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Scale Covariance of the Wrinkling Law of Turbulent Propagating Interfaces
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The physical process governing turbulent propagating interfaces is determined experimentally in sca
space by analyzing the interface geometry and using the Kolmogorov cascade. Its scale covariance
evidenced for any scale range and any interface geometry, either Euclidean, fractal, or inbetween. Th
reveals a similarity of geometry formation more extended and more essential than the similarity o
geometry itself.

PACS numbers: 61.43.Hv, 47.25.Gs, 47.70.Fw
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The physics of interfaces within randomly stirred med
involves many interesting topics: Interface evolutio
models a number of growth processes [1,2], interfa
geometry provides a diagnostic of turbulence [3,4], a
interface dynamics reveals the enhancement of transp
properties by turbulence [4,5]. To date, the statistics
turbulent interfaces has been characterized by exploit
the scale invariance of their geometry with respect
length or time [1–3,6]. This provides useful scalin
relations in quasilaminar regimes [1,2] and in full
turbulent ones [3,6] but fails in evidencing universal law
in intermediate regimes. We conjecture that a possi
origin of this breaking of universality traces back to th
fact that these approaches address more a geomet
effectthan a physicalprocess.

The spirit of this Letter is to return to a causa
analysis of geometry formation by focusing attention n
on geometryitself but on the physicalprocessactually
generating it. Applied here to turbulent propagatin
interfaces, it allows us to evidence experimentally th
invariance in scale space not of interface geometry, but
the law governing it. This scale covariance of geomet
formation displays a wider universality than the usu
scale invariance of geometry: It applies to any scale ran
and any regime, either Euclidean, fractal, or inbetween

Scale analysis.—We consider an interface propagatin
in a turbulent fluid, the turbulence being assumed hom
geneous and isotropic and the interface infinitely thin.
order to perform a scale analysis of the system, we int
duce a geometrical series of length scalessLidi­0,I with
LiyL0 ­ ai and a . 1, L0 denoting the first wrinkling
scale of interface andLI the integral scale of turbulence.

Observing interfaces requires a field windowWj of size
Lj , inside which a piece of interface is selected, and
resolution scaleLi , Lj , below which the geometrical
details are ignored (Fig. 1). This turns out isolatin
the wrinkles belonging to the scale rangefLi , Ljg and
thus addressing an effective interface labeledIi,j . Its
surfaceSi,j is obtained by paving the actual interface wit
windows Wi of size Li and by determining the numbe
ni,j of those belonging toWj: Si,j ­ ni,jL2

i . Owing
to turbulence homogeneity and to the vanishing interfa
thickness, the velocity of the windowsWi are, in modulus
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and in time average, the same:Ui . We define it as the
normal velocity of the effective interfaceIi,j .

Normal velocities may be linked to effective surface
by expressing the volume swept per unit time by t
interface, first with respect toUi and then with respect to
Uj : UiSi,j ­ UjSj,j . On the other hand, sinceSj,j ­ L2

j
is the surface of the effective interfaceIi,j projected on its
mean normal direction, the ratioSi,jySj,j corresponds to its
wrinkling level, i.e., to its roughnessRi,j : Ri,j ; Si,jySj,j .
Altogether, these relations show that roughness descr
the relative increase not only of spatial variablesSi,j, but
also of dynamical onesUi :

Ri,j ;
Si,j

Sj,j
­

Uj

Ui
. (1)

The classical scale analysis of interfaces turns out
fix the field scaleLj at the integral scale of turbulenc
LI and study the variation of the roughnessRi,I with the
scale ratioLiyLI in log-log coordinates. Here, roughnes
represents an effect of turbulence on interface geome
but scale ratios do not correspond to its cause sin
they are independent of its actual origin, the turbulen
intensity.

The spirit of our approach consists of looking fo
a causal relation in this system. This requires fi
identifying in scale space a variable representative of
cause of wrinkling, the interface-turbulence interactio
and then linking it to its effect, the front roughness.

FIG. 1. Sketch of the scale analysis of interface.
© 1996 The American Physical Society
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We first defineu0
i,j as the turbulence intensity (rm

of velocity fluctuation) in the scale rangefLi , Ljg and
make the following assumptions. A1: the turbulent flow
is scale invariant in the inertial range of turbulenc
A 2: the squares of the turbulence intensities are addi
with respect to scale ranges. A3: the interface-turbulence
interaction is local in scale space. Assumption A1 yields
the power lawu0

i,i11yu0
0,1 ­ sLiyL0dK . Assumption A3

means that front wrinkles at a given scale are genera
by vortices of the same scale only. It relies on the gu
that, at a given scale, interface propagation is effici
enough to destroy the smaller scale tongues produced
turbulent mixing [7]. According to it, the roughnessRi,j

of an effective interfaceIi,j is a function ofu0
i,j and Ui

only, and thus of their ratiomi,j :

Ri,j ­ Ri,jsmi,jd , (2)

mi,j ;
u0

i,j

Ui
. (3)

The so-called “mixing variables”mi,j evaluate, in terms
of velocities, the relative magnitude of turbulent mixin
su0

i,jd with respect to propagationsUid. Thus they stand
for the causes of front wrinkling. As the functionsRi,js?d
relate these causes to their effects, the roughnessRi,j , they
represent the law governing the wrinkling process in sc
space.

Scale covariance.—We have evidenced experimental
a fundamental property of the functionsRi,js?d by the
following procedure: Propagating interfaces are p
vided by premixed flames. They are studied in a clos
chamber in which a grid turbulence is generated prior
ignition [8]. The net turbulence intensityu0 in the inertial
range of turbulence has been measured by laser veloc
try [8]. It is monitored by an ignition delay during which
it decays according to a viscous timety ­ 136 ms.
The duration of propagation is short enoughsø10 msd
for u0 to be nearly frozen. Since both the Kolmogoro
scale Lh and the wrinkling scales are larger than th
flame thickness, fronts behave locally as planar lami
ones. In particular, their normal velocityUN is a con-
stant equal to that of planar flames. It is determin
by physicochemical processes and is monitored here
the equivalence ratiow and the dilutiond of the mix-
ture. The experiment involves the following parame
ranges: combustion volume10 3 6 3 6 cm3, propane-air
mixture s0.85 # w # 1.30, d ­ 0.15 or 0.21d, normal
velocity at the observation time0.40 # UN # 0.86 ms21,
0.30 # u0 # 0.93 ms21, and0.7 # u0yUN # 2.2.

Flame fronts are visualized by tomography (Fig.
[9]. They display a geometry varying with the rati
m ­ u0yUN from Euclideansm , 1d to fractal (m ø 2,
fractal dimensiondF ø 2.4). The functionsRi,js?d may
be determined from each of them since roughnessRi,j
is measurable by image processing, normal velocitiesUi

derive from roughness by the relation (1) and turbulen
intensitiesu0

i,j follow from the scaling law implied by A1,
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FIG. 2. Tomographic cuts of turbulent flame fronts6 3
10 cm wide: (a)u0yUN ­ 0.71, (b) u0yUN ­ 1.30.

A 2, and the value ofu0. However, using the multiplicative
nature of roughness, we have avoided measuring all
them by deducing their value from a single series o
measurementssRi,I di­0,I : Ri,j ­ Ri,I yRj,I . Finally, in
order to lower the experimental noise, we have averag
the roughnessRi,I along the interface and fitted them with
respect to scale ratiosLiyLI by a polynomial of order 3
in log-log coordinates.

For evidencing the wrinkling law, we first fix the resolu-
tion scale at the lowest wrinkling scaleL0 and increase the
observation scaleLj . This turns out accumulating progres-
sively the effects of turbulent vortices of increasing size
The computation of the mixing variablesm0,j ­ u0

0,jyU0
from u0 andUN is performed as follows: Since the front
is not yet wrinkled at the scaleL0, U0 ­ UN ; u0

0,j may be
expressed with respect tou0

0,I within the assumptions A1
and A2; u0

0,I may be identified withu0 to a good accuracy
because there is at least as scales inbetweenLI andL0 than
inbetweenL0 and the Kolmogorov scaleLh sLIyL0 .

L0yLh ) u0
0,I ø u0

h,I ­ u0d. Plotting roughness versus
mixing variables in square coordinates then yields a su
prising result: At each equivalent ratio and dilution [e.g
w ­ 1.30, d ­ 0.21 in Fig. 3(a)] all the flames, either
weakly wrinkledsm , 1d or fractal-like sm . 1, 2.20 #

dF # 2.31 for w ­ 1.30), generate forK ­
1
2 the same

curve asj varies. Since, at a given scaleLj , the values
of m0,j vary from flame to flame according to the value o
m, this identity means that the functionsR0,js?d are all the
same, a linear lawR0s?d in the representationsm2

0,j , R2
0,jd:

R0,js?d ­ R0s?d with R0sxd ­ 1 1 bx.
The existence of a single lawR0s?d for the whole

family of scale rangefL0, Ljg, 0 , j # I , evidences an
unexpected universal behavior of the wrinkling proces
3353
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FIG. 3. Experimental determination of the wrinkling law in
scale space:a ­ 1.2, K ­ 1y2, w ­ 1.30, d ­ 0.21, 0.6 #
u0yUN # 1.3, 14 flames, a symbol per flame. (a) Scale rang
fL0, Ljg, L0 fixed, Lj variable; (b) consecutive scale range
fLi , Li11g.

Its linear form in quadratic coordinates was alread
predicted in a previous work within assumptions A2 and
A 3 and the scale invariance of the wrinkling process [10
It corresponds to a special property of the wrinkling la
which, using (1), (3), and A2, is evidenced here by the
following equivalences:

R2
0,j ­ 1 1 bm2

0,j , ;j , (4)

U2
j ­ U2

0 1 bu02
0,j , ;j , (5)

U2
j ­ U2

i 1 bu02
i,j , ;i, ;j , (6)

R2
i,j ­ 1 1 bm2

i,j , ;i, ;j . (7)

Relation (7) shows that the expressionsRi,js?d of the
wrinkling law are independent ofi andj: Ri,js?d ­ Rs?d.
This means that changing scales preserves the form of
wrinkling law so that it is scalecovariant. This includes a
covariance byglobal changes (Lk ! apLk ­ Lk1p , ;k
with p constant) but also bylocal ones [Lk ! apLk ­
Lk1p , ;k with p ; pskd]. They, respectively, express
the impossibility of identifying either scalessLkd or scales
ratios sLk0yLkd from the wrinkling law, as required in a
scale invariant system [10].
3354
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In order to test this property experimentally, we look fo
determining the wrinkling law in smaller scale ranges, th
smallest ones available in scale space:fLi , Li11g. The
mixing variablesmi,i11 ; u0

i,i11yUi are easily computed
from assumption A1, which givesu0

i,i11, and relation (1),
which yields Ui ­ U0R0,i where U0 ­ UN . Still in a
quadratic representationsm 2

i,i11 , R 2
i,i11 d and forK ­ 1y2

we obtain, to the experimental accuracy [11], foranyflame
andany turbulence level, thesameline as that previously
derived for larger scale ranges [Fig. 3(b)]. This resu
directly evidences the scale covariance of the wrinklin
process and shows its universality in scale space [1
It finally confirms the relevance of the family of scal
covariant laws (7).

Despite the fact that the covariant law is a line in bo
representations [Figs. 3(a) and 3(b)], Fig. 3(b) must n
be confused with an enlargement of Fig. 3(a), the chan
of coordinates from one representation to the other be
actually nonlinear and nonlocal in scale space:R 2

i,i11 ­
R 2

0,i11 yR 2
0,i ; m 2

i,i11 ­ sm 2
0,i11 2 m 2

0,i dyR 2
0,i .

Owing to the limited available range of turbulenc
intensity sm # 2.2, dF # 2.4d and to the experimental
uncertainties, it is instructive to investigate the accura
to which scale covariance is evidenced. For this, consi
two noncovariant laws proposed in the literature, one
low turbulence level (8) [13] and the other at larger on
(9) [14]:

R0,j ­ 1 1
b

2
m2

0,j , (8)

R2
0,j ­ expsbm2

0,jyR2
0,jd . (9)

The law (8) follows from the statement that the wrinklin
amplitude in the scale rangefL0, Ljg is proportional to
u0

0,jyUN ­ m0,j and from the subsequent derivation of th
corresponding roughness at the dominant order inm0,j .
The law (9) is derived by renormalization of (8). Bot
are nondimensional and tangent to the covariant law
at low m0,j. However, they differ from (4) regarding
nonlinearity.

The plots of laws (8) and (9), together with that of th
covariant one (4), are shown in Figs. 4(a) and 4(b) in t
same representations and for the same ranges of dat
in Figs. 3(a) and 3(b). As may be noticed by compa
ing Figs. 3(a) and 4(a), our experimental data could n
actually decide between the noncovariant laws and the
variant one in the scale rangesfL0, Ljg. However, chang-
ing scales so as to work with consecutive onesfLi , Li11g
produces dramatic variations of the noncovariant laws
Fig. 4(b) which largely exceed the experimental unce
tainties of Fig. 3(b). This attests to the significance of t
scale covariance observed experimentally.

The scale covariance of the wrinkling law follows from
A 2, A 3, and the scale invariance of the wrinkling proce
[10]. It is, however, independent of the scale invarian
of the flow (A1) which is used here only as a usefu
means for approximating the turbulence intensities. T



VOLUME 76, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 29 APRIL 1996

g

o

c

eir
en

al

en
ed
the
ds
to
e
n,
ws
to
m

o-

tt.

v.

o-

st.

,

),

,

s,
f

ng
fit
er,

b)

y

,

FIG. 4. Theoretical wrinkling laws (4) (crosses), (8) (circles
and (9) (squares) within the experimental scale rangefL0, LIg
for a ­ 1.2 and u0yUN # 1.3. (a),(b): same as in Fig. 3. In
(b), the laws (8) and (9) even extend beyond the plotted ran

fact that a single exponentK ­
1
2 yields covariance for

all flames indicates that the corresponding power la
is representative of the turbulent flow. The shift wit
respect to the usual valueK ­

1
3 of the Kolmogorov

cascade shows an effect of combustion on turbulen
In particular, the temperature increase at the interfa
implies that the actual dissipation scale of the wrinklin
vortices is the Kolmogorov scale in the (hot) burnt gas
Lhp instead of its much smaller valueLh in the (cold)
fresh gases. This statement, confirmed by the fact t
Lhp is close to the first wrinkling scaleL0, implies that
the range of wrinkling vortices is more dissipative tha
inertial. Its turbulence intensities then show a correcti
to the inertial range power law [15] which, in the prese
scales range, is well fitted by a power law, but with a
exponentK ­ 0.53 closer to1

2 than to 1
3 .

The complete universality displayed by scale covaria
laws bears some analogy with the extended self-similar
(ESS) recently evidenced in fully developed turbulen
[16]. The ESS states that, given a statistical variableu,
the scaling relation between its time-averaged mome
kunl ø kuljsnd is valid on a muchlarger scale range than
the scaling relation between moments and scalekunl sld ø
lz snd. In the present case, a scaling relation betwe
roughnessRi,I and scaleLi means a straight variation in
log-log coordinates corresponding to a fractal regime.
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is thus restricted to the most turbulent flames and to th
largest wrinkling scales. In contrast, the relation betwe
roughnessRi,j and mixing variablesmi,j is valid on the
whole range of wrinkling scales and forany turbulence
level. It thus extends the domain of validity of univers
laws as the ESS does in turbulence.

A causal approach of geometry formation has be
applied to turbulent propagating interfaces. It has l
the experimental evidence of the scale covariance of
law governing interface geometry. This property exten
the usual concept of scale invariance of geometry
the laws governing form generation and so unifies th
physical description of all interfaces, either Euclidea
fractal, or inbetween. Since scale covariance follo
from scale invariance, its validity may be expected
be as widespread as scale similarity in out-of-equilibriu
systems.
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