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Moving Glass Phase of Driven Lattices
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We study periodic lattices, such as vortex lattices, driven by an external force in a random pinning
potential. We show that effects of static disorder persist even at large velocity. It results in a novel
moving glass state which has analogies with the static Bragg glass. The lattice flows through well-
defined, elastically coupledtatic channels. We predict barriers to transverse motion resulting in finite
transverse critical current. Experimental tests of the theory are proposed. [S0031-9007(96)00082-8]

PACS numbers: 74.60.Ge

An open question is to understand the effect of staticompute vortex displacemenis They concluded that, at
substrate disorder on periodic media such as vortex latew T and above a certain velocity, the moving lattice is a
tices [1], charge density waves (CDW) [2], Wigner crys-crystal at an effective temperatuf® = T + Ty,. Sev-
tals [3], colloids [4], and magnetic bubbles [5]. Numerouseral experiments indeed suggest that a fast moving lat-
experiments study such elastic systems in motion unddice is more ordered [10,17]. The effect of pinning can
an applied force produced by a current (vortex lattices), de described [16] by some effective shaking temperature
voltage (CDW), an electric field (colloids), and a magneticTy, ~ 1/v? defined by the relatioflu(¢)|*) = T /cesq>
field gradient (magnetic bubbles). It is therefore impor-This would suggest bounded displacementd in 2 and
tant to describe the physical properties of both the statithe absence of glassy properties in the moving solid.
and moving lattices. The statics of vortex lattices has In this Letter we reconsider this problem. We show
been much investigated recently, and it is generally agreethat in the case of a moving lattice the perturbation theory
that disorder leads to a glass state with diverging barriersf [16] breaks down, even at large The physical reason
pinning, and loss of translational order. The precise nais that some modes of the disorder are not affected by the
ture of the glass state, however, has been the subject ofotion, andstatic disorder is still present in the moving
much debate [6—8], in particular, concerning the decay ofystem. As a result, the moving lattice is, in fact, a
translational order and the presence of topological defectsnoving glass Since translational order in the moving
It was shown recently [9] within an elastic theory that, be-frame decays and relative displacements are not bounded,
cause of the periodicity of the lattice, the decay of transsuch a phase cannot be described by simple perturbation
lational order is only algebraic and that the resulting glassheory [18]. As in the staticgyeriodicity is crucial, and
phase still exhibits divergent Bragg peaks. We arguedhe moving lattice has a completely different behavior
that at weak disorder a Bragg glass exists without equilibthan other driven systems such as manifolds. The physics
rium dislocations and also that such a glass will undergo af this new phase can be described in termselafstic
transition into a strongly disordered vortex glass containehannels When the force is applied along a principal
ing topological defects, or a pinned liquid, upon increasdattice direction, the rows of the lattice flow along well-
of disorder or field [9]. This is compatible with recent defined, nearly parallel, preferred paths in the pinning
decoration and neutron experiments [10,11], and with th@otential. The manifold of these optimal channels (lines
behavior of the critical point [12] in the phase diagram offor 2D lattice and sheets for 3D vortex line lattice), that
vortex lattices, where a transition between two differentexhibits a roughness that we estimate, is a purely static
glass states is observed upon raising the field [13]. and reproducible feature of the disorder configuration.

It is thus crucial to determine how much of the glassyWe also predict that the moving glass exhibits barriers
properties of the static system remain once the lattice ifo an additional small transverse force and compute the
set in motion, and how translational and topological ordeiassociated transverse critical current. The other modes
behave. At large velocity it was expected that, since of the disorder are suppressed by motion and give rise
the pinning force on a given vortex varies rapidly, disor-to an additional wiggling motion of the particles around
der would produce little effect. Perturbation theories inthe static channel configuration, which can be treated in
disorder and /v were thus developed [14,15] to compute perturbation.
velocity as a function of the external force, and to esti- We now derive the equation of motion for a lattice
mate critical currents. Recently, Koshelev and Vinokursubmitted to external forc&. We denote byR;(z) the
[16] have extended the perturbation theory of [14,15] toposition of an individual vortex in the laboratory frame.
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The lattice as a whole moves with a velocity We thusin-  d — 1 transverse directions being denotedybyFs™! gives
troduce the displacemenis(r) =R + vt + u;(r), where  the dominant contribution to the lattice deformations. In
the R? denote the equilibrium positions in the perfect lat-first approximation we droe” and solve the remain-
tice with no disorder.u; represent the displacements in theing static problem (leading to a reference ground state at
moving frame. We consider in the following the elastic 7 = (). Fo gives additional fluctuations on top of this
limit in the absence of topological defects, thus assuminground state, estimated below. The static tergV,V,

lu; — u;+1] < a, wherea is the lattice spacing, an assump- that comes from the Fourier componehts< 1/a of the

tion which may be checked self-consistently. One thendisorder, produces alone only bounded displacements for
takes the continuum limik;(r) — u(r,t), whereu(r,t) is 4 >1. Thus, as for the nonmoving lattice [9] far> 2,

a smoothly varying:-component vector field, which com- it does not change the large scale physics and we drop it.
ponents we denote by, (r,7). It is convenient here to SinceF$*! is now alongy, and depends only an,, u, =0
express the displacement field (r, r) in terms of the co- in the ground state.

ordinates(r, t) of the laboratory frame. The equation of The most important terms in (1) thus lead to the fol-

motion in the laboratory frame is then lowing equation of motion in the laboratory frame which
Noiuq + N - Vug = cVug + FP" + F, involves only thetransversedisplacements,:
_ 2 stat
~ v, +'§a, 1 Moy + nuacuy =cVou, + F*(r uy,(r, 1)) + {(r, 1),
. . . . . pmn . )

where 7 is the friction coefficient,Fa (r,1)= -6/ F*(x, y, 1uy) = V(x,y)po Z K, SinK, (u, — y).
Suq(r,t) is the pinning force,E[u(r,?)] is the pinning Ky 20
energy, and the thermal noise satisfigér, 1){z(r’,t') = 3)

2T 8458 — r')8(t —t'). For clarity we use here an This is now a nontrivial static disordered model, and one
isotropic elastic constant The realistic case, discussed expects a glass phase at low temperature, with pinning of
at the end, has the same large distance physics. The tetthe field u(r, ) into preferred configurations. Thus, the
nv - Vu, comes from expressing the displacement fieldnoving vortex configurations can be described in terms
in the laboratory frame, ane-nv, is the average fric- of static channelsvhich are the easiest paths where par-
tion. v is determined by the condition that the averageticles follow each other in their motion. Channels in the
of u is zero. Equation (1) is exact up to higher powerselastic flow regime behave differently than the one intro-
of derivatives ofu, negligible in the elastic limit. The duced to describe slow plastic motion between pinned is-
pinning energy can be expressed in terms of the vorlands [19]. In the topologically ordered moving glass they
tex densityp(r,1) = 3, 8(r — R? — vt — u;(t)). One formamanifold of elastically coupled, almost parallel lines
hasZE[u(r,1)] = [d%rp(r,t)V(r), where the random po- Or sheets (for vortex lines id = 3) directed alongc and
tential has correlationd/ (r)V(r')) = A(r — r') of range  characterized by transverse wandering In the labora-

rs. Since even for smooth displacement fields the densitjory frame they are determined by the static disorder and
is a series of delta peaks, the continuum limit f6fx]  do not fluctuate with time. In the moving frame, since
should be performed by distinguishing [9] the various€ach particle is tied to a given channel which is now mov-
Fourier components of the densityr,r) = po(1 — V - ing, it indeed wiggles and dissipates but remains highly
u+ Y geoexpliK - [r — vt — u(r,1)]}), wherek spans correlated with the neighbors. To obtain the roughness
the reciprocal lattice ang is the average density. Using Of the manifold of channels, we compute the correlator of
this decomposition in (1) the force due to disorder natutelative displacement8(x, y) = ([u(x,y) — u(0,0)]). A

rally splits into astaticand a time-dependent part: detailed analysis will be presented elsewhere [20]. One
Nortte + v - Vitg = cV2ug + F9(r, u(r, 1) defines two characteristic lengths for_the_ decay of trans-
an lational order R{ andRy along the longitudinal and trans-
+ F(r 1, ulr, 1)) verse direction byB(R) ~ a>. One expects three regimes.
+ Foy — qua + La(r,t), Short scale regimeAt very short scales one can

expand the pinning force to lowest order in This
FS(r,u)= V(r)po Z iKge =0 — 5oV, V(r), gives a simple model where pinning is described by

Keom0 a random forceF*?'(x) independent ofu whose cor-
FIM(r,t,u) = V(r)po Z iK, K r—vi—u), rezlator i32 <FStat(r)FS“f‘(V’)> = A5d(r. - r’)_ with A =
K20 00 ZK'V KyAK. This is the dynamic equivalent of the

Th f 1h dom f () H Larkin random force model anBl = By + (u?):
e static part of the random force comes from the B
p Bo(x.y) = j dg,d?'q, All — codg.x + ¢,y)]
rf ’

modes such tha&k - v = 0 which exist for any direction of
Qm)d  (qug,)* + cq? + ¢3)?
4

the velocity commensurate with the lattice. The maximum
effect is obtained fop parallel to one principal lattice di- N . _
rection, the situation we study now. Reflection symmetry@nd{u*)u is the thermal displacement. One finds for

then imposes that andF are aligned along directionthe  ¢/nv B(x,y) ~ Aynv H(cx/nvy?), where H(0) = const
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and H(z) ~ z®9/2 at largez. x scales ag?, and the one expects¢ to decrease slowly fronkf, to a fraction
displacements are very anisotropic. FoK c¢/nv one  of the longitudinal critical currentiy, (since only thek,

has the usual isotropic result. If one could extrapolate thisnodes contribute). Fopv > nv* one expects a much
behavior to larger scales, it would result in an algebraidaster decay, and a naive estimate fgris obtained by
decay of translational order id = 3 [B(x,y) ~ In|y]] balancing the pinning force with the transverse force acting
and exponential decay i@ = 2. However, since the on a Larkin domain:

Larkin model rests on the expansion in powers iof N

it is valid only as long asKmaxu << 1, where Kpax ~ JE = C—pA1/2(R€)*(d*1)/2(1e;)*1/2 ~ AYG=d)

1/rs is the highest Fourier component of the random ’ bors ’

potential [9]. This defines two lengthg; and Ry such o0 X — A /4 is an effective velocity-dependent disor-
that B(R) ~ r}, below which the Larkin model is valid. ggr ande, is the speed of light. I = 3 it yields expo-
At large velocityRS = (rfvc/A)Y/C7) RS = v(RS)/c.  nential decay withy. In practice,nv* can correspond to
For smaller velocitiesy < v* ~ ¢(A/c?r)!/#=9, the  a large driving compared t6.. The above regimes cor-
elastic term dominates amf ~ Ry ~ R, whereR{,, is  respond to collective pinning witR¢ > a. ForR{ < a,
the static pinning length. These lengths are renormalizefle., v < v, = Aa3*d/cr%, single channel pinning leads
by temperature and by the dynamical paft Note that to different estimates foy¢. Since motion is not mod-
this Larkin random force corresponds formally to the so-ified below J¢, dv,/df, also vanishes below the trans-
called “random mobility term” considered in [21,22], and verse critical force. One can expect nonlinear effects in the
by keeping only this term one misses all the physics ofjow alongx since channel configuration is modified when
the moving glass, e.g., the channels and the transverge, is increased. A simpler example of transverse barriers
barriers. As for the static case [9], the pinning force injs a lattice driven in a commensurate washboard potential
(3) should be treated to all ordersin Above this length v (x,y) = UycogK,y) — F,x. Thereitis clear that even
scale, pinning and metastability appear. in the moving frame the problem is static and that the trans-
Intermediate regime At intermediate scaleR; <y <  verse critical force isF¢ ~ UyK,. Even a single parti-
Ry and RS <x <R¢, the analogous random manifold cle inthe 2D potentiaV(x,y) = f.codx) + f.coqy) —
regime [6,9] exists for whichu, ~y¢. The channels F,x has finiteFy. Its velocity can be computed as in [23]
are determined by optimization of elasticitygf term),  and becomes, fof — 0, V, = (F2 — 3)1/20(Fy — fo),
dissipation (nvg, term), and the random potential seenjndependent of-,. Y
independently by each channel in its vicinity. One expects To estimate the effects of the time-dependent pinning
many metastable nearly optimal configurations in thakgrce in (2), we splitu = u* + u? into a staticu* and a

regime and glassy behavior. Flory-type arguments suggegnamicsu? part. A reasonable estimate is
that the scaling properties of this glass are related to the sta-

2
tic Bragg glass byl —d + 1 andn—n — 1. The former W - uty, , = poK*Akd(w — K - v) )
comes from assuming, ~ ¢; and the latter fromu— - 2o MK+ go)? + gt

uy. The Flory estimate is thefti” =[(3 — d)/(n + 3)]. The dynamic correlations are bounded due to the presence

aA§ympt_ot|c regime At large distancest > RY.y > 4t mass termK, v in the denominator. 4? saturates at
Ry, in d = 3 the displacements have a slower, Iogar|th-|arge distances, even i =2 if T = 0. u is smaller

mic growth. Estimates la Fukuyama and Lee then give by a factora/R, < 1 compared ta at the length scales
R.. u‘ thus represents a small additional wiggling motion

a __ 2 1/(3—d) a _ a\2
Ry ~ (a"ve/A) . Ry =vRY) /. () 4round the ground state. The massive propagator in (6) is
The moving glass is highly anisotropic sind®/Ry  very different from a thermal onk/q>.
diverges ay — . lIts upper critical dimension ig = 3, Extension to realistic elastic energy, e.g., a triangular

instead ofd = 4 for the static one. Fad > 3 the moving lattice ind = 2, is straightforward. The static displace-
system is not a glass but a perfect crystal at weak disordenents, within the random force model, are new(q) =
or largev. Ford = 3 weak disorder destroys long-range F,(q)[PL, (invq. + cesq®) ' + PL (invgs + cig?) '],
order and results in a moving glass. where ¢;; and cgs are (dispersionless) bulk and shear
As an important consequence of the existence of thenoduli, respectively. Thus the mean square displacement
moving glass, barriers for transverse motion exist once th&(x, y) is again given, foy > y*, by (4) with ¢ replaced
pattern of channels is established. Thus the response to &g ¢;;. Note that only shear modes were considered
additional small transverse forég is very nonlinear with  in [16], an approximation which may hold for <« y*
activated behavior. AT =0, neglecting the dynamic part but misses the physics of the glass. Indeed, only the
of the disorder, a true transverse critical currénshould  compressionmodes are responsible for the glass (and
exist. This can be seen by adding a transverse force in (3)ead to unbounded displacements tbr> 2) since both
Fornv < nv* ~ (Ri,/rr)F., whereF, is the isotropic  displacements and force have to be considered along
critical force, the Larkin domains remain isotropic, andy. In d = 3, tilt modes would also be relevant for flux
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