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Condition of Correspondence between Quantum and Classical Dynamics
for a Chaotic System
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The paper deals with the dynamics of a semiclassical system under the influence of the environ
The effect of the environment is shown to convert the quantum dynamics of the system into the cla
one. The condition of correspondence between quantum and classical dynamics is obtained and c
numerically.
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The transition from quantum to classical dynamics
a problem which has caused permanent interest since
foundation of quantum mechanics. One of the motiv
tions for this interest comes from the well known expe
mental fact that the same quantum system can behav
different laboratory conditions either as a quantum s
tem or a classical one. It seems that common agr
ment on the explanation of such a phenomenon has b
achieved. The key idea is the following: There are
systems which are completely isolated from their enviro
ment, and this influence can be important. In fact, it h
been numerically shown for some model systems that
influence of the environment does convert the quant
dynamics of the system into the classical one [1–5]. T
aim of the present paper is to obtain a general condit
under which the transition (due to the environment
fluence) from quantum to classical dynamics is achiev
here we are focused on chaotic systems.

The starting point of our analysis is the semiclassi
formula for propagation of a quantum particle, known
the Van Vleck–Gutzwiller formula [6]
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∏
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In Eq. (1)SasX, Y , td is the action along the classical pa
connecting two pointsX andY , na is the Maslov index,
and a labels different classical trajectories connecti
X and Y . (For the sake of simplicity we conside
the one-dimensional case.) One might doubt if t
semiclassical approximation can be grounds for study
the transition between quantum and classical dynamics
a chaotic system. In fact, it is known that in the ca
of chaotic dynamics the time of correspondence betw
pure quantum and classical evolution is extremely sm
and scales astc , lns1yh̄d [7]. Fortunately, this does no
imply that the semiclassical approximation will fail afte
tc. It was shown in the papers of Heller and Tomsov
[8] that formula (1) describes the quantum dynamics o
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classically chaotic system surprisingly well for time mu
larger thantc.

The second key point of the analysis given below is
way in which the influence of the environment is tak
into account. The common way is to construct a mas
equation for the system density matrix and then to so
it. Recently great progress has been achieved in sol
the master equation by using the stochastic Schrödin
equation. The main idea is the following. Having solv
the master equation, we can put it into corresponde
with the Schrödinger-like equation (linear or nonlinea
which contains an additional stochastic term [9]. Inste
of solving the master equation, we solve the stocha
equation for a large number of the realizations of t
stochastic processj ­ jstd. Then the solution for the
master equation is the average overj from pure density
matrix

rsx0, x00, td ­ fcsx0, tdcpsx00, tdgj . (2)

In what follows we use the simplest form of the stochas
Schrödinger equation

ih̄
≠cstd

≠t
­ Ĥ 1 ejstdV̂cstd ,

jstdjst0d ­ dfst 2 t0dytg . (3)

It is easy to show that Eq. (3) corresponds to the follow
equation for the system density matrix:

≠r̂std
≠t

­ 2
i
h̄

fH, r̂stdg 2
e2t

h̄2 V̂ , fV̂ , r̂stdg , (4)

which has a typical structure of the master equation for
open system, and wherêV is the operator of the system
interaction with the environment andt has physical sens
of the correlation time for the environment variables.

We now proceed to the analysis. Let us denote
Wigner function of the system under consideration by

wsX, P, td ­
1

2p h̄

Z
dx exp

µ
iPx
h̄

∂
3 r

µ
X 2

x
2

, X 1
x
2

, t

∂
. (5)
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e
In Eq. (5) rsx0, x00, td is given by Eq. (2). Since
csx, td ­

R
dy Gsx, y, tdcs y, 0d we obtain after a
i

e

k
it
e

er
simple transformation the following expression for th
semiclassical evolution of the Wigner function:
ct,
wsX, P, td ­
Z Z "X

a,b

fa,bsX, P; Y , Q; td

#
wsY , Q, 0ddY dQ , (6)

where
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(7)
andgasX, Y , td is given by Eq. (1).

Now we shall show that the terms witha ­ b in Eq. (6) define pure classical evolution of the system. In fa
substitutinggasX 7 xy2, Y 7 yy2, td into Eq. (7) results in the following form:
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[here Sa ; SasX, Y , td]. We obtain
P

a fa,a 3

sX, P; Y , Q; td ­
P

a h2s≠Pa
t sX, Y dy≠Y ddfP 2 Pa

t 3

sX, Y dgdfQ 2 Pa
0 sX, Y dgjj, where Pa

t sX, Yd ­
≠SasX, Y , tdy≠X and Pa

0 sX, Yd ­ 2≠SasX, Y , tdy≠Y
are the initial and final momentum of a classical pa
ticle moving from Y to X. Then, using the identity
dfxsfd 2 x0gdxydf ­ dff 2 x21sx0dg, we come to
the final expression [10]X

a

fa,asX, P; Y , Q; td ­ hdfY 2 X0sX, P, tdg

3 dfQ 2 P0sX, P, tdgjj .

(9)

In Eq. (9) X0 ­ X0sX, P, td, P0 ­ P0sX, P, td is the
solution of the classical equation of the motion back
time and we omit the sum overa while for givenX and
P there is only one classical trajectory with the specifi
initial coordinateY and momentumQ.

Having the result of the previous paragraph in mind w
conclude that the transition to classical dynamics ta
place under the condition of vanishing of the terms w
a fi b in Eq. (6). Let us obtain this condition. The us
r-

n

d

e
es
h

of the stationary phase method fora fi b brings the com-
plex prefactor exphsiyh̄dfSasX, Y , td 2 SbsX, Y , tdgj.
Therefore, we can estimatefa,bsX, P; Y , Q; td in
the order of magnitude asfa,bsX, P; Y , Q; td ,
sss exphsiyh̄dfSasX, Y , td 2 SbsX, Y , tdgjdddj. Let us
denote by S0sX, Y , td the value of the principal
Hamilton function for e ­ 0 and by dSsX, Y , td the
variation of SsX, Y , td due to the stochastic term
fSsX, Y , td ­ S0sX, Y , td 1 dSsX, Y , tdg and let x0std
be the trajectory connecting the pointsX, Y in the
case e ­ 0 fxstd ­ x0std 1 dxstdg. We restrict our-
selves in the case when the operatorV̂ of the system
interaction with the environment is a function of th
coordinate x and let the characteristic length for the
variation of V sxd coincide with the characteristic length
for the variation of the potential energyUsxd. In the
first order over parametere we haveSsX, Y , td ­

Rt
0 3

fm Ùx2y2 2 Usxd 2 ejs5dV sxdgdt ø S0sX, Y , td 1 e
Rt

0 3

fm Ùx0d Ùx 2 U 0sx0ddxgdt2e
Rt

0 jstdV sx0ddt ­ S0sX, Y , td 2

e
Rt

0 jstdV sx0ddt [we have used dxs0d ­ dxstd ­ 0
and mẍ0 ­ 2U 0sx0d]. Thus the estimate for
fa,bsX, P; Y , Q; td is the following:
fa,bsX, P; Y , Q; td ,

(
exp

∑
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0
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∏æ
j
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­ exps2ktd,
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e2V2t
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n
the

ical
lly
t

In Eq. (10) we denote byV the amplitude ofV sxd, and
use the fact that the typical distance between two diff
ent chaotic trajectoriesxa

0 andxb

0
coincides with the char-

acteristic length for variation of the potentialUsxd and,
hence,V sxd.
-
Now we are in a position to formulate the conditio

of the correspondence. We consider the case of
chaotic dynamics. In this case the number of class
trajectories contributing to Eq. (1) grows exponentia
with an incrementh defined by the Lyapunov exponen
341
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l: h ­ hsld , l. Then the overall contribution of the
terms witha fi b can be neglected if and only if2h ,

k. Thus the condition required has the form

e2V 2t

h̄2 . hsld . (11)

We note that a similar condition was obtained in Ref. [
by means of a qualitative analysis of the master equat
(4) in Wigner representation. The method presented
this paper is more rigorous and, in principle, allows us
predict an exact border between the quantum and class
dynamics.

To demonstrate the applicability of the condition (11
we perform a numerical simulation for a particular chaot
system known as the standard map on the torus. T
Hamiltonian of this system has the form

H ­
p2

2
1 Usxd

X
n

dst 2 nd ,

Usx 1 2pd ­ Usxd , (12)

where the periodic boundary condition onp is im-
posed. In the quantum case the condition of perio
icity over the momentum is satisfied by the choice
the Planck constant̄h ­ 2pyN. Then the Hamilton-
ian (12) defines anN-level system with basis functions
jnl ­ s2pd21y2 expsinxkd, xk ­ 2pkyN.

Since the phase space of the system (12) is boun
s0 # x , 2p , 0 # p , 2pd, the Wigner function is de-
fined on the grid and transformation (5) takes the form [1

wsk, l, td ­
2N21X
j­0

exp

µ
i
pkj
N

∂
1 1 s21dl1j

2

ø
l 1 j

2

Ç
3 r̂std

Ç
l 2 j

2

¿
, (13)

where integersl and k label the quantized momentum
P ­ sh̄y2dl ­ plyN and coordinateX ­ pkyN of the
system. We note that for the considered case of to
(as well as for the case of cylindrical phase space)
momentum is a multiple of̄hy2 but not h̄. Therefore,
the grid has the size2N 3 2N. For our purpose it is
more convenient to consider the “modified" Wigner fun
tion w̃sk, l, td ­ s1y4dfwsk, l, td 1 wsk 1 N, l, td 1

wsk, l 1 Nd 1 wsk 1 N, l 1 Ndg. This function
equals zero for oddl andk. Thusw̃sX, P, td is defined
on the grid of the sizeN 3 N with X ­ 2pkyN and
P ­ 2plyN (k, l ­ 1, . . . , N 2 1). In the classical
approach this “modification procedure" denotes that w
consider the system dynamics on modulop instead of
modulo2p.

In our numerical simulation we choose
Usxd ­ fKsx2y2 2 pxdg mod2p in the Hamiltonian
(12). In this case the classical dynamics is h
mogeneously unstable with the Lyapunov expone
l ­ lnhs2 1 Kdy2 1 fs2 1 Kd2y4 2 1g1y2j. A remark-
able feature of the quantum standard map on the to
342
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with Usxd of the form chosen is that it can display
specific interference pattern for integerK [12]; namely,
for integerK the Wigner function equals zero everywher
exceptN nodes of the grid. This case is illustrated by th
first row in Fig. 1, wherew̃sX, P, td for t ­ 1, 2, 3 is
shown forK ­ 2 and h̄ ­ 2py512. (The eigenstatej0l
was chosen as an initial condition. In the classical ca
it corresponds to an ensemble of the particles uniform
distributed overX with P ­ 0.) We would like to note
that this interference pattern is not typical for the quantu
standard map and is sensitive to any perturbation (
Fig. 1, second row). However, because of its transpar
character, it is ideally suited for the study of the transitio
between quantum and classical dynamics.

The third row in Fig. 1 shows the Wigner function fo
an open system or, what is the same, the Wigner funct
averaged over the stochastic process. The interac

FIG. 1. Comparison between the quantumsh̄ ­ 2pyN , N ­
512d and classical dynamics of the standard map on the to
for K ­ 2. A quarter of the phase spaces0 # X, P , pd
is shown. For the Wigner function the following symboli
representation is used: big dots correspond to the positive va
of w̃sX, P, td [being together, big dots give black color in
the figures], small dots denote negative value (they give g
color), and the absence of the dots (white color) correspon
to the value of the Wigner function near zerofjw̃sX, P, tdj ,
´, ´ , N22g. First row, unperturbed dynamics; second row
sample evolution for one realization of the stochastic proce
with e ­ 0.05; third row, the Wigner function averaged ove
the stochastic process; fourth row, dynamics of an ensemble
the classical particles fore ­ 0.05.
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FIG. 2. Dynamics of the Wigner function averaged over t
stochastic process for̄h ­ 2p, e ­ 0.05, andK ­ 8. A sign
of the quantum interference pattern is clearly seen fort . 1.

operatorV̂ in Eq. (4) was chosen in the formV sxd ­
fx 2 pg mod2p; i.e., V sxd is proportional to the first
derivative from Usxd. (Such a form of the interaction
operator is a general one for the case of a mesosc
particle with few internal degrees of freedom [4].) A goo
correspondence with the classical dynamics (fourth ro
is seen, and we have found this correspondence for
arbitrary large time available for the computer.

In the numerical simulation presented in Fig. 1 w
chose the parametere on the border of validity of the con-
dition (11). Figure 2 shows the dynamics of the Wign
function for the same values ofe andh̄, butK ­ 8. Now
the Lyapunov exponent is approximately two times larg
than for the caseK ­ 2, and the condition (11) should
be violated. In fact, one can see the sign of the int
ference pattern discussed above (the classical distribu
function would look completely uniform fort . 1) and,
thus, Fig. 2 confirms our theoretical predictions.
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of Russian Fund for Basic Research and INTAS Gra
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