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Scale Covariance of the Wrinkling Law of Turbulent Propagating Interfaces
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The physical process governing turbulent propagating interfaces is determined experimentally in scale
space by analyzing the interface geometry and using the Kolmogorov cascade. Its scale covariance is
evidenced for any scale range and any interface geometry, either Euclidean, fractal, or inbetween. This
reveals a similarity of geometry formation more extended and more essential than the similarity of
geometry itself.

PACS numbers: 61.43.Hv, 47.25.Gs, 47.70.Fw

The physics of interfaces within randomly stirred mediaand in time average, the saméi;. We define it as the
involves many interesting topics: Interface evolutionnormal velocity of the effective interfadg;.
models a number of growth processes [1,2], interface Normal velocities may be linked to effective surfaces
geometry provides a diagnostic of turbulence [3,4], ancdy expressing the volume swept per unit time by the
interface dynamics reveals the enhancement of transpariterface, first with respect t&/; and then with respect to
properties by turbulence [4,5]. To date, the statistics otU;: U;S;; = U;S; ;. On the other hand, sincg; = L?
turbulent interfaces has been characterized by exploiting the surface of the effective interfagg projected on its
the scale invariance of their geometry with respect tamean normal direction, the ratip ;/S; ; corresponds to its
length or time [1-3,6]. This provides useful scalingwrinkling level, i.e., toits roughnes®; ;: R;; = S;;/S; ;.
relations in quasilaminar regimes [1,2] and in fully Altogether, these relations show that roughness describes
turbulent ones [3,6] but fails in evidencing universal lawsthe relative increase not only of spatial variabfes, but
in intermediate regimes. We conjecture that a possiblalso of dynamical one#’:
origin of this breaking of universality traces back to the
fact that these approaches address more a geometrical
effectthan a physicaprocess.

The spirit of this Letter is to return to a causal The classical scale analysis of interfaces turns out to
analysis of geometry formation by focusing attention notfix the field scaleL; at the integral scale of turbulence
on geometryitself but on the physicaprocessactually L; and study the variation of the roughnegg with the
generating it. Applied here to turbulent propagatingscale ratial;/L; in log-log coordinates. Here, roughness
interfaces, it allows us to evidence experimentally therepresents an effect of turbulence on interface geometry
invariance in scale space not of interface geometry, but dfut scale ratios do not correspond to its cause since
the law governing it. This scale covariance of geometrythey are independent of its actual origin, the turbulence
formation displays a wider universality than the usualintensity.
scale invariance of geometry: It applies to any scale range The spirit of our approach consists of looking for
and any regime, either Euclidean, fractal, or inbetween. a causal relation in this system. This requires first

Scale analysis—We consider an interface propagating identifying in scale space a variable representative of the
in a turbulent fluid, the turbulence being assumed homoeause of wrinkling, the interface-turbulence interaction,
geneous and isotropic and the interface infinitely thin. Inand then linking it to its effect, the front roughness.
order to perform a scale analysis of the system, we intro-
duce a geometrical series of length scaleg;—o; with
Li/Lo = a' anda > 1,L, denoting the first wrinkling
scale of interface anfl; the integral scale of turbulence.

Observing interfaces requires a field wind®y of size
L;, inside which a piece of interface is selected, and a
resolution scalel; < L;, below which the geometrical
details are ignored (Fig. 1). This turns out isolating
the wrinkles belonging to the scale ranpe;,L;] and
thus addressing an effective interface labelgg Its
surfaces; ; is obtained by paving the actual interface with
windows W; of size L; and by determining the number
n;; of those belonging toW,: S;; = n;;L7. Owing
to turbulence homogeneity and to the vanishing interface
thickness, the velocity of the windowg; are, in modulus FIG. 1. Sketch of the scale analysis of interface.
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ATV /7
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We first defineuﬁ,j as the turbulence intensity (rms
of velocity fluctuation) in the scale randé.;,L;] and
make the following assumptions. ;Athe turbulent flow
is scale invariant in the inertial range of turbulence.
A,: the squares of the turbulence intensities are additive
with respect to scale ranges. ;/Ahe interface-turbulence
interaction is local in scale space. Assumptionylelds
the power lawu;;+i/ug; = (L:/Lo)X. Assumption A
means that front wrinkles at a given scale are generated
by vortices of the same scale only. It relies on the guess
that, at a given scale, interface propagation is efficient
enough to destroy the smaller scale tongues produced by
turbulent mixing [7]. According to it, the roughness ;
of an effective interfacd; ; is a function ofu;; and U;
only, and thus of their raties; ;:

Rij = R;;j(m;j), (2)
MLJ
mij = U, 3)

The so-called “mixing variablesh; ; evaluate, in terms _
of velocities, the relative magnitude of turbulent mixing 'f(')Gcnfw iggr?g)gﬂ?%h'c_cggsl ?k];) t”,%“eit lflﬁ)me fronts X
(u} ;) with respect to propagatiofU;). Thus they stand B atht A XA At
for the causes of front wrinkling. As the functiof; ;(-) , ) o
relate these causes to their effects, the roughRgsshey A, and the value of’. However, using the multiplicative
represent the law governing the wrinkling process in scal@ature of roughness, we have avoided measuring all of
space. them by deducing their value from a single series of

Scale covariance—We have evidenced experimentally measurementsR; ;)i—os: Ri; = Ris/R;;. Finally, in
a fundamental property of the functior®, ;(-) by the order to lower the experimental noise, we have averaged

following procedure: Propagating interfaces are pro_the roughnesg; ; alqng the interface and f!tted them with
vided by premixed flames. They are studied in a closed€SPect to scale ratias;/L; by a polynomial of order 3

chamber in which a grid turbulence is generated prior td" 109-log coordinates. o
ignition [8]. The net turbulence intensiwy in the inertial For evidencing the wrinkling law, we first fix the resolu-

range of turbulence has been measured by laser velocimton scale at the lowest wrinkling scalg and increase the

try [8]. It is monitored by an ignition delay during which OPservation scalg;. This turns out accumulating progres-
it decays according to a viscous time, = 136 ms. sively the effects of turbulent vortices of increasing size.

The duration of propagation is short enoughl0o mg  1he ccl)mputatlo_n of the mixing variables; = ug,;/Uo
for u’ to be nearly frozen. Since both the Kolmogorov ffom ' andUy is performed as follows: S'r}ce the front
scale L, and the wrinkling scales are larger than theiS Not yetwrinkled at the scaley, Uy = Uw; uo,; may be
flame thickness, fronts behave locally as planar laminafXPressed with respect 16, within the assumptions A
ones. In particular, their normal velocityy is a con- and Ay up; may be identified with/' to a good accuracy
stant equal to that of planar flames. It is determined€cause there is at least as scales inbetweandL, than
by physicochemical processes and is monitored here bjibetweenL, and the Kolmogorov scalé&, (L;/Lo >
the equivalence ratigp and the dilutions of the mix-  Lo/Ly = uo; = uy,; = u’). Plotting roughness versus
ture. The experiment involves the following parametermixing variables in square coordinates then yields a sur-
ranges: combustion volumé X 6 X 6 cn?, propane-air  Prising result: At each equivalent ratio and dilution [e.g.,
mixture (0.85 = ¢ = 1.30, 6 = 0.15 0r0.21), normal ¢ = 1.30, § = 0.21 in Fig. 3(a)] all the flames, either
velocity at the observation tin®40 = Uy = 0.86 ms™!,  weakly wrinkled(m < 1) or fractal-like (m > 1,220 =
030 <« =093 ms !, and0.7 = u/'/Uy = 2.2. dr = 2.31 for ¢ = 1.30), generate folk = 5 the same
Flame fronts are visualized by tomography (Fig. 2)curve asj varies. Since, at a given scalg, the values
[9]. They display a geometry varying with the ratio of mg; vary from flame to flame according to the value of
m = u'/Uy from Euclidean(m < 1) to fractal ¢ =~ 2,  m,this identity means that the functioffs ;(-) are all the
fractal dimensiondr =~ 2.4). The functionsR;,;(-) may  same, a linear lauR(-) in the representatiomg ;, R,,):
be determined from each of them since roughness R () = Ro(-) with Ro(x) =1 + Bx.
is measurable by image processing, normal velocties The existence of a single laiR(-) for the whole
derive from roughness by the relation (1) and turbulencéamily of scale rangdL,,L;], 0 < j = I, evidences an
intensitieSuf,j follow from the scaling law implied by &  unexpected universal behavior of the wrinkling process.
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3.0 In order to test this property experimentally, we look for
determining the wrinkling law in smaller scale ranges, the
smallest ones available in scale spadé:;,L;+]. The
mixing variablesm, ;+; = u§,i+1/Ul- are easily computed
from assumption A which givesu; ;. , and relation (1),
which vyields U; = UgRy; where Uy = Uy. Still in a
quadratic representatidm; ;. >, R; ;+*) and fork = 1/2
we obtain, to the experimental accuracy [11],doyflame
andanyturbulence level, theameline as that previously
derived for larger scale ranges [Fig. 3(b)]. This result

m 2 directly evidences the scale covariance of the wrinkling

0,j process and shows its universality in scale space [12].
2.0 It finally confirms the relevance of the family of scale
covariant laws (7).

Despite the fact that the covariant law is a line in both
representations [Figs. 3(a) and 3(b)], Fig. 3(b) must not
be confused with an enlargement of Fig. 3(a), the changes
of coordinates from one representation to the other being
— actually nonlinear and nonlocal in scale spaaitg;,-H2 =
Roji*/Ros mijer” = (moier” — mo;")/Ro,’.

Owing to the limited available range of turbulence
intensity (m = 2.2,dr =< 2.4) and to the experimental

2 uncertainties, it is instructive to investigate the accuracy
m to which scale covariance is evidenced. For this, consider
i,i+1 3 g - ’
0.00 0.10 0.20 two noncovariant laws proposed in the literature, one at

low turbulence level (8) [13] and the other at larger ones
FIG. 3. Experimental determination of the wrinkling law in (9) [14]:
scale spacea = 1.2, K = 1/2, ¢ = 1.30, § = 0.21, 0.6 =

u'/Uy = 1.3, 14 flames, a symbol per flame. (a) Scale ranges Ro: =1+ ﬁmzl (8)
[Lo,L;], Lo fixed, L; variable; (b) consecutive scale ranges 0.j 2 0>
[Li,Lit1]. 5 ) )

Ry; = exp(Bmg /Ry ;) - 9)

lts linear form in quadratic coordinates was already!he law (8) follows from the statement that the wrinkling
predicted in a previous work within assumptions &nd almphtude in the scale randd.o, L,] is proportional to
A and the scale invariance of the wrinkling process [10]40,;/Un = mo,; and from the subsequent derivation of the
It corresponds to a special property of the wrinkling lawcorresponding roughness at the dominant ordemnir).

which, using (1), (3), and 4 is evidenced here by the The law (9) is derived by renormalization of (8). Both

following equivalences: are nondimensional and tangent to the covariant law (4)
at low mg ;. However, they differ from (4) regarding
jo -1+ Bm%,-, V), (4)  nonlinearity.
| i The plots of laws (8) and (9), together with that of the
U} = U + Bul,, Vi, (5) covariant one (4), are shown in Figs. 4(a) and 4(b) in the
! ! same representations and for the same ranges of data as
U? = U? + Bu, Vi Vj, (6) in Figs. 3(a) and 3(b). As may be noticed by compar-
/ ¥ ing Figs. 3(a) and 4(a), our experimental data could not
RZZJ. =1+ Bm%’j, Vi, Vj. (7)  actually decide between the noncovariant laws and the co-

variant one in the scale rangls, L;]. However, chang-
Relation (7) shows that the expressiofis; ;(-) of the ing scales so as to work with consecutive opesL; ]
wrinkling law are independent ofandj: R, ;(-) = R(-).  produces dramatic variations of the noncovariant laws in
This means that changing scales preserves the form of thég. 4(b) which largely exceed the experimental uncer-
wrinkling law so that it is scaleovariant. This includes a tainties of Fig. 3(b). This attests to the significance of the
covariance byglobal changes &, — a”Ly = Ly+,, Yk  scale covariance observed experimentally.

with p constant) but also bjocal ones L, — a”L; = The scale covariance of the wrinkling law follows from
Li+,, Yk with p = p(k)]. They, respectively, express A,, A and the scale invariance of the wrinkling process
the impossibility of identifying either scalé&;) or scales [10]. It is, however, independent of the scale invariance
ratios (L /L;) from the wrinkling law, as required in a of the flow (A;) which is used here only as a useful
scale invariant system [10]. means for approximating the turbulence intensities. The
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FIG. 4. Theoretical wrinkling laws (4) (crosses), (8) (circles),
and (9) (squares) within the experimental scale rageL;]
fora =12 andu//Uy = 1.3. (a),(b): same as in Fig. 3. In
(b), the laws (8) and (9) even extend beyond the plotted range.

fact that a single exponerk = % yields covariance for
all flames indicates that the corresponding power law
is representative of the turbulent flow. The shift with
respect to the usual valug = % of the Kolmogorov

cascade shows an effect of combustion on turbulence.
In particular, the temperature increase at the interface

implies that the actual dissipation scale of the wrinkling
vortices is the Kolmogorov scale in the (hot) burnt gases
L, instead of its much smaller valug, in the (cold)

fresh gases. This statement, confirmed by the fact that[g]

L, is close to the first wrinkling scalé&,, implies that [
the range of wrinkling vortices is more dissipative than[
inertial. Its turbulence intensities then show a correction
to the inertial range power law [15] which, in the present
scales range, is well fitted by a power law, but with an
exponentk = 0.53 closer to% than to%.

The complete universality displayed by scale covariant
laws bears some analogy with the extended self-similarit
(ESS) recently evidenced in fully developed turbulenc
[16]. The ESS states that, given a statistical variahle
the scaling relation between its time-averaged momen
(u"y = (u)¢" is valid on a mucHarger scale range than [
th(e)scaling relation between moments and s@dig(l) =
150,
roughnessk; ; and scalel; means a straight variation in |
log-log coordinates corresponding to a fractal regime. It

is thus restricted to the most turbulent flames and to their
largest wrinkling scales. In contrast, the relation between
roughnessk; ; and mixing variablesn; ; is valid on the
whole range of wrinkling scales and fany turbulence
level. It thus extends the domain of validity of universal
laws as the ESS does in turbulence.

A causal approach of geometry formation has been
applied to turbulent propagating interfaces. It has led
the experimental evidence of the scale covariance of the
law governing interface geometry. This property extends
the usual concept of scale invariance of geometry to
the laws governing form generation and so unifies the
physical description of all interfaces, either Euclidean,
fractal, or inbetween. Since scale covariance follows
from scale invariance, its validity may be expected to
be as widespread as scale similarity in out-of-equilibrium
systems.
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