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Control of Patterns in Spatiotemporal Chaos in Optics
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We propose an algorithm for control of spatiotemporal chaos in partial differential systems based
on the idea of stabilization of unstable periodic patterns embedded in spatiotemporal chaotic states.
This algorithm, using time- and space-dependent feedback, has been successfully demonstrated through
our numerical analysis in controlling unstable roll patterns in a transversely extended three-level
laser. [S0031-9007(96)00062-2]

PACS numbers: 42.50.—p, 42.60.Mi, 42.65.—k

Since the first suggestion of controlling chaos [1] and inpartial differential equations. While the transition from co-
particular the proposal of a control concept utilizing feed-herence to spatiotemporal chaos has yet to be characterized
back to stabilize an unstable periodic orbit or fixed pointby global quantitative laws, certain normal mode equations
embedded in the chaotic state [2], there has been prolifibave shown that such a chaotic state in a spatiotemporal
activity in the area of control of chaos across many discontext underlies different unstable periodic patterns, e.g.,
ciplines [3]. Based on this concept of feedback controlrolls and hexagons and in this sense it is analogous with
various other approaches have been developed where etemporal chaos, which comprises many unstable periodic
phasis has been given to algorithms which are more readrbits embedded in the chaotic attractor. In optics, spa-
ily implemented in practical systems, in particular, thosetiotemporal chaos (commonly referred to as optical turbu-
utilizing occasional proportional feedback [4] and continu-lence when the chaos is fully developed in both space and
ous feedback [5]. These algorithms have been succesime) is attributed to the interaction, through diffraction,
fully implemented in spatially restrained low-dimensional of optical fields excited by local dipoles and has recently
chaotic systems. For spatially extended systems, spatiken studied both theoretically and experimentally in pas-
coherence collapses with the emergence of spatiotempsive nonlinear and laser systems [8—12]. A general 2D
ral chaos; the system then becomes infinitely dimensionamodel description in optics can be given as
There is therefore little hope of controlling these systems
by adopting the above algorithms. First efforts toward dq/at = N(q, u) + iDV’ q, (1)
control of spatiotemporal chaos have been recently made
in a one-dimensional array of chaotic elements by usingvhereq is a set of vector variablell a nonlinear function,

a coupled feedback control approach [6—7]. The schemetime, andV? the transverse Laplacianu is the control
developed in Ref. [6] is an extension of the Ott-Grebogi-parameter of the system aidis the matrix of diffractive
Yorke (OGY) algorithm [2] for a single element in which coefficients. The control algorithm proposed in this Letter
the effect of coupling of the elements is accounted for infollows a feedback control strategy under which a feedback
the feedback. This approach cannot, however, be readignal f(x, y, ), which is derived from one of the above
ily applied to control of spatiotemporal chaos in systemsvariablesq, say ¢, is assigned to perturb this variable.
comprising continuously extended media, since they ar@his feedback is designed to underly the signature of a
intrinsically globally coupled and infinitely dimensional. targeted UPP in the spatiotemporal chaotic state, so it
Control of these systems remains an outstanding challengends to vanish when the control is achieved, the feedback
and calls for new approaches. Inthis Letter, we propose athen being synchronized with the targeted pattern. As a
algorithm for the control of spatiotemporal chaos in suchdemonstration of this control, we consider this targeted
systems based on the idea of stabilization of unstable p&JPP to be an unstable roll state; a state with periodic
riodic patterns (UPPs) embedded in spatiotemporal chaostructure in both time and space. Such periodic features
The implementation of this algorithm, by using small time-suggest an algorithm with feedback of the form

and space-dependent feedback to perturb a variable of the

systems, has been successfully demonstrated through our f(x,y,t) = ci[gi1(x,y,t — to) — q1(x,y,1)]

numerical simulations in controlling spatiotemporal chaos
in a transversely extended three-level laser. +ooflgie + x0,y,0) = qilx,y,1)]

Spatiotemporal chaos occurs when different types of + [q1(x,y + yo,. 1) — qi(x,y,. )]}, (2)
motion, excited in local regions in an extended system,
interact to destroy the spatial coherence of the systemwherec, andc, are proportionality coefficientsy is the
concurrent with the onset of temporal chaos. This pheperiod, in time, of the desired roll state in local regions, and
nomenon in continuous physical systems is described by, = 2 /k,,yo = 27 /k, are the characteristic lengths of
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the rolls in x and y directions in the transverse space,
respectively, wheré, andk, are the corresponding wave-
vector components. From these relations njéd = k)% +

k2 we havel/rd = 1/x3 + 1/y3, where ry = 27 /|K|.

The feedback signal is imposed on the system continuously
in time, controlling the time evolution of the patterns
in local regions through a time-delayed coupling and
organizing the spatial distribution in the same time through
spatial network coupling in the transverse domain. The
characteristic lengthsy and ry, of the desired UPP are
specified in Eq. (2) in such a way th#tx, y, ) tends to
vanish when the chaotic state is synchronized to this UPP.
We note that, in the limit of spatial homogeneity, the above
control algorithm reduces to that in Ref. [5].

In demonstrating this control strategy we consider a
transversely extended and coherently optically pumped
three-level laser, which has recently been extensively
investigated for pattern formations and optical turbulence
[13]. The resonant and single mode lasing wave equation
describing such a system in the presence of control
feedback is given as

IE o
3;==—UE-+gP2+taVLE-FfQJgﬁ, 3)
whereE is the slowly varying electric field amplitude of FIG. 1. Defect-mediated turbulence of E®(on increasing
the laser emissiony the cavity damping constang, the  the control parametef: (a) A = 2.48, a roll state withk, =

unsaturated gain of the laser medium, arttle diffraction 1(')7'93’_ ‘é’rf]oé 2)2149’:6‘2”22“*;[1:0%%;9'; té?t))u?e:t ig{g' d?ﬁicﬁﬂer
parameter which can be set to unity by rescaling th‘{)ara’meters of the éysfem ag’2= 5 o —=13.andb = 04

transverse coordinatesP, is the normalized density
matrix element of the polarization of the lasing transition.
This, together with other density matrix elements, is
described by the Bloch equations generalized to a threesystem. They are related y, = w,,] — wwr, Where
level system [14]. Parameters in the material equations, is the characteristic frequency correspondingkto

are A, the external pump strength, arlgl the ratio and the relationw, ~ wy > wer is found for all the

of energy relaxation ) to dipole dephasingl{) rates parameters investigated. The existence of the reference
of the medium. The stability of both homogeneousfrequency and its role in instabilities have been previously
steady-statel = E; and traveling wave solutiong =  investigated by many authors in laser systems [15—17].
Ewexdi(owt + Ky - r)] against weak inhomogeneous To control roll patterns in an optical turbulent state of
perturbations has been numerically analyzed and showthe laser system described by Eq. (3), we use the real part
to be broken through either a Hopf or static bifurcation,of the laser field as the control variable and introduce the
depending on the parameters of the system. Numericééedback, defined in Eq. (2), to perturb this variable. The
simulations have shown optical turbulence to occur inrest of the equations in the laser model description remain
the region where homogeneous solutions are unstable andichanged. Our target is a roll state, similar to that shown
undergo a defect-mediated scenario from a roll solutionin Fig. 1(a), which for the parameter set used in Fig. 1(c)
as shown in Fig. 1. The rolls observed here have periodits unstable and embedded in the turbulent state. The
structures in both real and imaginary parts of the lasecharacteristic wave number and frequency of the roll state
field and its intensity and are distinct from the travelingfor this parameter set i¢4 = 1.80 and w,, ~ wa =
wave solutions for which the intensity is uniform. Our 2.90, which are determined from linear stability analysis.
analysis shows that such a roll state has a spatial wavehe feedbackf (x, y, ) in our simulations applies to each
number k4 corresponding to the largest growth rate ofgrid point, total64 X 64, in a square in the transverse
the uniform solution against inhomogeneous perturbatiorplane of width 327 /k4. The orientation of the roll
We note, however, that contrary to the traveling wavesattern is controlled through the choice 6f and k,

the roll state possesses two independent frequencies {(or xo and yg), under the condition that the relation
time in both the real and imaginary parts of the laserk; = k2 + kf, stands. Figure 2 shows the time evolution
field, the roll frequencyw,,, and the reference frequency of the pattern, from an initial turbulent to a final roll
wret, the values of which depend on the parameters of thetate. Once the control feedback is applied, the turbulent
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correlation
=
da
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FIG. 3. Correlation function vs time in the evolution process
from turbulence to rolls. The spatial unit is the number of the
grid points. The parameters, transverse grid points, and size
are set to be the same as those in Fig. 2.

FIG. 2. Time evolution of the transverse field distribution
[Re(E)] when the feedback control is applied; (a)—(d) corre-
spond tor = 10, 40, 80, and 200. The control parameters are 0) of a turbulently distributed pattern, e.g., a sharply

tcﬁ = = Ot.92, t? ; 2.17,t X0 = 6t1ﬁ and yo =t4h.36, \_Nh'!_e 1(g)ixponential decrease of the correlation with increase of

e parameters of the system are the same as those in Fig. - ;

64 X 64 grid points in the transverse plane of width 55.8 Stancgp. Thlielconltrol TlrSt b”nﬁs coherence 50 th.e

(327 /ky) are used in the simulation. pattern in small local regions in the transverse domain,
as manifested inY(p,t = 30) by the appearance of a
periodic structure in the region of small but the pattern

emains uncorrelated at a long distance, as evidenced by

pattern reorganizes itself to line up in the directions alon4Iuctuations of the correlation function around zero for
with and perpendicular t&, 7, and#,, though without . .
larger values ofp. The increase in strength of such a

clearly preferred orientation, resulting in a lattice structure =~ . ; ; .
in the turbulent background [Fig. 2()]. The patternper'Od'C structure and its extension to the region of large

continues evolving in time, and in local regions preferredvalu.es ofp are a quantitative measure of the Increase of
spatial periodicity of the pattern in the transition from

orientations emerge from the lattice structure, giving rise[urbulence to a controlled roll state. The correlation
to localized roll structures in eithet, or 7 directions function £(p.t = 200) for the desired state shows a

[Fig. 2(b)]. Different orientations in small local regions 8eriodic feature with a spatial period equabm /&
then complete and merge through the coupling provide In the time domain the controlled laser signal, both its

by the feedback. As the winner takes over, a preferencreeal and imaginary parts, resembles the main features of a
of orientation is clearly established, as shown in Fig. 2(c) ginary parts,

which eventually synchronizes all the wave fronts in oneStable roll pattern as described earlier, exhibiting a periodic

S . - feature in local regions characterized by two frequencies.
direction [Fig. 2(d)]. The controlled periodic pattern, as _. . .
desired, indeed shows the spatial periagd— 27 /ky. Figure 4(a) shows the time evolution of the real part of the

The feedback distribution in the transverse domain aISJgsSgrrggtljduIgtlitcr)]r(;)g)cl)r;asz.go,naisnd??:ﬁg,rgf?e?éerﬁc: f(r)él lu'enc
reveals a roll structure, mimicing that of the real part of . rresp 9 L q Y-
the laser field. We note, however, that for a giverand The system is stabilized after a transition timer of 100

k, there are still two possible orientations for the eventuafrom the on_s_et of the control. The pm.e scalg pf this tem-
roll pattern formation, eithef; or #,, the dominance poral transition to the targeted periodic orbit is found to

of one or the other depending on the initial conditionbe the same as that of the spatial transition to the trans-
of the system when thepfeedbgck control is applied verse periodic pattern, indictive of a simultaneous organi-
quantifying the process of spatiotemporal organization o ation of the system N space and time. We note, however,
a roll pattern within the turbulence, we have examined th hat the te_mporal profile and_therefore frequ_enc_y content of
time evolution of the spatial correlation function of the h_e slow time scale modulation, as shown in Fig. 4(a), are
real part of the laser field. This is defined as sllgh_tly aI_tered by the control_from that of a roI_I pattern
obtained in the parameter region of stable rolls, in particu-
_ . lar, the occurrence of sharp peaks exhibited in this figure.
{(p.1) = (E(x,DE(r + pX, 0)/(E,(r, DE,(r,1)), As a result, the controlled laser intensity is modified from
(4) the perfect periodic feature of a stable roll. These effects
are attributable to the existence of a finite strength of the
where (---) is taken over all possible spatial positions. feedback signal after the system is controlled to the target
Initially, ¢(p,7) shows typical behavior (Fig. 3r =  UPP. Figure 4(b) shows the time evolution of the feedback
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3 ] transverse plane has also been used in minimizing simula-
2 (8] 2 (. tion errors induced by limited spatial resolution. The max-
cos 1 imum feedback signal as shown in Fig. 4(d) is reduced to
L. A | 0 ~2% of the real part of the Ia_lser output, which arises essen-
= 4 -3 tially from the very small difference between the desired
5 periodz, and the actually controlled period. The stabiliza-
:; [ ‘g tion of the UPP in this frequency frame is now maintained
“ W Bop. & & 00, BoG. st in a nearly noninvasive control manner. '
The generality of our control algorithm and its robust-
3 - 3 ness to the control parameters has been tested for different
2 ®)f 2 (d) ] turbulent patterns of the system. For given control pa-
1 | 1 rametersry and ry close to an (intrinsic) unstable roll in
= 0 'w{w 0 the turbulence, e.gty ~ tro1 = 27 /w1 ANdrg ~ ro1 =
2l =4 | 2 [k, control is obtained over quite an extensive range
- of the proportionality coefficient; for instancé8 < ¢ <
= I == 3.0 for ¢; = ¢, = c. For c below the critical values for
_Eu 1c;u zﬂiﬂ 30{:_39 P zc:lc: e stable rolls, the transverse wave fronts in the directions
e A of r, and rj cannot be synchronized in one direction,

giving rise to coexisting unstable roll structures in both

Fr']G- 4't Foqverslion of thle S}’Stem’ throt‘ﬁght the controcli, froMgirections in different transverse regions. Eabove the
chaos to limit cycles in a local region in the transverse domair}., .- -~
1 = /2 = 0.46. (a),(b) The evolution of R&) and (1) "eritical values, however, both wave fronts can be stabilized

for A = 2.52, while the other parameters, grid points, andin the whole transverse domain through strong feedback
transverse size are the same as those used in Fig. 2. (c),(@pupling, forming a spatially stable rhombic state.
The same time evolution foA = 2.58 in the new reference We thank R.F. MclIntyre for fruitful general dis-

frame (w,s = 0.22) and also with60 X 60 grid points in the cussions. Work supported by EPSRC (U.K.) Grants
transverse plane of width 17.30. The other parameters are t . o
same as in Fig. 2. rﬁo. GR/J73285 and No. GRK23768.

signal recorded in the same local region in the transverse
plane as the time series in Fig. 4(a), its strength being re-
duced to about 15% of RE) (peak to peak) after the con- *Electronic address: phywl@phy.hw.ac.uk
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