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Theory of Chain Association versus Liquid Condensation

René van Roij

FOM Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
(Received 20 December 1995

We combine the original van der Waals description for liquid condensation with the association
theory of ideal particles into a simple association theory of nonideal chains. The theory shows
that vapor-liquid coexistence becomes metastable if the tendency to form weakly interacting chains
is sufficiently strong. Our findings qualitatively explain recent computer simulations on dipolar hard
spheres. [S0031-9007(96)00039-7]

PACS numbers: 61.20.Gy, 64.70.Fx, 82.35.+t, 82.60.Hc

In 1873 van der Waals argued that the existence of #on. This Letter describes a theoretical attempt to include
dilute disordered phase, a vapor, and a condensed disdreth features simultaneously in the simplest possible fash-
dered phase, a liquid, can be explained by assuming longen. That is, we do not follow the lines of previous the-
range attraction and short-range repulsion between theretical studies, which are often focused on solving the
constituent particles [1]. By now it is well established thatOrnstein-Zernike equation within some closure approxi-
the prototypesimplefluid, described by a repulsive core mation. Although we agree that it should be possible to
and an attractive isotropit/»° pair potential ¢ the par-  describe chains in terms of a very anisotropic pair structure,
ticle separation), indeed gives rise to vapor-liquid coexiswe feel that a description in terms of a chemical equilib-
tence below a critical temperature [2]. Also the prototyperium between monomers, dimers, trimers, and in general
ionic fluid, consisting of charge carrying hard spheres, issmers is more natural. We combine the simplest theories
now known to have a vapor-liquid critical point [3]. Here for the two phenomena under consideration: the original
the attraction is provided by the Coulomhigr attractions van der Waals theory for liquid condensation and the as-
(possibly screened) between oppositely charged particlesociation theory of ideal particles. This results in a simple

The presence of a critical point in models of simpleassociation theory of nonideal particles that describes how
and ionic fluids strongly suggests similar phase behaviothe vapor-liquid transition may become metastable due to
for the prototypedipolar fluid, consisting of permanent the formation of weakly interacting chains.
dipoles embedded in hard spheres, as may, for instance, First, we recall the van der Waals free enefgyy of
be realized in ferromagnetic colloids. Indeed, all theoreta system ofV particles in a volumé& at temperaturd@:
ical calculations of the phase diagram of the dipolar hard
sphere system predict the presence of a critical point [4].  F ,w/V = nk3T|:|n< ) — 1} —an®, (1)
However, despite considerable effort, no vapor-liquid co- 1 = bn
existence has been observed in recent extensive computgiih «, the Boltzmann constant and= N/V the num-
simulation studies of this system [5]. Instead, simulationgyg, density. The positive constantsand b parametrize
reveal a completely different phenomenon: the formationphe molecular long-range attractions and the short-range
of chains of locally head-to-tail aligned dipoles [6]. Theserenysions, respectively. The thermal volum& usually
chains resemble living polymers, in the sense that chaingen as the cube of the thermal wavelength, is irrelevant
may form, break up, and reform again, etc. A similarfyy the phase behavior. The critical temperature and den-
conclusion was drawn from simulations of the modifieds;ty in terms ofa andb follow readily from the conditions

Stockmayer fluid [7], where the long-range interactions argnat the second and third derivativesifiw with respect
given by the sum of isotropic dispersitgr® attractions 15 v/ vanish.

and anisotropic dip(_)laﬂ/r3 interactions. By gradually  Next, we recall that the free energ§q of an ideal

decreg_slng the relative strength of the isotropic attractionyixture of N, = Vp, particles of types = 1,2,... is

the critical temperature decreased as expected. Howev%ﬁ,Ven by

below a specific value of this relative strength, no vapor-

liquid coexistence could be observed, while snapshots Fia/V = psksT(Inp, V, — 1), 2)

revealed the presence of chains. These simulations thus s

suggest a competition between liquid condensation (priwhere V; is the thermal volume of species If the

marily driven by the isotropic attraction) and chain forma-composition of the mixture is fixed, the thermodynamics

tion (driven by anisotropic dipolar interactions). is independent of V;, which one then conventionally
Whereas the liquid condensation has been considered takes as the cube of the thermal wavelength of species

great detail in the theoretical description of dipolar sphereslowever, if the composition of the system is not fixed,

so far, the association feature and its apparent competput is determined by a chemical equilibrium between

tion with the liquid condensation has received less attenmonomers, dimers, trimers, etc. at fixed total number
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densityn = >, sp, and temperaturd’, the role of V,  which is supposed to hold in combination with Egs. (3)
is crucial, as we will show. Then, namely, we interpretand (4) and the normalization conditian= >, sp,. We
Fiq as a free energy functional that must be minimizeddenoted the van der Waals attraction parameterg by
with respect top, at fixedn and T. The minimizing and assumed for simplicity that the free volume factor
ps is then the equilibrium distribution ofmers. The (1 — bn) is independent of the degree of association.
minimum free energy condition is equivalent to the Recognize that upon inserting Egs. (3) and (4) into (5)

chemical equilibrium conditionu, = su1, whereu, =  the internal energy- > ; p,(s — 1)U, the internal con-
dF;q/ 0N, is the chemical potential agfmers. Thus from figurational entropic ternkz7 >, ps(s — 1)Inv, and the
Eqg. (2) we obtain the law of mass actign = ¢,pj, “kinetic” term nkzT In"V; are recovered. The stationar-
where the chemical equilibrium constantis defined by ity condition of F with respect top, yields the analog of
A% the law of mass action as the nonlinear self-consistency
V= : () relation
qs
It can be shown thay, is the internal configuration . q s s
integral of ansmer. This integral cannot be calculated ps = <1 — bn> exp<2ﬂ ;Aass")f')pl’ (6)

analytically for complicated interaction potentials, so here )
we are satisfied with the following dimensionally correctWnere Aasy = asy — saig.  Note that Eq. (6) is an

simple estimate: identity for s = 1; p; must be chosen such that the
normalization constrain} , sp; = n is satisfied. For a
gs = [expBUW] ! = ¢!, (4) particular choice of the parametess,, b, U, andv =

) i , v(T), one can now solve the self-consistency equation
with B = 1/kT, the phenomenological “bond energy” ymerically with an iterative scheme for a range of

parameterU > 0 and the “configurational volumeb. — gensities and temperatures, and infer the thermodynamics
This form for ¢, would be exact if the binding potential by resubstituting, into the free energy.

were a square-well potential of depthU localized in At first sight it seemseasonable to take,, = ss'a for

a volumew (small enough to prevent multiple binding), {he dipolar hard sphere system. The reason is that the
so that the internal energy of a chain likemer equals 45 dipole moment of a linear chain efaligned point

—(s — 1)U. However, no unique mapping from a more ginoles of strengthy equalssx, so that thelong-range
complicated potential (e.g., the dipole-dipole potential)nteraction between a singlemer ands’-mer is that of
onto the parameter& and v is possible. Still, in such 4,4 point dipoles of strengthyx ands’x. In a fluid, how-
cases it seems reasonable to tak&/ of the order gyer we expect that the long-range dipolar interactions are
of the minimum of the potential well. The choice gcreened by other dipolar particles, so that is mainly

for v is less clear, mainly because depends on the getermined by theshorter-rangecharacter of the chain-

temperature. At low temperatures;(" < U), v iS of  cpain interaction, which differs from that of point dipoles.
the order of the volume over which the binding potentialthe internal geometry of a chain and the anisotropy of

deviates less tha@® (kT) from its minimum value, since o point dipole of its constituent monomers lead to can-
other configurations hardly contribute to the configurationyg|jations, and hence to relatively weak chain-chain inter-
integral. At high temperaturesi{7 = U), we do not  4ctigns, characterized by, < ss'a. A convenient sim-

speak of a bond and set= 0, leading to a monomeric ification, which retains the essential ingredient of weak
state since theg = 0. In the intermediate temperature cpain_chain interactions, is provided by the Bjerrum-like
regime, we takev as the volume where the binding approximationa,, = a8, 8., [8]. This choice, which

potential is more negative thamksT. The precise o adopt from now on, has the technical advantage that

crossover from one regime to another remains of coursz ,Aa,ypy = —sap, for s = 2, so that the right hand
. . . . Ky - ]

arbitrary. For a given recipe to determine and U,  gide of Eq. (6) is dependent only @n. Inserting this into

and henceg, the equilibrium distribution follows from Eq. (6) and using elementary sums yields the normaliza-

Eq. (3) in terms ofp,. The value forp, then follows i condition as a nonlinear relation betweenT', and
from the normalization condition = p; > s(gp1)°* ! = p1, given by

p1/(1 — gp1)?, which can be worked out analytically to
have only one physical rogt;, leading to a unique ideal

S R ; = + prexg—2
equilibrium distributionp, at a givenn andT. n=pit prexi=2Bap]

We now combineF,qw and Fiy to yield a free energy 1 3
expressionF' that describes the liquid condensation and {1 — gprexd—2Bapi]/(1 — bn)}?
the chain association simultaneously. We adopted )
F/V = ZpskBT|:|n<pS—VS> — 1:| The rootsp; of this equation are readily found numerically
S 1 = bn for a givenn andT. The key difference with the case of
_ Za”/pspsu (5) ideal association is the'possibi_lity of more_tha'n one phys-
' ical root p, corresponding to different chain distributions
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ps, and therefore to different free energigs= BF/N.  appeared when the isotropic attraction between the parti-
Obviously, the distribution with the lowegt for givenn  cles was sufficiently weak. From Fig. 1 we get an idea
andT is a candidate for the thermodynamic equilibrium of the distributionsp; by considering the chain length pa-
distribution. The full thermodynamics is conveniently an-rameterf as a function ofz* at several values of* for
alyzed in terms off as a function ofl/n at fixedT; this a* = 1.7. Far above the critical temperature, rat= 2,
representation allows for common tangent constructionsve find a unique distribution for every’. When the tem-
and is therefore well suited to analyze both local and globaperature is lowered slightly t6" = 1.7, we find a density
stability of the phases under consideration. regime with three solutions to the stationarity condition.
We introduce the dimensionless temperatureThe smallest and largest values ©fcharacterize distri-
T* = kT /U and density:* = nD3 whereD is the hard  butions that minimizeF, whereas the intermediate one
sphere diameter. Throughout we take= 27D3/3 =  maximizesF, and is hence unphysical. At even lower
b*D3. This leaves the dimensionless van der Waals patemperatures we see that the density regime with multi-
rametera* = a/UD?, which is a measure for the relative ple solutions increases, leaving unique distributions only
tendency for liquid condensation versus chain associatiorat low densities. Note that the low density distribution is
as the only externally imposed parameter. For a giveficonnected” to the monomerid (= 1) high density distri-
value ofa™ andb”, the dimensionless bare van der Waalsbution at:* = 0.9, and to the chain distributior? > 1)
critical liquid-vapor temperature is given by, w =  at+* = 0.85. This “reconnection” hardly has thermody-
8a*/27b*, which gives rise to a convenient relative namic consequences, since the chain distributions become
temperature scale® = T*/T.4w. In the following more and more monomerlike as the density decreases. In
we characterize the distributions by the parameteFig. 2, we plot the minimized free energy as a func-
¢ = pss?/n, which is a measure for the typical length tion of 1/»* for the casess* = 1.7 and 1.4, for both
of the chains in units oD. t* = 1.25 and 0.90. For* = 1.7 we see that in the den-
We have determined the equilibrium distributignsof  sity regime of multiple solutions, the monomeric branch
F, and hence the phase behavior of the associating van der (with € = 1) has the lowest free energy, except at high
Waals system, for several valuesa@df Fora™ > 1.5, we  densitiesn*b* = 1, where the chain branch (labeled
found a vapor-liquid critical point, as determined from theis stable. Then branch develops a vapor-liquid instabil-
vanishing second and third derivative gfwith respect ity when decreasing the temperature, while thbranch
to 1/n. The critical temperature is found to be at mostremains metastable. Fai = 1.4 we again see that the
a few percent lower than the bare van der Waals criti-
cal temperature™ = 1. For a* < 1.5 there isno criti-
cal point, sincef is convex with respect ta/n for all a=17 a'=1.4

temperatures®. This result is to be compared with the ‘
simulations of Ref. [7], where the critical point also dis- ¢t 25 m =125
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10 Mﬁ""f 1t M,ﬂ’“b 1 FIG. 2. Free energy per particle pég7 as a function of
MM:::M””WM‘ i 1/n* at relative temperatures = 1.25 and 0.90 fora* = 1.7
| oo G (left column) anda® = 1.4 (right column). This representation
o op 03 o 0p 03 0a allows a common tangent construction. Fef = 1.7, the

monomeric branchat) has a lower free energy than the chain
FIG. 1. ¢ vsn® for a* = 1.7 at several relative temperatures branch ¢), both above and below the critical temperature,
t* (see text for symbols). At* =2 there is only one except in the high density regiméb* = 1. The vapor-liquid
distribution that optimizes the free energy for giveh. At instability of the m branch is clearly visible at™ = 0.90.
t* = 1.7 and below multiple solutions are possible. In the caseFor a* = 1.4 the m branch is metastable with respect to the
of three solutions at fixed density, the middle one correspondgconvex)c branch at both temperatures. The instability of the
to a local maximum of the free energy, the other two to am branch at* = 0.90 does, therefore, not lead to vapor-liquid
minimum. coexistence forn™ = 1.4.

3350



VOLUME 76, NUMBER 18 PHYSICAL REVIEW LETTERS 29 ARIL 1996

m branch (which is disconnected from the low densitycally unfavorable with respect to the touching antiparallel
branch as in Fig. 1 at* = 0.85) develops the vapor- side-side configuration. Therefore the tendency for chain
liquid instability upon lowering the temperature, but now formation is destroyed by the anisotropic hard core, and
this branch is metastable with respect to théoranch the condensation mechanism is probably dominant. En-
(which is convex), so thabo phase separation will oc- tropic considerations suggest that we should expect the
cur. These results indicate that the vapor-liquid transitiorcrossover to take place at even smaller elongations of the
is metastable with respect to chain formatiomif< 1.5, rods. Simulations of this system are in progress [9].
whereas it is stable §* > 1.5. In conclusion, we have combined the van der Waals
Can these results “explain” the phase behavior otheory for liquid condensation with the association theory
dipolar hard spheres? Obviously, the theory does ndir ideal particles to yield a simple theory of association
include explicitly the magnetic degrees of freedom, soof nonideal chains. The theory is capable of describing
that possible ferromagnetic phases cannot be describetthe disappearance of liquid condensation due to chain
Moreover, the theory is essentially a fluid theory, so thaformation, as observed in simulations of dipolar hard
the high density solid phase is not included, either. ltspheres.
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