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Control of Patterns in Spatiotemporal Chaos in Optics
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We propose an algorithm for control of spatiotemporal chaos in partial differential systems
on the idea of stabilization of unstable periodic patterns embedded in spatiotemporal chaotic
This algorithm, using time- and space-dependent feedback, has been successfully demonstrated
our numerical analysis in controlling unstable roll patterns in a transversely extended three
laser. [S0031-9007(96)00062-2]
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Since the first suggestion of controlling chaos [1] and
particular the proposal of a control concept utilizing fee
back to stabilize an unstable periodic orbit or fixed po
embedded in the chaotic state [2], there has been pro
activity in the area of control of chaos across many d
ciplines [3]. Based on this concept of feedback contr
various other approaches have been developed where
phasis has been given to algorithms which are more re
ily implemented in practical systems, in particular, tho
utilizing occasional proportional feedback [4] and contin
ous feedback [5]. These algorithms have been succ
fully implemented in spatially restrained low-dimension
chaotic systems. For spatially extended systems, sp
coherence collapses with the emergence of spatiotem
ral chaos; the system then becomes infinitely dimensio
There is therefore little hope of controlling these syste
by adopting the above algorithms. First efforts towa
control of spatiotemporal chaos have been recently m
in a one-dimensional array of chaotic elements by us
a coupled feedback control approach [6–7]. The sche
developed in Ref. [6] is an extension of the Ott-Grebo
Yorke (OGY) algorithm [2] for a single element in whic
the effect of coupling of the elements is accounted for
the feedback. This approach cannot, however, be re
ily applied to control of spatiotemporal chaos in system
comprising continuously extended media, since they
intrinsically globally coupled and infinitely dimensiona
Control of these systems remains an outstanding challe
and calls for new approaches. In this Letter, we propose
algorithm for the control of spatiotemporal chaos in su
systems based on the idea of stabilization of unstable
riodic patterns (UPPs) embedded in spatiotemporal ch
The implementation of this algorithm, by using small tim
and space-dependent feedback to perturb a variable o
systems, has been successfully demonstrated through
numerical simulations in controlling spatiotemporal cha
in a transversely extended three-level laser.

Spatiotemporal chaos occurs when different types
motion, excited in local regions in an extended syste
interact to destroy the spatial coherence of the sys
concurrent with the onset of temporal chaos. This p
nomenon in continuous physical systems is described
0031-9007y96y76(18)y3316(4)$10.00
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partial differential equations. While the transition from co
herence to spatiotemporal chaos has yet to be character
by global quantitative laws, certain normal mode equatio
have shown that such a chaotic state in a spatiotempo
context underlies different unstable periodic patterns, e.
rolls and hexagons and in this sense it is analogous w
temporal chaos, which comprises many unstable perio
orbits embedded in the chaotic attractor. In optics, sp
tiotemporal chaos (commonly referred to as optical turb
lence when the chaos is fully developed in both space a
time) is attributed to the interaction, through diffraction
of optical fields excited by local dipoles and has recent
been studied both theoretically and experimentally in pa
sive nonlinear and laser systems [8–12]. A general 2
model description in optics can be given as

≠qy≠t ­ Nsq, md 1 iD=2
'q , (1)

whereq is a set of vector variables,N a nonlinear function,
t time, and=

2
' the transverse Laplacian.m is the control

parameter of the system andD is the matrix of diffractive
coefficients. The control algorithm proposed in this Lett
follows a feedback control strategy under which a feedba
signal fsx, y, td, which is derived from one of the above
variablesq, say q1, is assigned to perturb this variable
This feedback is designed to underly the signature o
targeted UPP in the spatiotemporal chaotic state, so
tends to vanish when the control is achieved, the feedba
then being synchronized with the targeted pattern. As
demonstration of this control, we consider this target
UPP to be an unstable roll state; a state with period
structure in both time and space. Such periodic featu
suggest an algorithm with feedback of the form

fsx, y, td ­ c1fq1sx, y, t 2 t0d 2 q1sx, y, tdg

1 c2hfq1sx 1 x0, y, td 2 q1sx, y, tdg

1 fq1sx, y 1 y0, td 2 q1sx, y, tdgj , (2)

wherec1 andc2 are proportionality coefficients,t0 is the
period, in time, of the desired roll state in local regions, an
x0 ­ 2pykx , y0 ­ 2pyky are the characteristic lengths o
© 1996 The American Physical Society
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the rolls in x and y directions in the transverse space
respectively, wherekx andky are the corresponding wave
vector components. From these relations andjkj2 ­ k2

x 1

k2
y we have1yr2

0 ­ 1yx2
0 1 1yy2

0 , where r0 ­ 2pyjkj.
The feedback signal is imposed on the system continuou
in time, controlling the time evolution of the pattern
in local regions through a time-delayed coupling an
organizing the spatial distribution in the same time throu
spatial network coupling in the transverse domain. T
characteristic lengths,t0 and r0, of the desired UPP are
specified in Eq. (2) in such a way thatfsx, y, td tends to
vanish when the chaotic state is synchronized to this UP
We note that, in the limit of spatial homogeneity, the abo
control algorithm reduces to that in Ref. [5].

In demonstrating this control strategy we consider
transversely extended and coherently optically pump
three-level laser, which has recently been extensiv
investigated for pattern formations and optical turbulen
[13]. The resonant and single mode lasing wave equat
describing such a system in the presence of cont
feedback is given as

≠E
≠t

­ 2sE 1 gP2 1 ia=2
'E 1 fsx, y, td , (3)

whereE is the slowly varying electric field amplitude o
the laser emission,s the cavity damping constant,g the
unsaturated gain of the laser medium, anda the diffraction
parameter which can be set to unity by rescaling t
transverse coordinates.P2 is the normalized density
matrix element of the polarization of the lasing transitio
This, together with other density matrix elements,
described by the Bloch equations generalized to a thr
level system [14]. Parameters in the material equatio
are A, the external pump strength, andb, the ratio
of energy relaxation (g) to dipole dephasing (G) rates
of the medium. The stability of both homogeneou
steady-stateE ­ Es and traveling wave solutionsE ­
Etw expfisvtw t 1 ktw ? rdg against weak inhomogeneou
perturbations has been numerically analyzed and sho
to be broken through either a Hopf or static bifurcatio
depending on the parameters of the system. Numer
simulations have shown optical turbulence to occur
the region where homogeneous solutions are unstable
undergo a defect-mediated scenario from a roll solutio
as shown in Fig. 1. The rolls observed here have perio
structures in both real and imaginary parts of the las
field and its intensity and are distinct from the travelin
wave solutions for which the intensity is uniform. Ou
analysis shows that such a roll state has a spatial w
number kA corresponding to the largest growth rate o
the uniform solution against inhomogeneous perturbatio
We note, however, that contrary to the traveling wav
the roll state possesses two independent frequencie
time in both the real and imaginary parts of the las
field, the roll frequencyvrol, and the reference frequenc
vref, the values of which depend on the parameters of
,
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FIG. 1. Defect-mediated turbulence of Re(E) on increasing
the control parameterA: (a) A ­ 2.48, a roll state withkA ­
1.79, vrol ­ 2.9, and vref ­ 0.079; (b) A ­ 2.514, defected
rolls; and (c)A ­ 2.52, an optical turbulent state. The other
parameters of the system areg ­ 52, s ­ 1.3, andb ­ 0.4.

system. They are related byvA ­ vrol 2 vref, where
vA is the characteristic frequency corresponding tokA

and the relationvA , vrol ¿ vref is found for all the
parameters investigated. The existence of the referen
frequency and its role in instabilities have been previous
investigated by many authors in laser systems [15–17].

To control roll patterns in an optical turbulent state o
the laser system described by Eq. (3), we use the real p
of the laser field as the control variable and introduce th
feedback, defined in Eq. (2), to perturb this variable. Th
rest of the equations in the laser model description rema
unchanged. Our target is a roll state, similar to that show
in Fig. 1(a), which for the parameter set used in Fig. 1(c
is unstable and embedded in the turbulent state. T
characteristic wave number and frequency of the roll sta
for this parameter set iskA ­ 1.80 and vrol , vA ­
2.90, which are determined from linear stability analysis
The feedbackfsx, y, td in our simulations applies to each
grid point, total 64 3 64, in a square in the transverse
plane of width 32pykA. The orientation of the roll
pattern is controlled through the choice ofkx and ky

(or x0 and y0), under the condition that the relation
k2

A ­ k2
x 1 k2

y stands. Figure 2 shows the time evolution
of the pattern, from an initial turbulent to a final roll
state. Once the control feedback is applied, the turbule
3317
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FIG. 2. Time evolution of the transverse field distributio
[Re(E)] when the feedback control is applied; (a)–(d) corr
spond tot ­ 10, 40, 80, and 200. The control parameters a
c1 ­ c2 ­ 0.92, t0 ­ 2.17, x0 ­ 6.11, and y0 ­ 4.36, while
the parameters of the system are the same as those in Fig.
64 3 64 grid points in the transverse plane of width 55
(32pykA) are used in the simulation.

pattern reorganizes itself to line up in the directions alo
with and perpendicular tok, r̂k and r̂', though without
clearly preferred orientation, resulting in a lattice structu
in the turbulent background [Fig. 2(a)]. The patte
continues evolving in time, and in local regions preferr
orientations emerge from the lattice structure, giving r
to localized roll structures in either̂r' or r̂k directions
[Fig. 2(b)]. Different orientations in small local region
then complete and merge through the coupling provid
by the feedback. As the winner takes over, a prefere
of orientation is clearly established, as shown in Fig. 2(
which eventually synchronizes all the wave fronts in o
direction [Fig. 2(d)]. The controlled periodic pattern, a
desired, indeed shows the spatial periodr0 ­ 2pykA.
The feedback distribution in the transverse domain a
reveals a roll structure, mimicing that of the real part
the laser field. We note, however, that for a givenkx and
ky there are still two possible orientations for the eventu
roll pattern formation, either̂rk or r̂', the dominance
of one or the other depending on the initial conditio
of the system when the feedback control is applied.
quantifying the process of spatiotemporal organization
a roll pattern within the turbulence, we have examined
time evolution of the spatial correlation function of th
real part of the laser field. This is defined as

z sr, td ­ kEr sr, tdEr sr 1 rx̂, tdlykEr sr, tdEr sr, tdl ,

(4)

where k· · ·l is taken over all possible spatial position
Initially, z sr, td shows typical behavior (Fig. 3,t ­
3318
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FIG. 3. Correlation function vs time in the evolution proces
from turbulence to rolls. The spatial unit is the number of th
grid points. The parameters, transverse grid points, and si
are set to be the same as those in Fig. 2.

0) of a turbulently distributed pattern, e.g., a sharpl
exponential decrease of the correlation with increase
distancer. The control first brings coherence to the
pattern in small local regions in the transverse domai
as manifested inz sr, t ­ 30d by the appearance of a
periodic structure in the region of smallr, but the pattern
remains uncorrelated at a long distance, as evidenced
fluctuations of the correlation function around zero fo
larger values ofr. The increase in strength of such a
periodic structure and its extension to the region of larg
values ofr are a quantitative measure of the increase o
spatial periodicity of the pattern in the transition from
turbulence to a controlled roll state. The correlatio
function z sr, t ­ 200d for the desired state shows a
periodic feature with a spatial period equal to2pykx.

In the time domain the controlled laser signal, both it
real and imaginary parts, resembles the main features o
stable roll pattern as described earlier, exhibiting a period
feature in local regions characterized by two frequencie
Figure 4(a) shows the time evolution of the real part of th
laser field withvrol ­ 2.9, as desired, andvref ­ 0.11,
as a modulation corresponding to the reference frequen
The system is stabilized after a transition time oft , 100
from the onset of the control. The time scale of this tem
poral transition to the targeted periodic orbit is found to
be the same as that of the spatial transition to the tran
verse periodic pattern, indictive of a simultaneous organ
zation of the system in space and time. We note, howev
that the temporal profile and therefore frequency content
the slow time scale modulation, as shown in Fig. 4(a), a
slightly altered by the control from that of a roll pattern
obtained in the parameter region of stable rolls, in particu
lar, the occurrence of sharp peaks exhibited in this figur
As a result, the controlled laser intensity is modified from
the perfect periodic feature of a stable roll. These effec
are attributable to the existence of a finite strength of th
feedback signal after the system is controlled to the targ
UPP. Figure 4(b) shows the time evolution of the feedbac
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FIG. 4. Conversion of the system, through the control, fro
chaos to limit cycles in a local region in the transverse dom
c1 ­ c2y2 ­ 0.46. (a),(b) The evolution of Re(E) and fstd
for A ­ 2.52, while the other parameters, grid points, an
transverse size are the same as those used in Fig. 2. (c
The same time evolution forA ­ 2.58 in the new reference
frame svref ­ 0.22d and also with60 3 60 grid points in the
transverse plane of width 17.30. The other parameters are
same as in Fig. 2.

signal recorded in the same local region in the transve
plane as the time series in Fig. 4(a), its strength being
duced to about 15% of Re(E) (peak to peak) after the con
trol has been established. We note that a similar con
using laser intensity as an experimentally more access
control variable has also been demonstrated, which ma
readily realized in laser and optical experiments using
array detector interfaced with a computer for the feedba
date processing. Moreover, we find that after the UPP
stabilized, the feedback strength from the spatial coupli
which is induced mainly by the limited spatial resolutio
in the numerical simulation, is weak, the dominant co
tribution arising from the time-delayed coupling due
the presence of the reference frequency. Earlier inve
gations of temporal chaos in detuned laser systems h
shown that by changing the frequency frame, e.g., by tra
formingE ! E expsivreftd in the equations of motion, the
reference frequency can be removed [17]. The con
using Re(E) as the control variable in this new referenc
frame gives rise to sinusoidal-like behavior in the real (a
imaginary) part of the laser field as well as the laser inte
sity. The feedback is consequently reduced significan
through a perfect synchronization of the feedback with
UPP. Figure 4(c) shows control of the system in such
frame where a more appropriate width and grid size in
m
in
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transverse plane has also been used in minimizing simu
tion errors induced by limited spatial resolution. The ma
imum feedback signal as shown in Fig. 4(d) is reduced
,2% of the real part of the laser output, which arises esse
tially from the very small difference between the desire
periodt0 and the actually controlled period. The stabiliza
tion of the UPP in this frequency frame is now maintaine
in a nearly noninvasive control manner.

The generality of our control algorithm and its robus
ness to the control parameters has been tested for diffe
turbulent patterns of the system. For given control p
rameterst0 and r0 close to an (intrinsic) unstable roll in
the turbulence, e.g.,t0 , trol ­ 2pyvrol andr0 , rrol ­
2pykA, control is obtained over quite an extensive rang
of the proportionality coefficient; for instance,0.8 , c ,

3.0 for c1 ­ c2 ­ c. For c below the critical values for
stable rolls, the transverse wave fronts in the directio
of r' and rk cannot be synchronized in one direction
giving rise to coexisting unstable roll structures in bot
directions in different transverse regions. Forc above the
critical values, however, both wave fronts can be stabiliz
in the whole transverse domain through strong feedba
coupling, forming a spatially stable rhombic state.
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