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Time Correlations in 1D Quantum Impurity Problems
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We develop an analytical approach using form factors to compute time dependent correlations in
integrable quantum impurity problems. As an example, we obtain for the first time the frequency
dependent conductivityz(w) for the tunneling between edges in the= 1/3 fractional quantum
Hall effect and the spectruri(w) of the spin-spin correlation in the anisotropic Kondo model and
equivalently in the double well system of dissipative quantum mechanics, both at vanishing temperature.
[S0031-9007(96)00099-3]
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Several problems of great physical interest can be refothrough a change of variables,
mulated as impurity problems in one dimensional Luttinger

liquids. These include the anisotropic Kondo problem, the d°(x,t) = L[¢L(x,t) + dr(—x,1)],

double well and multiwell problem in dissipative quan- V2 )
tum mechanics [1], and the tunneling between edges in v 1

the fractional quantum Hall effect [2—4]. Although these ¢%(x,1) = —2[¢L(x,t) — ¢r(—x,1)].

problems are integrable, exact results have for a long time i i i i
mostly concerned static, thermodynamic quantities. A rel!N€ even field factorizes, and after folding the real line
cent approach using massless scattering has also allow¥§ 9€t @ Hamiltonian on the half line with interaction at
the computation of dc transport properties and noise [5N€ boundary which can be rearranged in the form

7], in and out of equilibrium. Unfortunately, ac properties 0 5 1 5

had so far remained inaccessible, while containing most of H = 5[ dx[Sﬂ'vH + %(axd’) }

the open physical questions. In this Letter, we develop an -

approach based on “massless form factors” to compute the + Acod(0)/2]. (3)

ac properties. We illustrate it on two simple cases, both athjs Hamiltonian is integrable, and the problem is thus
vanishing temperature: the frequency dependent conduesplyable” in principle. The dc conductance [5] and the
tivity G(w) for the tunneling between edges in the= (¢ shot noise [6,7] have been computed in the general case
1/3 fractional quantum Hall effect and the spectrif@)  of a nonvanishing voltage. These results followed from
of the spin-spin correlation in the double well problem combining the standard thermodynamic Bethe ansatz with
of dissipative quantum mechanics and in the anisotropig Boltzmann equation.
Kondo model. The problem of a two state system in a dissipative bath

Edge excitations in the fractional quantum Hall effectqan also be mapped onto a boundary problem [1]. When
with filling fraction » = 1/(2p + 1) are thought to be the dissipation is Ohmic, it can described by a single spin
described by a chiral Luttinger liquid [2]. This allows a interacting with a bath of electrons. The corresponding
number of interesting theoretical predictions to be madeyamiltonian is the anisotropic Kondo model, which is
in particular, concerning the effect of impurities [3]. For aiso known to be integrable,
a single impurity (as can be obtained experimentally 0
through a constriction), one expects, based on perturbation H = lf dx|:87TaH2 + b (%d))z}

8Ta

theory and scaling arguments, the (dimensionless) dc 2 J-w

conductance to behave ag?(/7=1 at low temperature + Mo 02 4 5 (=i0/2) (4)
andv + ¢/T?*~D at high temperature. The problem can _ _

be described by the Hamiltonian, where o+ are Pauli matrices. The models (3) and (4)

have the same “bulk” part: a free boson (we denote

1 [~ 5 1 5 the couplingr or a@ by g in the general discussion
H== f,m dX[47TVrI + m(axdﬂ }R to follow), but they differ significantly by the boundary
interaction. They both belong to the same large class of
+ [4771/H2 + b (8x¢)2} integrable boundary field theories, and can be approached
4mv L by a unified formalism [8]. The general strategy is to
+ Acogd e (0) — ¢r(0)], (1) describe the bulk part by a basis of states that scatter in

a very simple way on the boundary. To find the right
where ¢ r(x = t) are left and right moving fields basis, one can think of more general Hamiltonians that
moving on different edges. This model can be simplifiedlook like (3) and (4) but with an additional term of the
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form Aj(lmdx cog¢(x)]. The bulk part is then the well precision (0~3) on the quantities of interest, and this all
known sine-Gordon model, while it can be shown thatthe way from the short distance to the large distance fixed
the boundary interaction does not spoil integrability [9]. point.

The right basis for the sine-Gordon model is well known; We start with the frequency dependent conductance in
it consists of (massive) solitons or antisolitons, and forthe problem of tunneling between edge states. Using the
g =1/3, [1/g — 2] breathers. These have factorized Kubo formula [3] and folding the system as explained
scattering, and they also scatter simply, without particleabove one find&; = (g/2) + AG(w), where

production, at the boundary. One can now take the

0 )
limit A — 0 to obtain a description of the free boson AG(wy) = %] dx dx/f dy e'@ny
using massless solitons or antisolitons and breathers [10]. 8Toyl” )L —o
This is, of course, a more complicated basis than the X [(9.¢(x,y)d=¢(x',0)) + c.c], (7)

standard plane waves, but in the latter the effect of ) B )

the boundary interaction is essentially intractable, whilg®» P€ing a Matsubara frequency = x + iy. We have
here it is transparent. Massless particles have dispersidfs€d here the fact that in the current-current correlation
relationE = p [E _ _p] for right (R) [Ieft (L)] moving the Ferm<§z¢82/¢> and' its _Conjugate are insensitive to
particles. Since the theory is massless, we can set tH8€ impurity [13], contributingg/2 to the conductance.
arbitrary energy scale equal to unity, and parametrize th&NiS 1S because. ¢ (9:¢) act only onR (L) particles,
energies by a rapidity = ¢ for solitons or antisolitons, While the effect of the boundary is to mik and R
E = 2sirlnmg/2(1 — g)]eP for thenth breather. particles. Considering a particular term in the expansion

In what follows, we work in Euclidean space and choose®! |B) with n L andn R particles, the only process with a
x to be the imaginary time. This is a “modular transformedn@nvanishing amplitude it0|a. ¢ 9z ¢|B) is to haved. ¢

point of view,” where the boundary interaction does not2nnihilate all then L particles and therd. ¢ all the n
appear in the Hamiltonian any more, but is encoded in temainingR particles. We thus need the form factors

boundary statdB), so correlators can be represented A (B1...., Bu)ere, = 010:$(0)ZZ x(B1) -+ Z% p(B)10).

,,,,

(0|® O®|B). The boundary state has a simple expression (8)

[9] in terms of solitons or antisolitons and breathers cre- _
ation operatorsZ:(B), withe = =,1,...,[1/g — 2], Current form factors have been computed by Smirnov

[11] for the massive sine-Gordon model. Expressions for
|B) = Z f Kfnfl’(lgB — B1)--K"(Bp — By) (8) can then be obtained by taking a massless limit, i.e.,
ne's by sending the physical mass to zero and the rapidities to
X Z: 1 (B1) - -Z:’IL(,Bn)Z:{R(,Bl) - Zar(B)0), infinity to keep excitations of finite energy [12].
5 As examples, wherg = 1/2, there is only a pair
of solitons or antisolitons in the spectrum. The only
nonzero form factor ig«= (B, B2) = FceB )2 with
¢ a known normalization factor. Fgr = 1/3, a breather
appears in the spectrum and the first two form factors are

where the integrals run dn-, ] and are ordere@; <

.-+ < B,. The boundary interaction is completely en-
coded in the matrixk “?, which derives from the reflection
matrix, solution of the boundary Yang-Baxter equation,

i given by
ar:
k) = &Y - 8). © £1(B) = cref ©
The strength of the boundary interaction is encoded in afPr the 1 breather and
energy scald’z = ¢f». The latter is related in a nonuni- (B — Ba)
versal way to the microscopic couplinfz o A'/(17¢). f==(B1,B2) = Fc Br= B2 p+p02 (10)

, =L P2l
. S cos -

To compute a correlation function in this approach, one ] 61 = p2) )
needs to know the matrix elements of the operators in thér the two soliton form factors. Herg(g) is a known
massless particle basis, the so-called form factors [11,12function andc,, c; known constants, whose expressions
Away from g = 1/2, there are infinitely such matrix We will give elsewhere [14]. . .
elements to compute, since the theory is truly interactive. From (5), the form factors expansion results in the
For instance, the U) current acting on the vacuum can general expression
create arbitrary numbers of solitons or antisolitons pairgs_e (x, y)a, ¢ (x',y")) =
and breathers. There are thus two difficulties: to compute -
thg matrix elemen_ts and to sum their contributions. In f dE G(E)exdE(x + x') — iE(y — y)], (11)
this Letter, we will show how to compute the form 0
factors by taking appropriate limits of the massive sine-and from (7)

Gordon form factors. We will also show that expansions

. . . . 1

in mqlt|part|cle processes converge extremely .fast, S0 in AG(w) = — IMG(~iw). (12)
practice only a few terms are necessary to obtain excellent 4o
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Using the previous formulas and the expression for théased on the large distance limit of the theory where the
form factors and the boundary scattering matrices [9], wespin is screened). However, using the fact that spin flips,
find which are induced by, are coupled with insertions of

| . vertex operators at the boundary, one can re(&te to
G(w) = 3[1 = (Tp/w)tan” (w/Tp)],  (13)  the current correlator, and get the expression

for g = 1/2 in agreement with previous results [15]. For _ _ 1 IMG(=iw.Tr) — Gl—iw.0
g = 1/3, there is an infinity of form factors contributing X (@) (2g7m)?* w? [G(~iw,Ts) = G(=iw,0)],
to the correlation. However, when computing the conduc- (14)

tivity, we find a very rapid convergence with the numberWhere G is the Fourier transform of thé-R current

o apiles; e aPies e Suficent o Qe o getor dened (L1, The only aiference win e
Y- ! X 9 P conductance problem is in the boundary interaction. The
of the strength of the impurity, and the results are valid for

the wholeflow from small to large distances. The quan- reflection matrix for the solitons are now given by [10]

tity G(w) is plotted in Fig. 1 as a function dfz/w. + _ B _ ﬂ) + _

Some general features 6f(w) can easily be deduced ks = tan 2 4 ) ks =0, (15)
from this approach. The reflection matrices of solitonsand for the breathers we find [14]
or antisolitons expand as a double power series inBexp
and exp(1/g) — 1]B, the reflection matrix of breathers w _ taniB/2 — imm/4(1/g — 1] (16)
as a power series in e@p This leads to a double power " tanHB/2 + imm/4(1/g — 1]’

series in(w/T5)~27%/¢ and(w /T5)? at small frequencies,
(Tg/w)* % and(Tp/w)* at large frequencies. Therefore
as first argued in [17], at low frequencigg(w) goes as

w?forg < 1/2 andw 222 for g > 1/2.

The computations are then done along the same lines
' as before. Fog = 1/2, the free or Toulouse point, the
previously known result,

The same method can be applied to compute the () = 1 4T
spin-spin correlatior€(¢) = %([a(r),a(O)]) or its Fourier 72 w2 + 4T}
transform conventionally denoteg’(w) in the two state 1 T2 + w? 1 L
problem [1]. A difficulty arises at first sight because the X [; | ( T2 > + T_B tan T_Bi|

massless scattering description of the anisotropic Kondo (17)
problem involves only the massless sine-Gordon particles
and no spins (physically, this is because this description iis recovered. For a whole domain gfe [0.25,0.6], the
form factor expansion gives again very precise results for
Conductance x"(w) with only the first two terms, for all strengths of
Tr ' — T the impurity coupling. Let us give as an example the
explicit expressions fog = % The contribution from the

breather is
sedu(e( )] e
0.1 F

] with ¢ = —0.141 and the contribution for the two soliton
] form factors is given by

¢ [0 1eB —In( = PP,
” Ref,m B oshIB — In(1 — ¢)] ©

Ll az) )

with ¢/ = —0.0451 and the functionZ(8) given in [11].
In Fig. 2 we show the functior§(w) = xy"(w)/w for
1
Z?

13
8§ = 5

G h/er2

0.01

,3,5 at Tg =0.1. From the scaling form
0001 Lt oL AR U S(w) = (1/w?)F(w/Ts), the results for allTp are re-

0.001 0.01 0.1 1 10 100 covered. We observed with very good precision that the
T_BW “quasiparticle peak” [1] disappears at= % (instead of

. . 1
FIG. 1. Frequency dependent conductivity ar =0, the sometimes conjecturgd= 5), but we have no ana-
g =1/3. Iytical proof of this result. Physically this means that

W —
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100 ‘ Spectral Funcrion for Th=0.1 . the finite temperature case. This will involve a combina-
tion of both the form factors and the TBA approach. Also,

the careful reader might wonder why the computation of ac

properties requires form factors, while dc properties have

i been successfully computed so far by analogy with the free

] case. The reason is that dc properties see only the charge

0, i.e., thex integral of the current, an@ can be shown

to act purely diagonally on multiparticle states. See [14]

7 for more details.
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