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The paper deals with the dynamics of a semiclassical system under the influence of the environment.
The effect of the environment is shown to convert the quantum dynamics of the system into the classical
one. The condition of correspondence between quantum and classical dynamics is obtained and checked
numerically.

PACS numbers: 03.65.Sq, 05.45.+b

The transition from quantum to classical dynamics isclassically chaotic system surprisingly well for time much
a problem which has caused permanent interest since tharger thary,.
foundation of quantum mechanics. One of the motiva- The second key point of the analysis given below is the
tions for this interest comes from the well known experi-way in which the influence of the environment is taken
mental fact that the same quantum system can behave into account. The common way is to construct a master
different laboratory conditions either as a quantum sysequation for the system density matrix and then to solve
tem or a classical one. It seems that common agredt. Recently great progress has been achieved in solving
ment on the explanation of such a phenomenon has bed¢ne master equation by using the stochastic Schrédinger
achieved. The key idea is the following: There are noequation. The main idea is the following. Having solved
systems which are completely isolated from their environthe master equation, we can put it into correspondence
ment, and this influence can be important. In fact, it hawith the Schrédinger-like equation (linear or nonlinear)
been numerically shown for some model systems that thehich contains an additional stochastic term [9]. Instead
influence of the environment does convert the quantunof solving the master equation, we solve the stochastic
dynamics of the system into the classical one [1-5]. Theequation for a large number of the realizations of the
aim of the present paper is to obtain a general conditiostochastic procesg = £(r). Then the solution for the
under which the transition (due to the environment in-master equation is the average o¥efrom pure density
fluence) from quantum to classical dynamics is achievedmatrix
here we are focused on chaotic systems.

The starting point of our analysis is the semiclassical p'x" 1) = [, g™ (" D] - (2)
formula for propagation of a quantum particle, known asin what follows we use the simplest form of the stochastic
the Van Vleck—Gutzwiller formula [6] Schrodinger equation

GUY0 = 2, solX1.0 in D~ v eevu,
-~ (- 1 a%se(x,v.n\"? o ,
= ( mili 9XoY ) EMEW) = ot — 1)/7]. 3)
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! e i It is easy to show that Eq. (3) corresponds to the following
% exp{ h STX Y1) + 2 y”‘] @) equation for the system density matrix:

In Eqg. (1)S.(X,Y,t) is the action along the classical path ap(t) ; 27 o
connecting two pointX andY, v, is the Maslov index, —— = ——[H,pO)] — = V.[V.p(®)], (4)

and « labels different classical trajectories connecting ot k k

X and Y. (For the sake of simplicity we consider which has a typical structure of the master equation for an
the one-dimensional case.) One might doubt if theopen system, and wheifi is the operator of the system
semiclassical approximation can be grounds for studyingnteraction with the environment andhas physical sense
the transition between quantum and classical dynamics fasf the correlation time for the environment variables.

a chaotic system. In fact, it is known that in the case We now proceed to the analysis. Let us denote the
of chaotic dynamics the time of correspondence betweewigner function of the system under consideration by
pure quantum and classical evolution is extremely small .

and scales as ~ In(1/#) [7]. Fortunately, this does not w(X,P, 1) = 1 fdx ex&ﬂ)
imply that the semiclassical approximation will fail after 2mh h
t.. It was shown in the papers of Heller and Tomsovic X X

[8] that formula (1) describes the quantum dynamics of a X p<X X X+ 2’ ’)' ()
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In Eq. (5) p(x, x",r) is given by Eq. (2). Since simple transformation the following expression for the
p(x,t) = [dyG(x,y, )ip(y, 0) we obtain after a| semiclassical evolution of the Wigner function:

w(X,P,1) = f f[o%faﬁ(X,P;Y,Q;t)i|w(Y,Q,0)deQ , (6)

where |
fapX, Py Y, Q5 1) = {ﬁ ] ] ex;(i%)ga<X - %,Y - %,t)g},(X + %,Y + %t) exp(—i%)dxdy}f
(7)

andg,. (X, Y, 1) is given by Eq. (1).
Now we shall show that the terms witlh = B in Eq. (6) define pure classical evolution of the system. In fact,
substitutingg, (X ¥ x/2, Y ¥ y/2, t) into Eq. (7) results in the following form:
_ { _ X _ -1 (:)2501 >1/2
g“<X AR t) <27Tih 9XaY
- o o 2¢a L2 2¢a 2 2Qa .
Xex&é[é‘“ias% s« y 9°S* x aSy+aS ﬂi|+l7T )

_ v, < i
X 2 oy 2 9x? 8 aY2 8 | 9XoY 4 Va

I
[here S§* = S*(X,Y,1)]. We obtain >, fa. X  ofthe stationary phase method fer# g brings the com-
(X, P; Y, 0;1t) =2, {—0P*(X, Y)/aY)s[P — P~ X plex prefactor exfli/A)[S(X,Y,t) — SE(X, Y, 1)].

(X, Y)I6[Q — Py (X, Y)]}e, where P}(X,Y) =  Therefore, we can estimate,z(X, P;Y, Q;1) in
aS*(X,Y,1)/oX and Py(X,Y)= —0S%“(X,Y,r)/oY the order of magnitude asf,g(X,P;Y,Q;1)~
are the initial and final momentum of a classical par-(exp{(i/A)[S“(X, Y, t) — SE(X, Y, )])e¢. Let us

ticle moving fromY to X. Then, using the identity denote by Sy(X,Y,r) the value of the principal
8[x(¢) — xoldx/ded = 8[¢ — x '(xo0)], we come to Hamilton function fore = 0 and by 8§S(X, Y, ) the

the final expression [10] variation of S(X,Y,t) due to the stochastic term
_ oL [S(X, Y, 1) = So(X, Y, 1) + 6S(X, Y, 1r)] and let xo(¢)
; faaX, PrY, Q1) = {8[Y = Xo(X, P, 1)] be the trajectory connecting the poinfs, Y in the
X 8[Q — Po(X, P, 1)]}¢ . case e = 0 [x(r) = xo(¢) + 6x(¢)]. We restrict our-

selves in the case when the operaiorof the system
©) interaction with the environment is a function of the
In Eq. (9) Xo = Xo(X,P, 1), Py = Po(X, P, 1) is the coordinate x and let the characteristic length for the
solution of the classical equation of the motion back invariation of V(x) coincide with the characteristic length
time and we omit the sum over while for givenX and ~ for the variation of the potential energy(x). In the
P there is only one classical trajectory with the specifiedfirst order over parameter we haveS(X,Y,1) = [, X
initial coordinateY and momentunp. [mx2/2 — U(x) — €£(5)V(x)]dt = So(X,Y,1) + € [( X
Having the result of the previous paragraph in mind we mxéx — U’(xo)éx]dt—ef(’) EMV(xg)dt = So(X,Y, 1) —
conclude that the transition to classical dynamics takes ff) E(H)V(xg)dt [we have useddx(0) = 6x(r) =0
place under the condition of vanishing of the terms withand mx, = —U’(x0)]. Thus the estimate for
a # B in Eq. (6). Let us obtain this condition. The Uﬁe fapX, P; Y, Q; 1) is the following:

Fup(X, PLY. Q1) ~ ‘ex;{; [ eotvas - vuﬁnmﬂf e = [ f(t)dt}}g — exp—k),

e*Vir
K=" (10)
In Eq. (10) we denote by the amplitude ofv(x), and ! Now we are in a position to formulate the condition

use the fact that the typical distance between two differof the correspondence. We consider the case of the
ent chaotic trajectorieg}’ andx? coincides with the char- chaotic dynamics. In this case the number of classical
acteristic length for variation of the potentiéi(x) and, trajectories contributing to Eq. (1) grows exponentially
hence,V (x). with an incrementn defined by the Lyapunov exponent
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A: n = n(A) ~ A. Then the overall contribution of the with U(x) of the form chosen is that it can display a
terms witha # B can be neglected if and only #n <  specific interference pattern for integgr [12]; namely,

k. Thus the condition required has the form for integerK the Wigner function equals zero everywhere
2V27 exceptV nodes of the grid. This case is illustrated by the
> n(A) . 11 first row in Fig. 1, wherew(X, P, t) for t =1, 2,3 is
T

shown forK = 2 and/ = 27 /512. (The eigenstatd0)
We note that a similar condition was obtained in Ref. [4]was chosen as an initial condition. In the classical case
by means of a qualitative analysis of the master equatioit corresponds to an ensemble of the particles uniformly
(4) in Wigner representation. The method presented imlistributed overX with P = 0.) We would like to note
this paper is more rigorous and, in principle, allows us tathat this interference pattern is not typical for the quantum
predict an exact border between the quantum and classicsiandard map and is sensitive to any perturbation (see
dynamics. Fig. 1, second row). However, because of its transparent

To demonstrate the applicability of the condition (11)character, it is ideally suited for the study of the transition
we perform a numerical simulation for a particular chaoticbetween quantum and classical dynamics.
system known as the standard map on the torus. The The third row in Fig. 1 shows the Wigner function for
Hamiltonian of this system has the form an open system or, what is the same, the Wigner function

p? averaged over the stochastic process. The interaction
H=7+U(x)25(t—n),
n

Ukx + 27) = Ux), (12)

where the periodic boundary condition om is im- L | _';j*.’;'_‘,_‘,. -
posed. In the quantum case the condition of period- B B S
icity over the momentum is satisfied by the choice of N N SR ST

the Planck constanti = 277/N. Then the Hamilton- Pl B B RENR

ian (12) defines amV-level system with basis functions
Iny = 2m)~"/? explinxy), xx = 2mwk/N.

Since the phase space of the system (12) is bounded
(0 =x <2m, 0= p < 2), the Wigner function is de-
fined on the grid and transformation (5) takes the form [11]

2N—1 . H .
B ,wkj>1+(—1)”f<z+1
wik,1,t) ; ex;(z N 5 5
L
< p] 52, (13)

where integerd and k label the quantized momentum
P = (h/2)l = wl/N and coordinateX = wk/N of the
system. We note that for the considered case of torus
(as well as for the case of cylindrical phase space) the
momentum is a multiple ofi/2 but not #. Therefore,

the grid has the siz€N X 2N. For our purpose it is
more convenient to consider the “modified" Wigner func-
tion wk,I1,t)={1/4)[wk,,t) + wk + N, 1, 1) +
wk,l + N)+wlk + N, + N)]. This  function s
equals zero for odd andk. Thusw(X, P, t) is defined  F|G. 1. Comparison between the quant@n= 27 /N, N =

on the grid of the sizeV X N with X = 27k/N and 512) and classical dynamics of the standard map on the torus
P=2xwl/N (k,1=1,...,N —1). In the classical for K =2. A quarter of the phase spad® = X,P < 7)
approach this “modification procedure" denotes that weS shown. For the Wigner function the following symbolic

. ! . representation is used: big dots correspond to the positive value
consider the system dynamics on modufoinstead of of w(X, P, t) [being together, big dots give black color in

modulo27r. . _ ' the figures], small dots denote negative value (they give gray
In our numerical simulation we choose color), and the absence of the dots (white color) corresponds
Ux) = [K(x2/2 — wx)]mod®7 in the Hamiltonian to the value of the Wigner function near zefio (X, P, 1)| <

(12). In this case the classical dynamics is ho-%> &~ N"2]. First row, unperturbed dynamics; second row,
| table with the Lvapunov expone a,ample evolution for one realization of the stochastic process
mogeneously unstable wi yapunov. exponentyin e — 0.05; third row, the Wigner function averaged over

A=1In{2 + K)/2 + [(2 + K)*/4 — 1]'/2}. A remark-  the stochastic process; fourth row, dynamics of an ensemble of
able feature of the quantum standard map on the toruse classical particles far = 0.05.
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FIG. 2. Dynamics of the Wigner function averaged over the
stochastic process for = 27, € = 0.05, andK = 8. A sign
of the quantum interference pattern is clearly seerrfor 1.

operatorV in Eq. (4) was chosen in the fori(x) =
[x — w]mo; i.e., V(x) is proportional to the first
derivative fromU(x). (Such a form of the interaction

operator is a general one for the case of a mesoscopiés]

particle with few internal degrees of freedom [4].) A good
correspondence with the classical dynamics (fourth row)

is seen, and we have found this correspondence for gf

arbitrary large time available for the computer.

In the numerical simulation presented in Fig. 1 we
chose the parameteron the border of validity of the con-
dition (11). Figure 2 shows the dynamics of the Wigner
function for the same values efand/, butK = 8. Now
the Lyapunov exponent is approximately two times larger
than for the case&k = 2, and the condition (11) should
be violated. In fact, one can see the sign of the inter-

ference pattern discussed above (the classical distributicirlmz]

function would look completely uniform for > 1) and,
thus, Fig. 2 confirms our theoretical predictions.
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