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Moving Glass Phase of Driven Lattices
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We study periodic lattices, such as vortex lattices, driven by an external force in a random pinning
potential. We show that effects of static disorder persist even at large velocity. It results in a novel
moving glass state which has analogies with the static Bragg glass. The lattice flows through well-
defined, elastically coupled,static channels. We predict barriers to transverse motion resulting in finite
transverse critical current. Experimental tests of the theory are proposed. [S0031-9007(96)00082-8]

PACS numbers: 74.60.Ge
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An open question is to understand the effect of st
substrate disorder on periodic media such as vortex
tices [1], charge density waves (CDW) [2], Wigner cry
tals [3], colloids [4], and magnetic bubbles [5]. Numero
experiments study such elastic systems in motion un
an applied force produced by a current (vortex lattices
voltage (CDW), an electric field (colloids), and a magne
field gradient (magnetic bubbles). It is therefore imp
tant to describe the physical properties of both the st
and moving lattices. The statics of vortex lattices h
been much investigated recently, and it is generally agr
that disorder leads to a glass state with diverging barri
pinning, and loss of translational order. The precise
ture of the glass state, however, has been the subje
much debate [6–8], in particular, concerning the deca
translational order and the presence of topological defe
It was shown recently [9] within an elastic theory that, b
cause of the periodicity of the lattice, the decay of tra
lational order is only algebraic and that the resulting gl
phase still exhibits divergent Bragg peaks. We arg
that at weak disorder a Bragg glass exists without equ
rium dislocations and also that such a glass will underg
transition into a strongly disordered vortex glass conta
ing topological defects, or a pinned liquid, upon increa
of disorder or field [9]. This is compatible with rece
decoration and neutron experiments [10,11], and with
behavior of the critical point [12] in the phase diagram
vortex lattices, where a transition between two differ
glass states is observed upon raising the field [13].

It is thus crucial to determine how much of the glas
properties of the static system remain once the lattic
set in motion, and how translational and topological or
behave. At large velocityy it was expected that, sinc
the pinning force on a given vortex varies rapidly, dis
der would produce little effect. Perturbation theories
disorder and1yy were thus developed [14,15] to compu
velocity as a function of the external force, and to e
mate critical currents. Recently, Koshelev and Vinok
[16] have extended the perturbation theory of [14,15]
0031-9007y96y76(18)y3408(4)$10.00
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compute vortex displacementsu. They concluded that, at
low T and above a certain velocity, the moving lattice is
crystal at an effective temperatureT 0 ­ T 1 Tsh. Sev-
eral experiments indeed suggest that a fast moving la
tice is more ordered [10,17]. The effect of pinning can
be described [16] by some effective shaking temperatu
Tsh , 1yy2 defined by the relationkjusqdj2l ­ Tshyc66q2

This would suggest bounded displacements ind . 2 and
the absence of glassy properties in the moving solid.

In this Letter we reconsider this problem. We show
that in the case of a moving lattice the perturbation theo
of [16] breaks down, even at largey. The physical reason
is that some modes of the disorder are not affected by t
motion, andstatic disorder is still present in the moving
system. As a result, the moving lattice is, in fact, a
moving glass. Since translational order in the moving
frame decays and relative displacements are not bound
such a phase cannot be described by simple perturbat
theory [18]. As in the statics,periodicity is crucial, and
the moving lattice has a completely different behavio
than other driven systems such as manifolds. The phys
of this new phase can be described in terms ofelastic
channels. When the force is applied along a principa
lattice direction, the rows of the lattice flow along well-
defined, nearly parallel, preferred paths in the pinnin
potential. The manifold of these optimal channels (line
for 2D lattice and sheets for 3D vortex line lattice), tha
exhibits a roughness that we estimate, is a purely sta
and reproducible feature of the disorder configuration
We also predict that the moving glass exhibits barrier
to an additional small transverse force and compute th
associated transverse critical current. The other mod
of the disorder are suppressed by motion and give ri
to an additional wiggling motion of the particles around
the static channel configuration, which can be treated
perturbation.

We now derive the equation of motion for a lattice
submitted to external forceF. We denote byRistd the
position of an individual vortex in the laboratory frame.
© 1996 The American Physical Society
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The lattice as a whole moves with a velocityy. We thus in-
troduce the displacementsRistd ­ R0

i 1 yt 1 uistd, where
the R0

i denote the equilibrium positions in the perfect la
tice with no disorder.ui represent the displacements in th
moving frame. We consider in the following the elasti
limit in the absence of topological defects, thus assumi
jui 2 ui11j ø a, wherea is the lattice spacing, an assump
tion which may be checked self-consistently. One th
takes the continuum limituistd ! usr , td, whereusr , td is
a smoothly varyingn-component vector field, which com-
ponents we denote byuasr , td. It is convenient here to
express the displacement fielduasr , td in terms of the co-
ordinatessr , td of the laboratory frame. The equation o
motion in the laboratory frame is then

h≠tua 1 hy ? =ua ­ c=2ua 1 Fpin
a 1 Fa

2 hya 1 za , (1)

where h is the friction coefficient,F
pin
a sr , td ­ 2dEy

duasr , td is the pinning force,E fusr , tdg is the pinning
energy, and the thermal noise satisfieszasr , tdzbsr 0, t0d ­
2Tdabddsr 2 r 0ddst 2 t0d. For clarity we use here an
isotropic elastic constantc. The realistic case, discusse
at the end, has the same large distance physics. The t
hy ? =ua comes from expressing the displacement fie
in the laboratory frame, and2hya is the average fric-
tion. y is determined by the condition that the averag
of u is zero. Equation (1) is exact up to higher powe
of derivatives ofu, negligible in the elastic limit. The
pinning energy can be expressed in terms of the vo
tex densityrsr , td ­

P
i dsssr 2 R0

i 2 yt 2 uistdddd. One
hasE fusr , tdg ­

R
ddrrsr , tdV srd, where the random po-

tential has correlationskV srdV sr 0dl ­ Dsr 2 r 0d of range
rf . Since even for smooth displacement fields the dens
is a series of delta peaks, the continuum limit forE fug
should be performed by distinguishing [9] the variou
Fourier components of the densityrsr , td ­ r0sss1 2 = ?

u 1
P

Kfi0 exphiK ? fr 2 yt 2 usr , tdgjddd, whereK spans
the reciprocal lattice andr0 is the average density. Using
this decomposition in (1) the force due to disorder nat
rally splits into astaticand a time-dependent part:
h≠tua 1 hy ? =ua ­ c=2ua 1 Fstat

a sssr , usr , tdddd

1 Fdyn
a sssr , t, usr , tdddd

1 Fa 2 hya 1 zasr , td ,

Fstat
a sr , ud ­ V srdr0

X
K?y­0

iKaeiK?sr2ud 2 r0=aV srd ,

Fdyn
a sr , t, ud ­ V srdr0

X
K?yfi0

iKaeiK?sr2yt2ud.

(2)
The static part of the random force comes from th

modes such thatK ? y ­ 0 which exist for any direction of
the velocity commensurate with the lattice. The maximu
effect is obtained fory parallel to one principal lattice di-
rection, the situation we study now. Reflection symmet
then imposes thaty andF are aligned along directionx, the
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d 2 1 transverse directions being denoted byy. Fstat
a gives

the dominant contribution to the lattice deformations.
first approximation we dropF

dyn
a and solve the remain-

ing static problem (leading to a reference ground state
T ­ 0). F

dyn
a gives additional fluctuations on top of this

ground state, estimated below. The static termr0=aV ,
that comes from the Fourier componentsk ø 1ya of the
disorder, produces alone only bounded displacements
d . 1. Thus, as for the nonmoving lattice [9] ford . 2,
it does not change the large scale physics and we drop
SinceFstat

a is now alongy, and depends only onuy , ux ­ 0
in the ground state.

The most important terms in (1) thus lead to the fo
lowing equation of motion in the laboratory frame whic
involves only thetransversedisplacementsuy :
h≠tuy 1 hy≠xuy ­ c=2uy 1 Fstatsssr , uysr , tdddd 1 zysr , td ,

Fstatsx, y, uyd ­ V sx, ydr0

X
Kyfi0

Ky sinKysuy 2 yd .

(3)
This is now a nontrivial static disordered model, and on
expects a glass phase at low temperature, with pinning
the field usr , td into preferred configurations. Thus, the
moving vortex configurations can be described in term
of static channelswhich are the easiest paths where pa
ticles follow each other in their motion. Channels in th
elastic flow regime behave differently than the one intr
duced to describe slow plastic motion between pinned
lands [19]. In the topologically ordered moving glass the
form a manifold of elastically coupled, almost parallel line
or sheets (for vortex lines ind ­ 3) directed alongx and
characterized by transverse wanderinguy . In the labora-
tory frame they are determined by the static disorder a
do not fluctuate with time. In the moving frame, sinc
each particle is tied to a given channel which is now mo
ing, it indeed wiggles and dissipates but remains high
correlated with the neighbors. To obtain the roughne
of the manifold of channels, we compute the correlator
relative displacementsBsx, yd ­ kfusx, yd 2 us0, 0dg2l. A
detailed analysis will be presented elsewhere [20]. O
defines two characteristic lengths for the decay of tran
lational order,Ra

x andRa
y along the longitudinal and trans-

verse direction byBsRd , a2. One expects three regimes
Short scale regime: At very short scales one can

expand the pinning force to lowest order inu. This
gives a simple model where pinning is described b
a random forceFstatsxd independent ofu whose cor-
relator is kFstatsrdFstatsr 0dl ­ Dddsr 2 r 0d with D ­
r

2
0

P
Ky

K2
y DK . This is the dynamic equivalent of the

Larkin random force model andB ­ Brf 1 ku2lth:

Brfsx, yd ­
Z dqxdd21qy

s2pdd

Df1 2 cossqxx 1 qyydg
shyqxd2 1 c2sq2

x 1 q2
yd2

(4)
andku2 lth is the thermal displacement. One finds forx .

cyhy Bsx, yd , D
y32d

chy Hscxyhyy2d, whereHs0d ­ const
3409
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and Hszd , zs32ddy2 at largez. x scales asy2, and the
displacements are very anisotropic. Forx , cyhy one
has the usual isotropic result. If one could extrapolate t
behavior to larger scales, it would result in an algebr
decay of translational order ind ­ 3 fBsx, yd , lnjyjg
and exponential decay ind ­ 2. However, since the
Larkin model rests on the expansion in powers ofu,
it is valid only as long asKmaxu ø 1, where Kmax ,
1yrf is the highest Fourier component of the rando
potential [9]. This defines two lengthsRc

x and Rc
y such

that BsRd , r2
f , below which the Larkin model is valid

At large velocityRc
y ­ sr2

fycyDd1ys32dd, Rc
x ­ ysRc

y d2yc.
For smaller velocitiesy , yp , csDyc2r2

f d1ys42dd, the
elastic term dominates andRc

x , Rc
y , Rc

iso whereRc
iso is

the static pinning length. These lengths are renormali
by temperature and by the dynamical partud. Note that
this Larkin random force corresponds formally to the s
called “random mobility term” considered in [21,22], an
by keeping only this term one misses all the physics
the moving glass, e.g., the channels and the transv
barriers. As for the static case [9], the pinning force
(3) should be treated to all orders inu. Above this length
scale, pinning and metastability appear.

Intermediate regime: At intermediate scalesRc
y , y ,

Ra
y and Rc

x , x , Ra
x , the analogous random manifol

regime [6,9] exists for whichuy , yz . The channels
are determined by optimization of elasticity (cq2 term),
dissipation (ihyqx term), and the random potential see
independently by each channel in its vicinity. One expe
many metastable nearly optimal configurations in th
regime and glassy behavior. Flory-type arguments sug
that the scaling properties of this glass are related to the
tic Bragg glass byd ! d 1 1 andn ! n 2 1. The former
comes from assumingqx , q2

y and the latter fromu !

uy . The Flory estimate is thenz F ­ fs3 2 ddysn 1 3dg.
Asymptotic regime: At large distancesx . Ra

x , y .

Ra
y , in d ­ 3 the displacements have a slower, logarit

mic growth. Estimatesà la Fukuyama and Lee then give

Ra
y , sa2ycyDd1ys32dd, Ra

x ­ ysRa
y d2yc . (5)

The moving glass is highly anisotropic sinceRa
x yRa

y
diverges asy ! `. Its upper critical dimension isd ­ 3,
instead ofd ­ 4 for the static one. Ford . 3 the moving
system is not a glass but a perfect crystal at weak diso
or largey. For d # 3 weak disorder destroys long-rang
order and results in a moving glass.

As an important consequence of the existence of
moving glass, barriers for transverse motion exist once
pattern of channels is established. Thus the response
additional small transverse forceFy is very nonlinear with
activated behavior. AtT ­ 0, neglecting the dynamic par
of the disorder, a true transverse critical currentJc

y should
exist. This can be seen by adding a transverse force in
For hy , hyp , sRc

isoyrfdFc, whereFc is the isotropic
critical force, the Larkin domains remain isotropic, an
3410
his
ic

m

ed

o-
d
of
rse

in

n
ts
at
est

sta-

h-

der
e

the
the
o an

(3).

d

one expectsJc
y to decrease slowly fromJc

iso to a fraction
of the longitudinal critical currentJc

iso (since only theKy

modes contribute). Forhy . hyp one expects a much
faster decay, and a naive estimate forJc

y is obtained by
balancing the pinning force with the transverse force acti
on a Larkin domain:

Jc
y ­

cr

f0rf
D1y2sRc

y d2sd21dy2sRc
x d21y2 , eD2ys32dd,

whereD̃ ­ Dyy is an effective velocity-dependent disor
der andcr is the speed of light. Ind ­ 3 it yields expo-
nential decay withy. In practice,hyp can correspond to
a large driving compared toFc. The above regimes cor-
respond to collective pinning withRc

y . a. For Rc
y , a,

i.e., y , y0 ­ Da32dycr2
f , single channel pinning leads

to different estimates forJc
y . Since motion is not mod-

ified below Jc
y , dyxydfy also vanishes below the trans

verse critical force. One can expect nonlinear effects in t
flow alongx since channel configuration is modified whe
Fx is increased. A simpler example of transverse barrie
is a lattice driven in a commensurate washboard poten
V sx, yd ­ U0 cossK0yd 2 Fxx. There it is clear that even
in the moving frame the problem is static and that the tran
verse critical force isFc

y , U0K0. Even a single parti-
cle in the 2D potentialV sx, yd ­ fc cossxd 1 fc coss yd 2

Fxx has finiteFc
y . Its velocity can be computed as in [23

and becomes, forT ! 0, Vy ­ sF2
y 2 f2

c d1y2usFy 2 fcd,
independent ofFx.

To estimate the effects of the time-dependent pinni
force in (2), we splitu ­ us 1 ud into a staticus and a
dynamicsud part. A reasonable estimate is

kud ? udlq,v ­
X

K?yfi0

r
2
0K2DKdsv 2 K ? yd

h2y2sKx 1 qxd2 1 c2q4
. (6)

The dynamic correlations are bounded due to the prese
of mass termKxy in the denominator. ud saturates at
large distances, even ind ­ 2 if T ­ 0. ud is smaller
by a factorayRx ø 1 compared tous at the length scales
Rx . ud thus represents a small additional wiggling motio
around the ground state. The massive propagator in (6
very different from a thermal one1yq2.

Extension to realistic elastic energy, e.g., a triangu
lattice in d ­ 2, is straightforward. The static displace
ments, within the random force model, are nowuasqd ­
FysqdfPT

aysihyqx 1 c66q2d21 1 PL
aysihyqx 1 c11q2d21g,

where c11 and c66 are (dispersionless) bulk and shea
moduli, respectively. Thus the mean square displacem
Bsx, yd is again given, fory . yp, by (4) with c replaced
by c11. Note that only shear modes were consider
in [16], an approximation which may hold fory ø yp

but misses the physics of the glass. Indeed, only
compressionmodes are responsible for the glass (a
lead to unbounded displacements ford . 2) since both
displacements and force have to be considered alo
y. In d ­ 3, tilt modes would also be relevant for flux
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lines and transverse shear modes for a solid. One fi
yp ­ sc11yhyd fsc2

11 2 c2
66dysc2

11 1 c2
66dg1y2.

The predictions of glassy structure, topological ord
channel motion, and transverse critical force can be tes
in experiments. For vortex lattices,J

y
c can be measured

in the presence of a longitudinal current. Magne
noise experiments and NMR probeyt 1 usx, td and
the phase at the washboard frequency should con
a static component with slow and anisotropic dec
Other experimental systems such as colloids, magn
bubbles, and double or triple incommensurate CD
should exhibit similar behavior. A transverse critic
force may explain recent Hall voltage experiments in 2
Wigner crystals [24]. The predictions of channel motio
and transverse critical current can be directly tested
numerical simulations [25].

Equation (2) shows the importance of the relative o
entation of the lattice and the applied force. It has be
argued [14] that to minimize power dissipation the latti
aligns with the force. This process may be slow, and ot
orientations can be studied by applying a transverse fi
We expect commensuration effects with a devil’s stairca
type structure in response to additional force. At high
commensuration vectors the channel structure may bec
unstable due to the stronger effect ofud. Conversely, the
larger the static part, the more stable the glass with fe
topological defects. The size of the plastic flow regim
should thus depend on the lattice orientation. It is th
possible that ind ­ 3 for weak disorder the glass remain
topologically ordered at ally and that the intermediate
plastic regime disappears at lowT . One would thus go
smoothly from the moving to the static Bragg glass.
large y, channels are nearly straight, and out of equil
rium dislocations are thus suppressed. This allows us
understand why in [10] the plastic regime disappears wh
J is slowly decreased.

Previous descriptions of moving systems, such
manifolds driven in periodic [26] or disordered potentia
focused on the generation under the renormalizat
group of dissipative Kardar-Parisi-Zhang (KPZ)s=ud2

nonlinearities. They do occur, due to lattice cutoff,
driven random sine-Gordon models [21,27]. They a
not important here because of the statistical symme
uy ! 2uy in (3) and the fact that dynamic modes (6
are massive. Thus, because of periodicity, this probl
belongs to a new universality class. KPZ terms may p
a role for incommensurate motion.

In conclusion, we studied a lattice moving in a rando
potential. Static disorder dominates motion along symm
try directions, and the moving system is aglasswith a large
amount of topological order. It is continuously related
the static Bragg glass, and, although the decay of tran
tional order is slow, it has genuine glass properties diff
ent from a usual solid. We predict experimental signatu
such as elastic channels and transverse critical current
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