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Linear and Nonlinear Optical Characteristics of the Falicov-Kimball Model
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We calculate the linear and nonlinear optical properties of the Falicov-Kimball model for a mixed-
valent system within the self-consistent mean-field approximation. Second-harmonic generation can
only occur if the mixed-valent state has a built-in coherence between the itinéragectrons
and the localizedf holes. By contrast, second-harmonic generation cannot occur for solutions
of the model with f-site occupation as a good quantum number. As an experimental test of
coherence in mixed-valent compounds we propose a measurement of the dynamic second-order
susceptibility. [S0031-9007(96)00021-X]

PACS numbers: 71.28.+d, 42.65.Ky, 78.20.Ci

The Falicov-Kimball (FK) [1] model has been used ex- The built-in polarization replaces one of the external fields
tensively for the mixed-valent compounds, heavy fermiorof the three-beam FWM experiment. The mixed-valent
systems, and associated metal-insulator transitions. Thystem has a nonvanishing susceptibilit 2w, w, )

FK model accounts for a band of itinerahelectrons and for second-harmonic generation. In crystals with inversion
localizedf orbitals and intrasite Coulomb interaction be- symmetry, second-harmonic generation is forbidden un-
tween thed and f electrons. Ad-f hybridization term  der the electric-dipole approximation. In the mixed-valent
may or may not be added to the model. The theoreticadystem, the built-in polarization breaks the inversion sym-
solutions for the ground state of the FK model can be dimetry, allowing second-harmonic generation to take place.
vided into two classes. On the one hand, solutions thathe built-in polarization also means that the system is fer-
treat the occupation of afi electron on a site as a good roelectric. Our calculation of the concomitant dielectric

quantum number [2,3] do not have a built-in coherencébehavior will be reported elsewhere. There are reports of
betweend electrons ang” holes. On the other hand, so- unusually large dielectric constants in mixed-valent semi-
lutions such as the self-consistent mean-field solution [4¢onductors [7]. Because of the problem of residual carriers
and the electronic polaron [5] do have a built-in coherencén dielectric measurements, we feel that the nonlinear op-
betweend electrons ang holes. tical effect might be a clearer test.

We report here the nonlinear optical responses of these We present a calculation of the linear and second-
two classes of solutions. Solutions of the model with aharmonic susceptibilities of a model mixed-valent system
built-in coherence can sustain second-harmonic generavithin the SCMF approximation. The magnitude of the
tion. Solutions with classicaf-electron site distributions second-harmonic output signal is directly proportional to
cannot. Therefore, we propose the measurement of thibe built-in coherencél. The Coulomb interaction be-
second-order susceptibility of a mixed-valent compound asnveen the optically excited quasiparticles greatly enhances
a test to distinguish between these theories. The existentiee second-harmonic conversion efficiencwat= A (one
of such second-harmonic generation due to coherence elf the energy gapA).
the ground state would, of course, be of interest in its own Ignoring the electron spin, the FK Hamiltonian is
right as a manifestation of strong electron correlation.

Four-wave-mixing (FWM) spectroscopy has become al = > ey didy + Efokfk + Z(dek fx + H.c)

powerful tool for studying coherence in semiconductor k
systems [6]. In a three-beam FWM experiment, two in- n U Z i 1
coming beams of wave vectdks andk, set up a transient N k+q "f“"‘lf"’ ' ()

polarization grating. The third incoming beam of wave ok

vector k; diffracts off the grating to produce the outgo- Here dk (fk) creates & (f) electron of momentunk
ing signal in the directiorky = k3 + k, — k;. Being and energysi (Ef) The parameterd/ and Vi are the
a third-order process, FWM is allowed in media with ordirect interaction and the hybridization between thand
without inversion symmetry. We pose the question: Whaif electrons, andV is the number of sites. We consider
happens if the state being probed already has a polariza-model system with & band andf level arising fromd
tion built into it instead of being created artificially by andf orbitals on the same site. Thieband has bandwidth
optical pumping? An example of such a system is the self2W and a constant density of stateg = 1/2W).
consistent mean-field (SCMF) solution of the FK modelre- The SCMF solution is analogous to the BCS theory
sulting in the Bose-Einstein condensatiordef excitons.  of superconductivity except that the pairing now occurs
As shown below, the built-in polarization leads to a non-between ad electron of momentunk and anf hole
linear optical response seconcbrder in the external field. of momentum—k. The ground state iby) = [ [ (ux +
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vkdlfk) |0), where|0) is the state with ngf holes (the as well as electron tunneling experiments [12], show an
normal state), andy (uy) is the probability amplitude for energy gap of several meV in a number of mixed-valent
the pair staték, —k) to be occupied (unoccupied). compounds. The crucial difference between the super-
A key feature of|) is that it is a state of broken conductor and the mixed-valent system is this: in the su-
inversion symmetry. If the crystal is invariant under perconductor, the pairing occurs between telectrons,
inversion with respect toé f site, the inversion symmetry whereas in the mixed-valent system, the pairing occurs be-
is broken by the pairing off states of even parity with tween anelectronand ahole. This has important conse-
f states of odd parity. Applying the inversighon |¢s)  quences for the coherence factors that enter the response
yields the state/|y) = [y (uy, — Ultdl]:fk) |0), which is  of both systems to different external probes. For example,
orthogonal toly) and has the same energy except inthe coherence factor entering tbptical absorption of the
the casel/ = 0 when the two states are the same. Thanixed-valent system is the same as the coherence factor
degenerate statég) andJ|) have built-in polarizations ~€ntering thegcoustlcattgnuatlon of the superponductor.
of opposite directions, for the polarization operafor= The interaction of the mixed-valent system with the elec-
S, Mdltfk + H.c)/Q whereQ is the system volume. tromagnetic field is treated in the electric'-di'pole approxi-
We take the interband dipole matrix elememtto be mation. Only the component of the electric field along the
independent ok. The correct ground state is selectedSYmMmetry-breaking axis couples to the channel in which
by lifting the degeneracy with an infinitesimal external ("€ Pairing takes place. We ignore the response of the
electric fieldE, and choosing the lower energy state. The€Maining optical channels. Second-harmonic generation
consequent breaking of the inversion symmetry is whaf&n Only occur in the symmetry-breaking c_:h_qnn)el.
allows second-harmonic generation to take place. We have calculated the linear susceptibiljg!’ both
The built-in polarization defines a direction in space,flom the Kubo formula and from the optical Bloch
which we call ther axis. (Without crystal-field terms, the €duations. The pseudospin picture gives a nice physical
z axis has no definite orientation with respect to the crysdescription of the linear and nonlinear_responses as
tal axes.) Sinceu, is real,P© = Nu (A + A*)/QU, precessional modes of the pseudospin For a given

whereA is the built-in coherence. The built-in coherence k- the pseudospin corresponds to theand thef states
is determined self-consistently from as a two-level system. The equations of motion for the

pseudospin are the optical Bloch equations

A= % % AzEka ; () Sk = (Hx — My) X S. (4)
where2Ex = (ex — E;)” + 418 — Vi[® is the quasi- Her_eH_k = (—2u;E,,0,ex — Ey) is t.he external “mag-
electron-hole pair excitation energy [8]. Equation (2) is"etic” field, andMyx = (U/N) 3 Sy is the pseudomag-
Eq. (11) of Ref. [4] with ak-dependent hybridization. If netization. The symb_o* means the_vg_ctor cross product.
the crystal is invariant under inversion, the hybridization T©° calculate the linear susceptibility we expaS,
must satisfy_x = —Vi. Then, sincé/y is purely imagi- Hy, and My to first order in the e!ectrlc fleI(E2: From
nary and odd irk, the imaginary part of vanishes due Eq. (4) to zeroth order we obtain an equation for the
to the cancellation of terms wittrk. The real part ot Stationary pseudosp8{”. The built-in coherence tilts}”

is given by the BCS gap equation away from the negative axis. The tilting angle ig) =
arccosvy — u}). For A real,S\” lies in thex-z plane.
A = v A 3) The electric field causes the pseudospin to precess around
N 4 2Ex the stationary direction. With the precession axis tilted

away from thez axis, the field causes variations in all
three Cartesian componentsSj)f. A simpler description

is obtained in the spherical polar coordinate system. The
r?tationary direction is the radial unit vecter.. The

with 2Ex = /(ex — Ef)> + 4A% + 4]Vi[>. Calculation
shows that sufficiently stronyy can destroy the gap. In
the following we consider the limit wheng, is negligible.

A is the order parameter of the valence transition. Whe T .
the f level is far below thed band, the system is in the precession IS decc_)mposed Into components alor)g the polar
normal state = 0). As thef level is moved upward past and.a2|muthal unit vectore(,'and es. The equations of
a critical value (in a real material this is done by applyingmotion for the polar and azimuthal componest}, and
pressure or alloying), the system undergoes a transitiofi,,  are
into the mixed-valent stateA(> 0). In the mixed-valent - (1) (1) (1 (1)

state, thef-level occupancyn, lies between 0 and 1. Sok = 2ExSgx T Mk = Fok )
A reaches a maximum at the half-filling poiit = 0. (1) i i i
Electron-hole symmetry require&(—E;) = A(E;) and Sex T 2ExSox — Mok = Fyx - (6)
ni(—=Ey) =1 — ny(Ep). ) (1)

We first consider the linear absorption spectrum of thel he driving terms aré’y . = O andFg = 2. E; coFx.
mixed-valent system. The SCMF solution predicts an enThe linear susceptibility ig!!) = P{V'/E., whereP{) =
ergy gap2A. Far-infrared optical measurements [9—11], (N u; >« S“}( coYy)/Q is the linear polarization.

0,
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For a separable interaction potential, Eqs. (5) and (6P?)/E2, where P® = [Nu. >\ (S5} codyx + S°)
can be solved analytically. The linear susceptibility is  singy)]/Q is the second-order polarization.
W 2N u? Alw) _ For a separable interact_ion potentia_l, an a_naly_tic s_olu_—
Xz = QU <(w2 — 4A2)A%(w) — B(0) - 1>’ tion for the second-harmonic response is possible in princi-
) ple. However, the large number of driving terms presents a
considerable challenge. We have instead approached the

where problem numerically. This is done in analogy with the
U Z 1 classical mechanics treatment of forced oscillations. One
Alw) = — , (8) first solves for the motion in normal coordinates, and then
N 40 2B(e = 2E) (0 + 2E) takes linear combinations to obtain the motion in the origi-
U ex — Ef nal coordinates. The results of the calculation are shown in
Blw) = N % 2E(w — 2Ey) (w0 + 2Ey) ) Fig. 1. The figure shows the amplitufie? Cw, ©, w)|

of the second-harmonic susceptibility as a function of the

For the simple model system(w) and B(w) can be ex-  photon energyw, for various values of ;. The important
pressed in terms of elementary functions. The polegBf  features are the following: (1) The second-harmonic am-
give the collective excitation energies of the mixed-valentyjitude is directly proportional to the amount of coherence
system. The denominator in Eq. (7) vanishes wheh — A puilt into the mixed-valent system. (2) When théevel
4A%)A*(w) — B*(w) = 0. The zero-frequency Goldstone |ies inside thel band, the second-harmonic conversion ef-
mode is a consequence of the arbitrariness of the phase fifiency is strongly enhanced at = A, and less strongly
A (in the absence of hybridization). In the pseudospin picatw = 2A. The first feature shows that second-harmonic
ture, the Goldstone mode corresponds to rotating all pseyeneration can be used as a test of the validity of the SCMF
dospins around the axis over the same angtg. Since  solution in real mixed-valent materials. The second fea-
this does not change the total energy, the Goldstone modgre distinguishes the single-quasiparticle treatment of the
has zero frequency. In Eq. (7), the Goldstone mode doesecond-harmonic response from the self-consistent mean-
not appear to contribute to the linear optical response sincgeld treatment. Like the threshold singularity in the case of
the pole atw = 0 is canceled by a factor ab in the nu-  |inear response, the enhancement of the second-harmonic
merator. There are no excitonlike collective modes withinconyversion efficiency is due to the final-state Coulomb in-
the energy gap. When < 24, the functionsA(w) and  teraction between the optically excited quasiparticles.
B(w) are purely real, sw* — 4A%)A*(w) — B*(w) < 0. As an experimental test of coherence in mixed-valent

The absorption spectrum is given by the imaginary partompounds we propose a measurement of their second-

of x{!). When thef level lies inside thel band (Ef| =  harmonic susceptibilityy® (2w, w, ®). Consider, for
W), the absorption spectrum has a threshold singularity at

w = 2A. When|E;| < W, the singularity ise ~!/26(e),

and when|E¢| = W the singularity ise~'/2In"2(e)6(e), 3.0 ' - - -
wheree = w — 2A. When thef level lies outside the

d band, the singularity is cut off because the energy gap

is larger thar2A. The singularity is due to the final-state
Coulomb interaction between the optically excited quasi- <~
particles. In the single-quasiparticle picture, the absorp-
tion spectrum rises continuously from zero according to
€'20(e). The singularity isnot an artifact of the simple
model, and should be observable in real materials.

We calculate the second-harmonic susceptibijty)
from the optical Bloch equations by expanding the pseu-
dospin and the pseudomagnetizatioségondrder in the
perturbing electric fieldE,. The equations of motion for
the second-order componemgi( andS(2)k have the same
form as Egs. (5) and (6), except with more complicated 0.0W
driving terms. A very important observation is that all 0.0
driving terms are directly proportional tv. WhenA = 0,
the second-harmonic susceptibility vanishes identically.

In addition, the second order fluctuations have a nonzerbIG. 1. Amplitude |y 2 (2w, », )| of the second-harmonic
radial ComponenSfﬁzf{. The motion is no longer a regular susceptibility as a function of the photon eneigy for various
precession: the pséudospiutatesduring the precession. values of thef level E;. The dash-dotted line shows the phase

o . . of Y2 (2w, w,w) for E; = —1.0W. The Coulomb repulsion is
(Nutation is the up-and-down motion of the precessiony; 3 gy and the hybridization i, = 0. The amplitude is

axis.) The nutation frequency is twice the precession fregiven in units of N u?/2QW?2. For the parameter values given
guency. The second-harmonic susceptibility)(igg = for the solid line in Fig. 2N u?/2QW? = 82 nmV~!.
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120 . » ‘ The second-harmonic generation for the other types of
e solutions of the FK model is now discussed briefly. If the
> 100 | SmB, / 'l Jf occupancy at each site is a good quantum number (
= _ /! i 1), any solution [2,3], homogeneous or inhomogeneous,
@ g < experiment ' i will not give rise to second-harmonic generation. For
N — MF theory | the electronic polaron solution [5], the nonzero coherence
ol o —-— QP theory : yields a second-harmonic generation. We foukd=
a i 3.28W for the parameter values given in Ref. [5]. To
2 ! distinguish between the exciton condensation solution and
T 40 S the electronic polaron requires an investigation of the
v R quantitative difference of their linear and nonlinear optical
= 20} o 1 spectra. Such a theoretical study will be left for the future.
o In conclusion, we calculated the linear and nonlin-
0 o ear optical characteristics of the Falicov-Kimball model

10° 10 within the SCMF approximation. We found that the
PHOTON ENERGY [eV ] second-harmonic susceptibility is directly proportional to
FIG. 2. Comparison of the mean-field (solid line) and single-the amount of coherenc& built into the mixed-valent
quasiparticle (dash-dotted line) results for the imaginary parsystem. We also found that the final-state Coulomb in-
of the linear susceptibilityy!'(w) of SmB; to experimental teraction leads to a threshold singularity in the absorp-
data taken from Ref. [10] (diamonds). THelevelisE; =0,  on spectrum, and strongly enhances the second-harmonic
the bandwidth isW = 40 meV, the Coulomb repulsion is . e 7 .
U = 038W, and the hybridization isv, = 0. The photon conver5|o.n.eff|C|ency ab = A. A_s an experlmental test
energyw was given a small imaginary paﬁt: 0.01W. The of the Valldlty of the SCMF solution in real mixed-valent
interband dipole matrix element ig, = 4.4ea, for the solid  materials we propose a measuremeny@?(Zw, w,w).

line, andu, = 5.0eq, for the dash-dotted line. L.J.S. wishes to thank Dr. M. B. Maple and Dr. S. H.
Liu for stimulating conversations. This work was sup-
ported in part by NSF Grant No. DMR 94-21966 and in
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