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Thermodynamics of Fractal Networks
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Optimal channel networks are fractal structures that bear a striking resemblance to real rivers. They
are obtained by minimizing an energy functional associated with spanning trees. We show that large
network development effectively occurs at zero temperature since the entropy scales subdominantly with
system size compared to the energy. Thus these networks develop under generic conditions and freeze
into a static scale-free structure. We suggest a link of optimal channel networks with self-organized
critical systems and critical phenomena which exhibit spatial and temporal fractality, the former under
generic conditions and the latter on fine tuning. [S0031-9007(96)00007-5]

PACS numbers: 64.60.Ht, 68.70.+w, 92.40.Fb, 92.40.Gc

The existence of fractals, i.e., the ubiquity of scale-freey > 1, the patterns minimizing Eq. (1) are such that
structures that look “alike” on many scales of observathe average length of the path from each site to the
tion [1], and the origin of the widespread phenomenoroutlet is the shortest (“explosion paths”), and there is
called 1/f noise (the property of a time signal having as little aggregation as possible [6]. The ranges
components of all durations) have recently found a pow-y = 1 is more interesting, and in this region the system
erful linkage through the idea of self-organized criticality
developed by Bak and co-workers [2]. In this Letter we e
attempt to link different aspects of the spatial and tem-
poral properties of fractal structures on thermodynamic
grounds.

Observational evidence suggests that the characteristics
of real river networks are extremely well reproduced by
optimal channel networks (OCNSs) [3] (Fig. 1) obtained by
selecting the spanning tree, characterized by a varigble
that minimizes the Hamiltonian of the system defined as

LZ
Hy(s) = > A, 1)

i=1
where i spans theL? sites occupied by, say, & X
L square lattice;y ~ 0.5 is an exponent capturing the
physics of the erosional process [4], afidis a measure
of the number of upstream sitesit@onnected by the net-
work, defined byA; = > ., A; + 1 [where nrii) are
the neighbors of in the lattice draining intd]. Thus a
network configuration can be represented by a rooted span-
ning tree, with a set of oriented links between connected!G- 1. An example of an OCN witly = 1/2 (L = 128).

: . : : Té1e network is computed selecting the optimal configuration
nearest neighbor sites. The orientations correspond to tl} rough a traveling-salesman-like algorithm starting from ran-

drainage directions, and the root of the tree, i.e., the oulgom injtial conditions. The algorithm proceeds selecting a site

let, is taken in one of the corners of tiieX L lattice for  ; at random and perturbing the configuration— s’) by lo-

convenience at no cost of generality (Fig. 1). cally assigning a change in the matrix of connections. This
The structure of the configuration minimizing the leads to a rearrangement af’s (all areas formerly and cur-

: rently linked toi are modified). The change is accepted if
functional #,, strongly depends on the paramejer We Hys(s') < Hys(s). The procedure stops after a prefixed num-

can distinguish different behavigrs: For <0, OCN”S ber of attempts are rejected. For a brief discussion of related
are attained by the so-called “Hamiltonian paths” [5]algorithms see [3] and references therein. Note also that the
in which only one stream drains all the basin area; fomwidth of the channels in the plot is proportional 4o1.

3364 0031-9007796/76(18)/3364(4)$10.00  © 1996 The American Physical Society



VOLUME 76, NUMBER 18 PHYSICAL REVIEW LETTERS 29 ARIL 1996

exhibits rich structures and aggregation patterns. OCNSs, For spanning loopless trees the numb&i) of con-
which were originally obtained [3] by minimizing the figurationss with given energyE scales, at most, as
functional in Eq. (1) withy = 0.5, are fractals leading N(E) = uX’, so thatS(E) scales, at most, a2, where
to power laws for the statistical distributions of suitable u is a real number depending on lattice properties and the
geometrical parameters [notably, using the definition oknergy. This follows from noting that the total numiér
total contributing area, the area distribution i®(A) «  of spanning trees is less then the number of possible ways
AR F(A/L?) with B =043 + 0.02 [3], ¢ ~ 1.8, of choosingL? — 1 links (number of links in a spanning
andf(-) is a suitable function that takes into account finitetree) among all theL(L + 1) possible links. Thus
size effects [7]]. These attributes prove indistinguishable 2L + 1)
from those observed in nature [8]. N < < ) ~ 2L
For a given drainage basi® overlaid with a lattice of L>—1

L? sites, letS be the set of spanning loopless trees rooted Since the number of configurations with a given energy
in a given point, say). For any configuration € S we s less than or equal t&/, N(E) = 221" and the above
define a Boltzmann-like probability of the treeas scaling of entropy is satisfied.

P(s) o e HO/T, ) We conclude that for spanning trees (with= 1/2) the

. o o ) entropy scales subdominantly to the energy with system
whereT " is the Gibbs’ parameter mimicking the inverse g, and, in the thermodynamic limiit — o, minF(E) o

of temperature of classic thermody_ngmic systems [9,_10]L2+5 becauses > 0. Hence the configuration that
For a fixedy, let H,(S) denote the finite set of all possi- minimizesH,, also minimizes#(E), whatever the Gibbs'
b[e values that may be taken on Hy,(s) for treess € S. parameterT ', provided the system is large enough.
Given an energy level, saf; € H,(S), let N(E) be the  ance OCNS, which correspond to the zero-temperature
degen_eracy, i.e., the number of dlﬁerent_spannlng tsees assumption [i.e., the configuration yielding mifE) is
for V_Vh'Ch H,(s) = E. One therefore obtainB(H,(s) = {hat with mirE only for T — 0], reproduce natural con-
E) = Xn,)-£ P(s) = N(E) exp(—E/T). Defining the  gitions at any temperature for large. Since fluvial
thermodynamic entropy as(E) = InN(E), one obtains  nepyorks usually develop migration of divides and com-
P(H,(s) = E) o« ¢ TEVT, (3) petition for drainage in the absence of geologic controls
where a formal free energ§(E) = E — To(E) has been  OVer domains large with respect to the lower cutoff scale
introduced. Indeed, the most probable states corresporiff!€ Scale of channel initiation [8]), it is likely that natu-
to an energyE that minimizesF (E). ral networks operate most in conditions that well approxi-
Our cerial result s that the entropy scales subdomin3ie 28 I ITot . e ity 1] of OCNS (o
nantly with system size compared to the energy so t
even):‘or a noﬁzero value of thrt)e Gibbs’ parametegr){[he modgproduce observational evidence regardless of diversi-
probable spanning tree configurations determined by minil€S in surface lithology, geology, vegetation, or climate.
mizing the free energy can be equally well obtained byThIS also strongly suggests that size effects of samples
minimizing the energy, provided thdt is large enough. o_f rea[llg]etworks may lead to spurious results for small
As a result, in the thermodynamic limit the system de-S'28S 1Yl _
scribed by the probability in Eq. (3) always tends to oper- Conventional OCNs have a constrained structure (loop-

ate at zero temperature, i.., the total energy in Eq. (1) iless and spanning) and entail the minimization of the total
minimized. energy dissipation. Thus they do not exhibit a set of dy-

Our exact result is that, for the sebf OCNs, one has namically recursive states but have a frozen structure and
_ 945 behave as & = 0 cold system. This follows from the

E = MinH,(s) o= L77, (4)  subdominant scaling of the entropy with system size com-
with 6§ > 0 for v > 1/2. This result is obtained by pared to the energy while the spatial critical behavior of
dividing the sum in (1) into the sum over rows of sites OCNs originates from the correlated nature of their con-
in the direction transverse to the flow and the sum ovestrained structure. Hints that other fractal structures arise
sites within the rows, and using the inequalfy(Xx;) >  in the context of minimum energy dissipation for open
(3., X;)” for X; = 0. Physically,s turns out to be greater systems come from experimental evidence on the devel-
than zero because of the aggregating properties of thepment of stationary dendritic structures in injected elec-
river network. The resuly = 1/2 hasé = 0, but witha tric fields [12].
logarithmic correction leading to an effectigeof 0.1-0.2 We have run an example of entropy-dominated OCN
as shown by detailed examination of data in computewith vy = 1/2 using the Metropolis algorithm [13] at a
studies of accessible local minima. This result can alsmonzero (and fixed) value df. The example is meant
be derived through a renormalization group argumento show the implications of entropy maximization, i.e., if
employing a coarse graining which preserves the meafi > constx L?, entropy dominates over the energy. We
elevation of OCN topographies [11] and, independentlystarted with any initial condition and accepted configura-
by scaling arguments [7]. tion changess(— s’) when they (i) lowered the energy
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are obtained by tuning a density parameter which quite ac-
curately corresponds [17] to the self-organized value ob-
served in nature.

Finally, conventional critical phenomena obtained by
fine-tuning a parameter (e.g., temperature) might be the
outcome in which the scaling properties of the energy and
entropy are similar.

It is indeed possible that OCNs and SOC systems
are distinct because the latter are not obtainable through
any free energy minimization principle. However, an
intriguing alternative is that natural evolution of fractal
structures in open, dissipative systems with many degrees
of freedom is generally the by-product of chance and
necessity, the latter being embedded in the strive for
optimality that we see everywhere [18] in natural forms.

We are indebted to Marek Cieplak and Achille Gia-
cometti for stimulating discussions. This work was sup-
& ported by grants from NASA, NATO, NSF, CNR-GNDCI
(Linea 1), MURST 40%, and the Petroleum Research
Fund, administered by the American Chemical Society.

FIG. 2. One of the configurations of a “hot” OCN with =

1/2, obtained atT = 100 after 107 iterations. A perceptible

difference with the structure in Fig. 1 is the less directed

character of the network.
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