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Optimal channel networks are fractal structures that bear a striking resemblance to real rivers. They
are obtained by minimizing an energy functional associated with spanning trees. We show that large
network development effectively occurs at zero temperature since the entropy scales subdominantly with
system size compared to the energy. Thus these networks develop under generic conditions and freez
into a static scale-free structure. We suggest a link of optimal channel networks with self-organized
critical systems and critical phenomena which exhibit spatial and temporal fractality, the former under
generic conditions and the latter on fine tuning. [S0031-9007(96)00007-5]
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The existence of fractals, i.e., the ubiquity of scale-fr
structures that look “alike” on many scales of observ
tion [1], and the origin of the widespread phenomen
called 1yf noise (the property of a time signal havin
components of all durations) have recently found a po
erful linkage through the idea of self-organized critical
developed by Bak and co-workers [2]. In this Letter w
attempt to link different aspects of the spatial and te
poral properties of fractal structures on thermodynam
grounds.

Observational evidence suggests that the characteri
of real river networks are extremely well reproduced
optimal channel networks (OCNs) [3] (Fig. 1) obtained
selecting the spanning tree, characterized by a variabs,
that minimizes the Hamiltonian of the system defined a

Hgssd ­
L2X

i­1

A
g
i , (1)

where i spans theL2 sites occupied by, say, aL 3

L square lattice,g , 0.5 is an exponent capturing th
physics of the erosional process [4], andAi is a measure
of the number of upstream sites toi connected by the net
work, defined byAi ­

P
j[nnsid Aj 1 1 [where nnsid are

the neighbors ofi in the lattice draining intoi]. Thus a
network configuration can be represented by a rooted s
ning tree, with a set of oriented links between connec
nearest neighbor sites. The orientations correspond to
drainage directions, and the root of the tree, i.e., the o
let, is taken in one of the corners of theL 3 L lattice for
convenience at no cost of generality (Fig. 1).

The structure of the configuration minimizing th
functionalHg strongly depends on the parameterg. We
can distinguish different behaviors: Forg , 0, OCNs
are attained by the so-called “Hamiltonian paths” [
in which only one stream drains all the basin area;
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5]
for

g . 1, the patterns minimizing Eq. (1) are such th
the average length of the path from each site to
outlet is the shortest (“explosion paths”), and there
as little aggregation as possible [6]. The range0 #

g # 1 is more interesting, and in this region the syste

FIG. 1. An example of an OCN withg ­ 1y2 sL ­ 128d.
The network is computed selecting the optimal configurat
through a traveling-salesman-like algorithm starting from ra
dom initial conditions. The algorithm proceeds selecting a s
i at random and perturbing the configurationss ! s0d by lo-
cally assigning a change in the matrix of connections. T
leads to a rearrangement ofAi ’s (all areas formerly and cur-
rently linked to i are modified). The change is accepted
H0.5ss0d , H0.5ssd. The procedure stops after a prefixed num
ber of attempts are rejected. For a brief discussion of rela
algorithms see [3] and references therein. Note also that
width of the channels in the plot is proportional to

p
A.
© 1996 The American Physical Society
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exhibits rich structures and aggregation patterns. OC
which were originally obtained [3] by minimizing the
functional in Eq. (1) withg ­ 0.5, are fractals leading
to power laws for the statistical distributions of suitab
geometrical parameters [notably, using the definition
total contributing areaA, the area distribution isPsAd ~

A2s11bdfsAyLfd with b ­ 0.43 6 0.02 [3], f , 1.8,
andfs?d is a suitable function that takes into account fin
size effects [7]]. These attributes prove indistinguisha
from those observed in nature [8].

For a given drainage basinB overlaid with a lattice of
L2 sites, letS be the set of spanning loopless trees roo
in a given point, say,0. For any configurations [ S we
define a Boltzmann-like probability of the trees as

Pssd ~ e2HgssdyT , (2)

whereT 21 is the Gibbs’ parameter mimicking the invers
of temperature of classic thermodynamic systems [9,1
For a fixedg, let HgsS d denote the finite set of all possi
ble values that may be taken on byHgssd for treess [ S .
Given an energy level, say,E [ HgsS d, let NsEd be the
degeneracy, i.e., the number of different spanning trees
for which Hgssd ­ E. One therefore obtainsPsssHgssd ­
Eddd ­

P
s:Hg ssd­E Pssd ~ NsEd exps2EyTd. Defining the

thermodynamic entropy asssEd ­ lnNsEd, one obtains

PsssHgssd ­ Eddd ~ e2FsEdyT , (3)

where a formal free energyFsEd ­ E 2 TssEd has been
introduced. Indeed, the most probable states corresp
to an energyE that minimizesFsEd.

Our central result is that the entropy scales subdo
nantly with system size compared to the energy so t
even for a nonzero value of the Gibbs’ parameter the m
probable spanning tree configurations determined by m
mizing the free energy can be equally well obtained
minimizing the energy, provided thatL is large enough.
As a result, in the thermodynamic limit the system d
scribed by the probability in Eq. (3) always tends to op
ate at zero temperature, i.e., the total energy in Eq. (1
minimized.

Our exact result is that, for the sets of OCNs, one has

E ­ MinHgssd ~ L21d, (4)

with d . 0 for g . 1y2. This result is obtained by
dividing the sum in (1) into the sum over rows of site
in the direction transverse to the flow and the sum o
sites within the rows, and using the inequality

P
isX

g
i d .

s
P

i Xidg for Xi $ 0. Physically,d turns out to be greate
than zero because of the aggregating properties of
river network. The resultg ­ 1y2 hasd ­ 0, but with a
logarithmic correction leading to an effectived of 0.1 0.2
as shown by detailed examination of data in compu
studies of accessible local minima. This result can a
be derived through a renormalization group argum
employing a coarse graining which preserves the m
elevation of OCN topographies [11] and, independen
by scaling arguments [7].
Ns,
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For spanning loopless trees the numberNsEd of con-
figurations s with given energyE scales, at most, as
NsEd ~ mL2

, so thatSsEd scales, at most, asL2, where
m is a real number depending on lattice properties and
energy. This follows from noting that the total numberN
of spanning trees is less then the number of possible w
of choosingL2 2 1 links (number of links in a spanning
tree) among all the2LsL 1 1d possible links. Thus

N ,

µ
2LsL 1 1d

L2 2 1

∂
, 22L2

.

Since the number of configurations with a given ener
is less than or equal toN, NsEd # 22L2

and the above
scaling of entropy is satisfied.

We conclude that for spanning trees (withg $ 1y2) the
entropy scales subdominantly to the energy with syst
size and, in the thermodynamic limitL ! `, minFsEd ~

L21d becaused . 0. Hence the configurations that
minimizesHg also minimizesFsEd, whatever the Gibbs’
parameterT21, provided the system is large enoug
Hence OCNs, which correspond to the zero-temperat
assumption [i.e., the configuration yielding minFsEd is
that with minE only for T ! 0], reproduce natural con-
ditions at any temperature for largeL. Since fluvial
networks usually develop migration of divides and com
petition for drainage in the absence of geologic contr
over domains large with respect to the lower cutoff sca
(the scale of channel initiation [8]), it is likely that natu
ral networks operate most in conditions that well appro
mate the thermodynamic limit. We suggest that this
the reason for the outstanding ability [3] of OCNs
reproduce observational evidence regardless of dive
ties in surface lithology, geology, vegetation, or climat
This also strongly suggests that size effects of samp
of real networks may lead to spurious results for sm
sizes [10].

Conventional OCNs have a constrained structure (loo
less and spanning) and entail the minimization of the to
energy dissipation. Thus they do not exhibit a set of d
namically recursive states but have a frozen structure
behave as aT ­ 0 cold system. This follows from the
subdominant scaling of the entropy with system size co
pared to the energy while the spatial critical behavior
OCNs originates from the correlated nature of their co
strained structure. Hints that other fractal structures ar
in the context of minimum energy dissipation for ope
systems come from experimental evidence on the de
opment of stationary dendritic structures in injected ele
tric fields [12].

We have run an example of entropy-dominated OC
with g ­ 1y2 using the Metropolis algorithm [13] at a
nonzero (and fixed) value ofT . The example is mean
to show the implications of entropy maximization, i.e.,
T . const3 Ld, entropy dominates over the energy. W
started with any initial condition and accepted configur
tion changes (s ! s0) when they (i) lowered the energy
3365
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FIG. 2. One of the configurations of a “hot” OCN withg ­
1y2, obtained atT ­ 100 after 107 iterations. A perceptible
difference with the structure in Fig. 1 is the less direct
character of the network.

[i.e., Hgss0d , Hgssd] or (ii) with probability Pss0d ~

exph2fHgss0d 2 HgssdgyTj otherwise. Figure 2 show
one of the configurations of aT ­ 100 OCN which, for
the system sizeL ­ 128, is large enough to ensure th
dominance of entropy. The resulting networks are clea
fractal with properties none of which match those fou
in nature [8]. Nevertheless, it is striking thathot OCNs
yield stable statistics of spatially scale-free structures
are characterized by a preponderance of time scales
the system reaches the set of recursive states, in a pro
reminiscent of ordinary self-organized critical (SOC) ph
nomena [2,14]. Hot OCNs and SOC have several co
mon attributes and a key difference. They both lead
fractals, in space and time. They both have a set of
cursive states. Nevertheless, hot OCNs are obtained
minimizing a free energy, whereas SOC is obtained
dynamical rules. It is thus tempting to speculate that cl
sic self-organized critical systems [2], for which the co
cept of recursive states is meaningful [15], arehot and
may maximize the entropy (with appropriate constrain
in the thermodynamic limit. In fact, in classic SOC sy
tems like Abelian sandpiles, the number of possible c
figurations in two dimensions (i.e., recursive states) sca
as mL2

[15]. ThereforessEd ~ L2. Since energy dis-
sipation is measured by the number of active sites [
and occurs through the boundaries, its scaling is lik
to be subdominant to the entropy in the thermodynam
limit. Entropy-controlled critical structures have bee
found [17] in neural networks of mobile elements wi
random activation—reminiscent of self-organized ant
cieties. Such networks operate at the edge of chaos
critical fluctuations that indeed maximize the entropy.
this case entropy maximization and the critical behav
3366
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are obtained by tuning a density parameter which quite a
curately corresponds [17] to the self-organized value o
served in nature.

Finally, conventional critical phenomena obtained b
fine-tuning a parameter (e.g., temperature) might be th
outcome in which the scaling properties of the energy an
entropy are similar.

It is indeed possible that OCNs and SOC system
are distinct because the latter are not obtainable throu
any free energy minimization principle. However, an
intriguing alternative is that natural evolution of fracta
structures in open, dissipative systems with many degre
of freedom is generally the by-product of chance an
necessity, the latter being embedded in the strive f
optimality that we see everywhere [18] in natural forms.
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