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Linear and Nonlinear Optical Characteristics of the Falicov-Kimball Model
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We calculate the linear and nonlinear optical properties of the Falicov-Kimball model for a m
valent system within the self-consistent mean-field approximation. Second-harmonic generatio
only occur if the mixed-valent state has a built-in coherence between the itinerantd electrons
and the localizedf holes. By contrast, second-harmonic generation cannot occur for solu
of the model with f-site occupation as a good quantum number. As an experimental te
coherence in mixed-valent compounds we propose a measurement of the dynamic secon
susceptibility. [S0031-9007(96)00021-X]

PACS numbers: 71.28.+d, 42.65.Ky, 78.20.Ci
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The Falicov-Kimball (FK) [1] model has been used e
tensively for the mixed-valent compounds, heavy ferm
systems, and associated metal-insulator transitions.
FK model accounts for a band of itinerantd electrons and
localizedf orbitals and intrasite Coulomb interaction b
tween thed and f electrons. Ad-f hybridization term
may or may not be added to the model. The theoret
solutions for the ground state of the FK model can be
vided into two classes. On the one hand, solutions
treat the occupation of anf electron on a site as a goo
quantum number [2,3] do not have a built-in coheren
betweend electrons andf holes. On the other hand, s
lutions such as the self-consistent mean-field solution
and the electronic polaron [5] do have a built-in cohere
betweend electrons andf holes.

We report here the nonlinear optical responses of th
two classes of solutions. Solutions of the model with
built-in coherence can sustain second-harmonic gen
tion. Solutions with classicalf-electron site distributions
cannot. Therefore, we propose the measurement of
second-order susceptibility of a mixed-valent compound
a test to distinguish between these theories. The exist
of such second-harmonic generation due to coherenc
the ground state would, of course, be of interest in its o
right as a manifestation of strong electron correlation.

Four-wave-mixing (FWM) spectroscopy has becom
powerful tool for studying coherence in semiconduc
systems [6]. In a three-beam FWM experiment, two
coming beams of wave vectorsk1 andk2 set up a transien
polarization grating. The third incoming beam of wa
vector k3 diffracts off the grating to produce the outg
ing signal in the directionk4  k3 1 k2 2 k1. Being
a third-order process, FWM is allowed in media with
without inversion symmetry. We pose the question: W
happens if the state being probed already has a pola
tion built into it instead of being created artificially b
optical pumping? An example of such a system is the s
consistent mean-field (SCMF) solution of the FK model
sulting in the Bose-Einstein condensation ofd-f excitons.

As shown below, the built-in polarization leads to a no
linear optical response tosecondorder in the external field
0031-9007y96y76(18)y3384(4)$10.00
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The built-in polarization replaces one of the external fie
of the three-beam FWM experiment. The mixed-vale
system has a nonvanishing susceptibilityx s2ds2v, v, vd
for second-harmonic generation. In crystals with invers
symmetry, second-harmonic generation is forbidden
der the electric-dipole approximation. In the mixed-vale
system, the built-in polarization breaks the inversion sy
metry, allowing second-harmonic generation to take pla
The built-in polarization also means that the system is f
roelectric. Our calculation of the concomitant dielectr
behavior will be reported elsewhere. There are reports
unusually large dielectric constants in mixed-valent sem
conductors [7]. Because of the problem of residual carri
in dielectric measurements, we feel that the nonlinear
tical effect might be a clearer test.

We present a calculation of the linear and secon
harmonic susceptibilities of a model mixed-valent syste
within the SCMF approximation. The magnitude of th
second-harmonic output signal is directly proportional
the built-in coherenceD. The Coulomb interaction be
tween the optically excited quasiparticles greatly enhan
the second-harmonic conversion efficiency atv  D (one
half the energy gap2D).

Ignoring the electron spin, the FK Hamiltonian is

H 
X
k

´kd
y
kdk 1 E0

f

X
k

f
y
kfk 1

X
k

sVkd
y
kfk 1 H.c.d

1
U
N

X
k,k0,q

d
y
k1qdkf

y
k02qfk0 . (1)

Here d
y
k s f

y
kd creates ad s fd electron of momentumk

and energý k (E0
f). The parametersU and Vk are the

direct interaction and the hybridization between thed and
f electrons, andN is the number of sites. We conside
a model system with ad band andf level arising fromd
andf orbitals on the same site. Thed band has bandwidth
2W and a constant density of statesr0  1ys2W d.

The SCMF solution is analogous to the BCS theo
of superconductivity except that the pairing now occu
between ad electron of momentumk and anf hole
of momentum2k. The ground state isjcl 

Q
ksuk 1
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kfkd j0l, where j0l is the state with nof holes (the

normal state), andyk (uk) is the probability amplitude for
the pair statesk, 2kd to be occupied (unoccupied).

A key feature of jcl is that it is a state of broken
inversion symmetry. If the crystal is invariant und
inversion with respect to ad-f site, the inversion symmetry
is broken by the pairing ofd states of even parity with
f states of odd parity. Applying the inversion̂J on jcl
yields the statêJjcl 

Q
ksup

k 2 y
p
kd

y
kfkd j0l, which is

orthogonal tojcl and has the same energy except
the caseU  0 when the two states are the same. T
degenerate statesjcl and Ĵjcl have built-in polarizations
of opposite directions, for the polarization operatorP̂ 
s
P

k md
y
kfk 1 H.c.dyV where V is the system volume.

We take the interband dipole matrix elementm to be
independent ofk. The correct ground state is selecte
by lifting the degeneracy with an infinitesimal extern
electric fieldE, and choosing the lower energy state. T
consequent breaking of the inversion symmetry is w
allows second-harmonic generation to take place.

The built-in polarization defines a direction in spac
which we call thez axis. (Without crystal-field terms, the
z axis has no definite orientation with respect to the cr
tal axes.) Sincemz is real,Ps0d

z  NmzsD 1 DpdyVU,
whereD is the built-in coherence. The built-in coheren
is determined self-consistently from

D 
U
N

X
k

D 2 Vk

2Ek
, (2)

where 2Ek 
p

s´k 2 Efd2 1 4jD 2 Vkj2 is the quasi-
electron-hole pair excitation energy [8]. Equation (2)
Eq. (11) of Ref. [4] with ak-dependent hybridization. If
the crystal is invariant under inversion, the hybridizati
must satisfyV2k  2Vk. Then, sinceVk is purely imagi-
nary and odd ink, the imaginary part ofD vanishes due
to the cancellation of terms with6k. The real part ofD
is given by the BCS gap equation

D 
U
N

X
k

D

2Ek
, (3)

with 2Ek 
p

s´k 2 Efd2 1 4D2 1 4jVkj2. Calculation
shows that sufficiently strongVk can destroy the gap. In
the following we consider the limit whereVk is negligible.

D is the order parameter of the valence transition. Wh
the f level is far below thed band, the system is in the
normal state (D  0). As thef level is moved upward pas
a critical value (in a real material this is done by applyin
pressure or alloying), the system undergoes a transi
into the mixed-valent state (D . 0). In the mixed-valent
state, thef-level occupancynf lies between 0 and 1
D reaches a maximum at the half-filling pointEf  0.
Electron-hole symmetry requiresDs2Efd  DsEfd and
nf s2Ef d  1 2 nfsEfd.

We first consider the linear absorption spectrum of t
mixed-valent system. The SCMF solution predicts an
ergy gap2D. Far-infrared optical measurements [9–11
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as well as electron tunneling experiments [12], show
energy gap of several meV in a number of mixed-vale
compounds. The crucial difference between the sup
conductor and the mixed-valent system is this: in the s
perconductor, the pairing occurs between twoelectrons,
whereas in the mixed-valent system, the pairing occurs
tween anelectronand ahole. This has important conse-
quences for the coherence factors that enter the respo
of both systems to different external probes. For examp
the coherence factor entering theoptical absorption of the
mixed-valent system is the same as the coherence fa
entering theacousticattenuation of the superconducto
The interaction of the mixed-valent system with the ele
tromagnetic field is treated in the electric-dipole approx
mation. Only the component of the electric field along th
symmetry-breakingz axis couples to the channel in which
the pairing takes place. We ignore the response of
remaining optical channels. Second-harmonic generat
can only occur in the symmetry-breaking channel.

We have calculated the linear susceptibilityx s1d
zz both

from the Kubo formula and from the optical Bloch
equations. The pseudospin picture gives a nice phys
description of the linear and nonlinear responses
precessional modes of the pseudospinSk. For a given
k, the pseudospin corresponds to thedk and thefk states
as a two-level system. The equations of motion for t
pseudospin are the optical Bloch equations

ÙSk  sHk 2 Mkd 3 Sk . (4)

Here Hk  s22mzEz , 0, ´k 2 E0
fd is the external “mag-

netic” field, andMk  sUyNd
P

k Sk is the pseudomag-
netization. The symbol3 means the vector cross produc

To calculate the linear susceptibility we expandSk,
Hk, andMk to first order in the electric fieldEz . From
Eq. (4) to zeroth order we obtain an equation for th
stationary pseudospinSs0d

k . The built-in coherence tiltsSs0d
k

away from the negativez axis. The tilting angle isuk 
arccossy2

k 2 u2
kd. For D real, Ss0d

k lies in thex-z plane.
The electric field causes the pseudospin to precess aro
the stationary direction. With the precession axis tilte
away from thez axis, the field causes variations in a
three Cartesian components ofSk. A simpler description
is obtained in the spherical polar coordinate system. T
stationary direction is the radial unit vectorer . The
precession is decomposed into components along the p
and azimuthal unit vectorseu andef. The equations of
motion for the polar and azimuthal componentsSs1d

u,k and

Ss1d
f,k are

ÙS
s1d
u,k 2 2EkS

s1d
f,k 1 M

s1d
f,k  F

s1d
u,k , (5)

ÙS
s1d
f,k 1 2EkS

s1d
u,k 2 M

s1d
u,k  F

s1d
f,k . (6)

The driving terms areF
s1d
u,k  0 andF

s1d
f,k  2mzEz cosuk.

The linear susceptibility isx s1d
zz  Ps1d

z yEz , wherePs1d
z 

sNmz
P

k Ss1d
u,k cosukdyV is the linear polarization.
3385
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For a separable interaction potential, Eqs. (5) and
can be solved analytically. The linear susceptibility is

xs1d
zz 

2Nm2
z

VU

µ
Asvd

sv2 2 4D2dA2svd 2 B2svd
2 1

∂
,

(7)
where

Asvd 
U
N

X
k

1
2Eksv 2 2Ekd sv 1 2Ekd

, (8)

Bsvd 
U
N

X
k

´k 2 Ef

2Eksv 2 2Ekd sv 1 2Ekd
. (9)

For the simple model system,Asvd andBsvd can be ex-
pressed in terms of elementary functions. The poles ofx s1d

zz
give the collective excitation energies of the mixed-vale
system. The denominator in Eq. (7) vanishes whensv2 2

4D2dA2svd 2 B2svd  0. The zero-frequency Goldston
mode is a consequence of the arbitrariness of the phas
D (in the absence of hybridization). In the pseudospin p
ture, the Goldstone mode corresponds to rotating all ps
dospins around thez axis over the same anglef. Since
this does not change the total energy, the Goldstone m
has zero frequency. In Eq. (7), the Goldstone mode d
not appear to contribute to the linear optical response s
the pole atv  0 is canceled by a factor ofv in the nu-
merator. There are no excitonlike collective modes with
the energy gap. Whenv , 2D, the functionsAsvd and
Bsvd are purely real, sosv2 2 4D2dA2svd 2 B2svd , 0.

The absorption spectrum is given by the imaginary p
of x s1d

zz . When thef level lies inside thed band (jEf j #

W ), the absorption spectrum has a threshold singularit
v  2D. WhenjEf j , W , the singularity ise21y2used,
and whenjEf j  W the singularity ise21y2 ln22sedused,
wheree  v 2 2D. When thef level lies outside the
d band, the singularity is cut off because the energy
is larger than2D. The singularity is due to the final-stat
Coulomb interaction between the optically excited qua
particles. In the single-quasiparticle picture, the abso
tion spectrum rises continuously from zero according
e1y2used. The singularity isnot an artifact of the simple
model, and should be observable in real materials.

We calculate the second-harmonic susceptibilityx s2d
zzz

from the optical Bloch equations by expanding the ps
dospin and the pseudomagnetization tosecondorder in the
perturbing electric fieldEz. The equations of motion fo
the second-order componentsSs2d

u,k andSs2d
f,k have the same

form as Eqs. (5) and (6), except with more complica
driving terms. A very important observation is that a
driving terms are directly proportional toD. WhenD  0,
the second-harmonic susceptibility vanishes identically

In addition, the second order fluctuations have a nonz
radial componentSs2d

r ,k. The motion is no longer a regula
precession: the pseudospinnutatesduring the precession
(Nutation is the up-and-down motion of the precess
axis.) The nutation frequency is twice the precession
quency. The second-harmonic susceptibility isx s2d

zzz 
3386
)

t

of
-
u-

e
s
e

t

t

p

-
-

-

o

-

Ps2d
z yE2

z , where Ps2d
z  fNmz

P
ksSs2d

u,k cosuk 1 Ss2d
r ,k 3

sinukdgyV is the second-order polarization.
For a separable interaction potential, an analytic so

tion for the second-harmonic response is possible in prin
ple. However, the large number of driving terms present
considerable challenge. We have instead approached
problem numerically. This is done in analogy with th
classical mechanics treatment of forced oscillations. O
first solves for the motion in normal coordinates, and th
takes linear combinations to obtain the motion in the ori
nal coordinates. The results of the calculation are shown
Fig. 1. The figure shows the amplitudejx s2d

zzzs2v, v, vdj
of the second-harmonic susceptibility as a function of t
photon energyv, for various values ofEf . The important
features are the following: (1) The second-harmonic a
plitude is directly proportional to the amount of coheren
D built into the mixed-valent system. (2) When thef level
lies inside thed band, the second-harmonic conversion e
ficiency is strongly enhanced atv  D, and less strongly
at v  2D. The first feature shows that second-harmon
generation can be used as a test of the validity of the SC
solution in real mixed-valent materials. The second fe
ture distinguishes the single-quasiparticle treatment of
second-harmonic response from the self-consistent me
field treatment. Like the threshold singularity in the case
linear response, the enhancement of the second-harm
conversion efficiency is due to the final-state Coulomb
teraction between the optically excited quasiparticles.

As an experimental test of coherence in mixed-vale
compounds we propose a measurement of their seco
harmonic susceptibilityx s2ds2v, v, vd. Consider, for

FIG. 1. Amplitude jx s2d
zzzs2v, v, vdj of the second-harmonic

susceptibility as a function of the photon energyv, for various
values of thef level Ef . The dash-dotted line shows the pha
of x s2d

zzzs2v, v, vd for Ef  21.0W . The Coulomb repulsion is
U  3.0W , and the hybridization isVk  0. The amplitude is
given in units ofNm3

zy2VW 2. For the parameter values give
for the solid line in Fig. 2,Nm3

zy2VW 2  82 nm V21.
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FIG. 2. Comparison of the mean-field (solid line) and sing
quasiparticle (dash-dotted line) results for the imaginary p
of the linear susceptibilityx s1d

zz svd of SmB6 to experimental
data taken from Ref. [10] (diamonds). Thef level is Ef  0,
the bandwidth isW  40 meV, the Coulomb repulsion is
U  0.38W , and the hybridization isVk  0. The photon
energyv was given a small imaginary partd  0.01W . The
interband dipole matrix element ismz  4.4ea0 for the solid
line, andmz  5.0ea0 for the dash-dotted line.

example, SmB6. The crystal structure of SmB6 has cubic
symmetry, withB6 octahedra at the body center, and S
ions at the corners of a conventional bcc unit cell w
lattice constanta  4.13 Å. The crystal has inversion
symmetry at the bcc lattice points. Through measu
ments of the ionic radius, the valence of theSm ion in
SmB6 is found to be 2.53, almost halfway between 2 a
3, so that thef level lies near the center of the conductio
band. The measured far-infrared absorption spectr
[9–11] of SmB6 can be interpreted in accordance wi
the SCMF solution. In Fig. 2 we compare the mean-fie
and single-quasiparticle results for the linear susceptibi
to experimental data on SmB6 taken from Ref. [9]. The
data show an energy gap around2D  4 meV, and a
sharp peak at threshold. The mean-field theory fits
data very well in the threshold region, whereas the sing
quasiparticle theory gives a qualitatively wrong thresho
behavior. Away from threshold, discrepancies betwe
mean-field theory and experiment occur because of
simple model density of states. Further experimen
indication for the validity of the SCMF solution in SmB6

is provided by the electron tunneling spectrum [12], whi
can be explained by analogy with Giaever tunneling
superconductors.
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n
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The second-harmonic generation for the other types
solutions of the FK model is now discussed briefly. If th
f occupancy at each site is a good quantum number (0 or
1), any solution [2,3], homogeneous or inhomogeneo
will not give rise to second-harmonic generation. F
the electronic polaron solution [5], the nonzero coheren
yields a second-harmonic generation. We foundD 
3.28W for the parameter values given in Ref. [5]. T
distinguish between the exciton condensation solution
the electronic polaron requires an investigation of t
quantitative difference of their linear and nonlinear optic
spectra. Such a theoretical study will be left for the futu

In conclusion, we calculated the linear and nonli
ear optical characteristics of the Falicov-Kimball mod
within the SCMF approximation. We found that th
second-harmonic susceptibility is directly proportional
the amount of coherenceD built into the mixed-valent
system. We also found that the final-state Coulomb
teraction leads to a threshold singularity in the abso
tion spectrum, and strongly enhances the second-harm
conversion efficiency atv  D. As an experimental tes
of the validity of the SCMF solution in real mixed-valen
materials we propose a measurement ofx s2ds2v, v, vd.
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