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Mechanism for Global Optimization of River Networks from Local Erosion Rules
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We show that landscapes and their drainage networks evolve under erosion rules to obey a variational
principle. Starting from hydrodynamics we first find by separation of variables a general relationship
between erosion and a modified slope-area law. This law encompasses previous work and observations,
and we confirm it by simulation. Secondly we show that this corresponds to a solution of a variational
minimization model, generalized from Rodriguez-ltursteal. Thus a mechanism by which the local
process of erosion acts to globally optimize a river network is produced. [S0031-9007(96)00098-1]

PACS numbers: 64.60.Ak, 92.40.Fb

Empirical observations on natural rivers by Leopoldeach site in the lattice, and it was discovered that the scalar
and Maddock [1] and Leopold [2] revealed power-lawfield of heights was continuous over basin boundaries.
relationships between the slopg,(width (w), depth @), In this Letter basic hydrodynamics is used to establish
velocity (v), and discharged) of a channel, measured an erosion equation, which is numerically shown to erode
at the same time for different locations amongst riverthe landscape to give steady drainage networks. We then
networks in the United States: show analytically that this implies a particular general-
s 0705, w o QO3 d o« 0%, v o QO ization of .the slope-area _Iayv._ This law is then revea_led

(1) to be .equwalerjt to the minimization of a global quantity

L, which explains how local erosion can act to minimize

The first of these is an observation of the slope-area lawa global quantity, in analogy to Hamilton’s principle of
A theoretical framework was put forward by Rodriguez-|east action in mechanics [16]. The equivalence between
lturbe et al.[3] that was able to account for some of the slope-area law and minimization Bfforms a specific
these observations. Using two unproven principles agase of this mapping.
expression was derived for the total rate of expenditure We begin with four well-known hydrodynamic
of the mechanical potential energy of all the water in theprinciples:

twork E):
network ) 0 =vdw, 1~=pgsd, v=I(gsd)? wod,
E- S 0% @ ©
landscape where 7 = bed stress; a different homogeneous relation-

The unsubstantiated suggestion was then made that naghip between these quantities would require only minor
ral river networks evolve in such a way as to makemodifications to our work. The local rate of erosion of the
E a global minimum. Computed networks that obeylandscape height with time 7 is taken to be a homoge-
this rule are called optimal channel networks, and thes@eous function of the variables discussed abowg gt o
networks have been found to obey Hack’s law, Horton’sg® 9@ ,a3y,94 g4 14 \wherea,_¢ are constants. Since the
laws, Moon’s law, Melton’s law, Strahler ordering, and six variables are already related by four equations, we can
the drainage-basin area law to the same extent as natugpressii/ar in terms of any two of them. In particular,
networkls [4-8]. Diff(ejretr)u global minimizatiog principles tgle following two forms are equivalent and consistent:
were also suggested by Yang, Song, and Davies an ) i
Sutherland [9-11], but in each case a full justification for Oh/at o 727 QF o s QVTE, (4)
the method proved difficult to obtain. The second form of Eq. (4) is similar to the model of
Rinaldo et al.[12,13], and latterly Sun, Meakin, and Inaoka and Takayasu [17] and can readily be simulated by
Jossang [14], performed a direct minimization Bfby  computer. Each site on a square lattice is given a random
computer simulation, using a simulated annealing apinitial height and unit precipitation, which drains to the
proach. In this model, a channel network was placed osite’s lowest neighbor, forming a network of streams and
a square lattice such that the water present at each site limkes, which are allowed to fill up until they overflow. At
the lattice could drain through the network to the perimetereach site the height is eroded according to Eq. (4). The
of the lattice. This network was then rearranged, until adrainage directions and lakes are then computed for the
drainage network with a minimum value Afwas found. new heights, and the process repeated.
This value was remarkably constant, using a wide vari- During these simulations it was observed that the num-
ety of initial conditions. The identification « Q %> was  ber and size of the lakes decreased as their outlets were
then made [15], enabling a value of height to be allotted teeroded until, afte~75% of the material initially present

3360 0031-9007796/76(18)/3360(4)$10.00  © 1996 The American Physical Society



VOLUME 76, NUMBER 18 PHYSICAL REVIEW LETTERS 29 ARIL 1996

had been eroded, there were no more lakes present. The dg/dt [Vl avyte
drainage network then became constant while the heights 2y t= - 0(X)7 (7)
. i L g(1) 7n(x)
continued to decrease. This observation is extremely ro-
bust to variations in initial conditions and exponents, al-Integrating the first equality in Eq. (7) giveg(s) =
though the shape and characteristics of the final channel/(!=2?), and the second equality gives a general relation
network are subject to change (see Fig. 1). between slope, height, and discharge. This analysis pro-
The erosion equation is vides two propositions that can readily be tested by com-
- - yte puter, using the model descibed earlier to simulate erosion
Oh(E,1)/01 = 5(E 17 QF), ®) i the long time regime. These are as follows: (i) at a par-
and the evolution of this must be such that no site changdéular site
its direction of drainage. The simplest possibility is that

1/(1-2y).
h(x,t) approaches a separable variable form hot 7 (8)
h(z, 1) = g(t)n(X). (6) (i) at a particular time,
This is fully consistent with Eq. (5) if and only if sh™ 1?2 o« g=re/2y, (9)

ﬁw'

=i

(@ (e) ®)

FIG. 1. Six 250 X 250 stream networks produced by simulation of Eg. (4), showing channels dramir sites. (a)—

(d) have exponentg = 1, e = —0.2, but different initial landscape heights. (&)= 20000 + 0.1p;, (b) A; = 20000 + 1000p;,

(c) h; = 20000x/250 + 1000p;, wherex is the distance of the site from the seashore, Bnd {p;} is a set of random numbers

from 0 to 1. (d) The same as (a) with different random numbers. Comparing (a) with (b) shows that varying the noise has no
systematic effect, and (c) shows that ramping the initial landscape changes the appearance because of downstream bias. (e) anc
(f) have the same initial conditions and random numbers as (d), but different exponents. Fpr<d),e = 0.9, and (f) has

v =1, = —0.8. Networks (a), (b), and (d) give good agreement with empirical data for the drainage area distribution (see
Fig. 2), Hack’s law exponent, Strahler bifurcation ratio, and Horton’s ratios. Note how in networks (f), (d), and (e) the sinuousity
increases from unrealistically low to unrealistically high(as+ €)/2y increases from 0 to 1, implying that there is a value of

(y + €)/2y that will accurately reproduce natural river networks.
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10° TABLE I. Results from graphs of height vs time for different
Gradient = —0.43 runs of the simulation program. See Fig. 3.

= 10" \ 2y y + e Expected gradient Observed gradient
N N 11 3 -10 -9.79
i 3 1.1 5 -10 -9.85
e 1.4 1.4 -2.5 —2.49
= Figure1(a) N 2 0.3 -1 -0.99
£10° -——- Figure1(b) 4 2 2 -1 —-1.00
g : M 3 1.5 -0.5 -0.50
=) —— Figure1(d) i i - -
o 10 i

10° L ; ; : : . that

10 10 10 10 10 10
n L= / Q92 g3 (12)
X

FIG. 2. Drainage area distribution for networks (a), (b), and

&12 gg‘i‘ngé% ;.I’.eaTl?:SS;rglgvr\]/;I!I-?:Wogist'[r:’:f)ugt{ gr?ha'r:‘g't%a;%iggfgis made stationary, subject to the constraint that all rainfall

agrees well with empirical data [18]. ' '&Ira_lns out of the landscape through the channel network,
which can be expressed mathematically as

On a continuous space &f such as a natural landscape, V- 0R) = RE), (13)
Eq. (9) can be written in vector form as whereR (%) is the precipitation rate specified at each site
V(h'™127) o« 9= FO27 (10)  %. After introducingA(xX) as a Lagrange multiplier field,

the constrained variational problem is equivalent to the

where(Q is the magnitude of the vect@}, andQ is a unit i all
> unconstrained variation

vector in the direction ofD. However, for the discrete

lattices used in computer simulations, Eq. (10) is subject g Can . R R
to the approximation o5 [ 4@ AT - 0 ~ R 4 = 0.
Ar(R™'27) = ATV /(= 1/2y). (10) (14)

The effect of this approximation is negligible for the simu-
lations used in this Letter, as can be seen along with th ~
satisfaction of Eq. (10) from Fig. 4 and Table Il. The VA = [(y — €)/2y]0 " T9/27) =0, (15)
satisfaction of Eq. (8) is illustrated in Fig. 3 and Table I.

We now show that Eq. (10) can be interpreted as the

'é'his gives the Euler-Lagrange equations

Euler-Lagrange equation corresponding to the condition 102
s & Ah (h77e")
10 o + A" 1 (1-1/2y)
g @%q
Ke) Jﬁ%
7]
3 10 e
= <
= ° <&
Ky 3 Q
,% 10 = o +
< o
107 15 ; :
10 10 10
1 Discharge
101 0" 10°® 107° 107 1072 FIG. 4. Scaling of modified slope with discharge. Example of

time a graph showing bott (1'~1/27) /(1 — 1/2y) and Ah(h~1/?7)
against discharge for 40 randomly chosen sites from the same

FIG. 3. Scaling of height with time. Example of a graph run of the simulation program as Fig. 3. The effect of the

showing height vs time for ten randomly chosen sites fromapproximation in (11) is clearly negligible. The gradient

a 250 X 250 lattice, with2y =3 andy + € = 1.5. Tablel = —0.5, which is equal to—(y + €)/2y, as predicted by
gives predicted and observed gradients; the shape of the grafiiy. (10). The shape of this graph is also very robust to
is very robust with respect to changes2im andy + e. variation in2y andy + € (see Table Il).
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TABLE Il. Results from graphs ofA(h'~1/27) vs Q for tion, when the landscape has settled into the steady state
different runs of the simulation program. See Fig. 4. in which the modified slope-area law holds. Our work

2y y + e Expected gradient Observed gradient ¢l€arly establishes this procedure, but a more physical in-

terpretation ofL remains to be found.

11 3 —2.72 —3.01 In our arguments we have mixed results from discrete
i'zll i’4 :‘1"55 :‘1“1“3‘ and continuous space versions of the models. Subject
5 03 015 015 to the differencing approximation (11), it is possible to
2 2 —1 —1.07 present all the arguments and obtain the same results
3 15 —05 —0.51 for the strictly discrete lattice version. For the strictly

continuous case, there are difficulties if instead of using
w o d, we attempt to let the erosion equation select both
width and depth of any channels formed. This problem

using appropriate  boundary  conditions:  eitherpag already been addressed by the authors [19].
Oboundary = 0 (corresponding to a mountainous bound-

ary) or Apoundary = 0 (corresponding to a coastline,
beyond which the constraint is undefined).

Equations (15) and (10) are identical in form, enabling
the identificationA(¥) = h(X)!~'/2” to be made, where *Electronic address: kms1001@phy.cam.ac.uk
the constant of proportionality is a function of time. This [1] L. Leopold and T. Maddock, U.S. Geol. Surv. Prof. Paper
result implies that the necessary and sufficient condition 252 (1953).
for L to be stationary, subject to the constraint of Eq. (13), [2] L. Leopold, Am. J. Sci251, 606 (1953).
is equivalent to the general relation between modified [3] |- Rodriguez-liurbeet al., Water Resour. Res28, 1095
slope and discharge derived from local erosion rules, and (1992).

therefore a landscape eroded by Eq. (5) will exist in a [ l(zl'ggjgsz'vasq”ezet al., Geophys. Res. Leti20, 1583

state of stationary.. Nu_merically we ha\(e.mon'itored 5] I. Rodriguez-lturbeet al., Geophys. Res. Lettl9, 889
L after the lakes have disappeared, and it invariably de-" " (;997).

creases, usually monotonically. We can show analytically (6] E. ljjasz-Vasquezet al., Adv. Water Resour.16, 69
that stream capture across basin boundaries that lawers (1993).
must eventually occur [19], implying that erosion mini- [7] R. Rigonet al.J. Geophys. Re€9, 11971 (1994).

mizesL with respect to basin boundary motion. [8] R. Rigonet al., Water Resour. Ref9, 1635 (1993).
Finally we consider the case when the rate of erosion [9] T. Davies and A. Sutherland, Water Resour. RE%.141
is primarily and strongly dependent ani.e.,y > € and (1983).

y > 1in Eq. (5). ThenL defined by Eq. (12) becomes [10] C. Song and C. Yang, J. Hydraul. Div. Am. Soc. Civ. Eng.

. : . 106, 1477 (1980).
?egagggﬂgus version aof, and correspondingly Eq. (10) [11] C. Yang, J. Hydraul. Engl20, 737 (1994).

- . [12] A. Rinaldoet al., Water Resour. Re®8, 2183 (1992).
Vh o 0790, (16)  [13] A. Rinaldoet al., Phys. Rev. Lett70, 822 (1993).

which is the vector form of the slope-area law. Thereforel14] Tig%lin' P- Meakdn, and T. Jossang, Phys. Red94865
any landscape that obeys the slope-area law must have[fS] ( )

stationary value fo£. This forms a specific example of P. Meakin (personal communication).
y ’ P P [16] R.P. Feynman,The Feynman Lectures On Physics

the above general global optimization principle. (Addison-Wesley, Reading, MA, 1964), Vol. 2.

We have shown the direct equivalence of a steady statg 7] H. Inaoka and H. Takayasu, Phys. Rev4E 899 (1993).
under erosion models and conformance to a variationq%g;] . Rodriguez-lturbeet al., Water Resour. Re28, 1089

principle. The quantity minimizedZ( only corresponds (1992).
to something similar to energy dissipatiafiter minimiza-  [19] K. Sinclair and R. C. Ball (to be published).
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