom]. An electron

runs through the closed loop twice. Before reaching is a  To complete the definition of our random-matrix model,
particle and afterward a hole. we add toH aterm—iT which accounts for the coupling
to the normal-metal lead and will be specified later.

5 . . As a first step, let us close off the contact with the lead
whereHy = (p — ¢A)’/2m + V(x) — pisaHamilton- " _ )" \what can we say about the spectral statistics,
ian for “particles,”— H, is the corresponding Hamiltonian o central characteristic of the ergodsolatedquantum
for “holes,” and the pairing field\(x), whose magnitude o> |f Y is an eigenstate of{ with eigenvalue+ Ej,
rises from zero inside the quantum dot to a nonzero Valufhen, by (1), so isCy; with eigenvalue—E;. Thus,

in the superconductor, converts particles into holes. Th@ a1 is an exact pairing between positive and negative
potential V (x) includes the Schottky bar(ier. Energy is eigenvalues. By diagonalizingd and computing the
measured relative to the chemical potengial Jacobian of the transformation to diagonal form, we

_Universality classes are characterized by their symmegpain the (unnormalized) joint probability density of the
tries. Notice therefore that{ obeys the relation positive eigenvalueg; (k = 1, ..., N):

H = —CHTC, C=<O 1). 1 v
-10 @ P(E,....Ey) = [[(E} — ED* ] EZe 5/, (3)
This symmetry originates from the electron being a i<j k=1
spin-1/2 fermion and from spin-rotation invariance = ] ) ]
[6]. The transformation H — CH7C~! will be Whichis manifestly invariant undef, — —E; [9].

called CT conjugation as it combines time reversal 10 calculate the spectral statistics, it is convenient

(H — H* = HT) with a kind of charge conjugation 0 View (3) as a Gaussian unitary ensemble (GUE) of
(H — Cj'-[Cfl). 2N levels E\, E, ..., Eyn, Ey with the mirror constraint

By design, the classical motion of particles and holefs = —Ex. The correlation functions of the GUE are
in the billiard-shaped dot is chaotic and fills the availableknoWn to coincide with those of a one-dimensional gas

phase space ergodically. Now observe that every tim@f frée fermions in the largéx limit [10]. Now, when a
a particle or hole is Andreev reflected from thés  fermion (i.e., an energy level) gets closefio= 0, so does
interface, its wave function acquires an extra phaséts mirror image. Because Fermi statistics makes the wave
determined by the superconducting order parameter. |fNction vanish as two fermions approach, the constraint
this context it is important that the applied magneticEt = —Ex amounts to hard wall boundary conditions at
field is screened by a supercurrent circulating along thé = 0- Hence, we can compute the eigenvalue density
NS interface inside the superconductor. The supercurrerf"d its correlations for (3) as thgarticle density and its
flow, in turn, is concomitant with a spatial variation of correlations for a free Fermi gas with a hard wall at the
the phases of the order parameter [7]. As a result of Ofigin. In this way we obtain
this and the chaotic dynamics, the extra phase picked u .
during Andreev reflect?/on varies randomlypalong 2 typical pp(E) = (Tr8(E = H)) = 1/5 — sin2wE/8)/2wE,
semiclassical trajectory. So everything is quite random, (€]
and we expect some kind of random-matrix theory towhere$ is the level spacing foE > 6. We see that the
apply. The question is now: What random-matrix theory?coupling to the superconductor depletes the mean density
Because the presence of the magnetic field makes thedf states and makes it vanish quadratically Fat= 0
pairing field experienced by particles and holes vanisijll]. The states pushed away frafh= 0 cause density
on averageA can be modeled by a stochastic variableoscillations, which ebb off as/E. Note that the result
with zero mean. Moreover, since the system has beefd) applies when bott and § are much smaller than the
designed to be chaotic, there exist no integrals of motioharacteristic energy uncertainty set by the frequency of
except for energy. The only symmetry (apart fromAndreev reflection.
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To understand better the mechanism of depletion, wa mode of phase-coherent propagation of a particle-
turn to diagrammatic perturbation theory. Lét:=  hole pair. To gain further insight, recall the periodic
((E + ie — H)~ ') denote the ensemble average of theorbit shown in Fig. 2. In diagrammatic language, this
Gorkov Green'’s function. We expand it in a geometricorbit corresponds to connecting Green’s function lines
series with respect t¢H as usual. To do the ensem- in Fig. 3 by just a singleII¢ contraction, and thus
ble average, we distinguish between two types of conis the simplest semiclassical building block of tlte
tractions,HaDC,,,d = 28,465, and ch,bd = —v28,:6,2, mode. More generally, an arbitrary number of Andreev
corresponding to the first and second terms in the basiteflections may be inserted into the loop. The only
law (2). Making this distinction is useful for organizing condition is that theparticle-hole character of the states
the perturbation series, sindé” causes pure GUE be- during the first and second traversal of the loop 6&
havior, whereadl ¢ generates the corrections to the GUE.conjugate to each other BecauseC 7 conjugate states
By summing all nestedI” self-energy graphs, we get carry opposite charge and the loop is traversed tvrnce
Pastur's equationG = (E + ie — v>TrG)~!, which is  the same directignthe C mode is ignorant of a weak
exact forE > 8 andN — «. The solutionG’, of this  magnetic field [12]. Note, however, that ti& mode is
equation yields Wigner’s semicircle law for the density sensitive to energ¥ (or voltage), which breaks the phase
of states:—ImTrG°/# = /2N — (E/v)?/mv. Accord- relation between particles and holes.
ing to (4), corrections to this result, which is stationary With a solid understanding of the spectral properties
and equal to/2N /v =: 1/8 up to uninteresting terms in hand, we finally open up the tunnel barrier and turn
of order1/N, should appear as we approach zero energyto the prime experimental observable, the conductance
It turns out that these arise from summing a geometrig. Our treatment will be based on the linear response
series of ladder graphs built solely frofl¢ contrac- formulag = 4(62/h)TrSghShp [13], whereSy,, is the part
tions. The ladder sumC,.,q, Satisfies Dyson’'s equa- of the scattering matrixS that maps incoming electrons
tion C = C° + COIICC with CO 4y = 8458.4G%,G°..  onto outgoing holes. We suppress elastic phase shifts and
Its solutionC = C°(1 — I1€CY%'issingularatE = 0:  parametrize theS matrix by S =1 — 2iW(ie + il —

o 0/ erCom 0 0 H)"'w [14] at E = 0. Here W is a matrix coupling
C=C + C(I"2iNs/mE)C” + O(E/N)". 2M channels (particles and holes) in the lead itk
levels in the quantum doW is its adjoint, and” = WW.
W is diagonal in particle-hole space. For a simple model,
we takeWW to be a multiple of the identity in channel
spaceWW = y1. Thenl' = yP whereP is a rank2M

By evaluating the graph shown in Fig. 3, we get
TrG/7m = —i/6 — 1/2@E + ---, which are the leading
terms in al/E expansion. (There is a renormalization by
a factor of 1/2 coming from the possibility of connecting roiector in level space. We assuties M
the external legs in Fig. 3 by a nonsingud? ladder.) P VJ\/e beain b dispcuss'in the limit of an 'O en quantum
This perturbative result is to be compared with the exact gin by 9 . pen g
formula TG /7 = —i/8 — [1 — exp2miE/8)]/2wE QOt (M > 1) where all structure in the density of states
reconstructed from (4) by causality. We see that diajiewaf:k?;bi(l)im %: E:rf é?égfrolﬁviil ;\gd;{r:]éorhﬁ d?:%(z)atr?nel
grammatic perturbation theory properly reproduces th 0 bg transm%ed through the tunnel barrier ig this ver
§mooth part.of_ thd/E corregtion. (The oscillatory term limit. For our simple rgodeI,T S any /00 +, ® with y
is nonanalytic in the expansion paramet@f and cannot )2 o 2Nv? [14] Having entered thz uantJm dot. the
be recovered by the perturbative summation of graphs.) = 2Nv” [14]. g €l q L
electron spends a long time there, undergoing many

What is the semiclassical meaning of the mode . . .
Our diagrammatic analysis suggests an interpretation aéndreev 'reflect|ons, and fln_ally reums to th.e. _Iead either
as a particle or as a hole, with equal probabilities. Hence

<TrSJhShp> = MT /2, which we refer to as the “classical’
value. To confirm this result diagrammatically, one has
to sum a geometric series bf° ladder graphs, producing
the diffuson [15]. On approaching the opposite (closed)

El limit, we expect a reduction relative to the classical value.
= ST The reason is simply as follows: the density of states in
a the isolated dot vanishes & = 0, so that an electron

—=— trying to enter cannot find any state to go to and is

a immediately rejected into the lead. This effect should

announce itself as a negativ@(M°) correction (“weak
localization”). Such a correction in fact exists and is due
to the graph shown in Fig. 4, featuring two diffusons and
oneC mode. Evaluation of this graph leads to

FIG. 3. Diagram contributing to the average Green’s function
in order1/E. The shaded region symbolizes tGemode. (g) = (MT — 1 + T)2e*/h + O(1/MT). (5)
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p In conclusion, we mention that the singular modes, the
diffuson and the” mode, translate into low-energy degrees
of freedom of a corresponding nonlinearmodel. They
determine the attractive (metallic or free) renormalization
group fixed point of this field theory. Ultimately, the exis-
tence of such singular modes, which are forgetful of micro-
scopic detail and saturate the long-time and long-distance
physics, is the reason why we predict with confidence that
the ergodic limit of the chaotic Andreev quantum dot is
universal and our random-matrix theory applies.

diffuson

0 diffuson maode
FIG. 4. Diagram contributing to the average conductance in
orderM®. The shading of the vertex center indicates unitarity-
conserving (Hikami box) corrections.
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