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Nonlinear Control of Dynamical Systems from Time Series
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Feedback control of multidimensional, nonlinear single-input single-output systems is formulated in
terms of an invariant hypersurface in the delayed state space of a system observable and a control
parameter. The surface is created directly from the response of the system to random perturbations,
providing a model-independent nonlinear control algorithm. The algorithm can be used to stabilize
unstable states or to drive a system to any particular objective state in a minimum number of
steps. [S0031-9007(96)00095-6]

PACS numbers: 05.45.+b, 82.40.Bj

The OGY (Ott-Grebogi-Yorke) [1] method for stabi- finite number of points, linear interpolation between closest
lizing unstable periodic orbits initiated a flurry of the- neighbors can be used to construct the remainder of the
oretical developments and experimental applications o$urface.
feedback control to nonlinear dynamical systems [2—11]. Figure 1 shows the control surface for (1) generated
Recent advances in control of high-dimensional system&om a series of responses to sequential random perturba-
offer new possibilities for manipulating complex tempo- tions. The solid (open) circle corresponds to a transition
ral and spatiotemporal behavior [12—-14]. All of thesefrom a stable (unstable) state to the coexisting unstable
methods, however, are based on linearized models and tljgtable) state in the region of bistability. Figure 2 shows
feedback control is therefore restricted to small perturbaa time series with transitions between the stable and unsta-
tions in the linear regime. Here we present a new, inteble states. A similar procedure can be used for targeting
grated approach for nonlinear feedback control, where thand stabilizing fixed points in 1D return maps.
response of the system to random perturbations is used di- The control of multidimensional systems is more chal-
rectly to construct the control law as a multidimensionallenging since the initial and final states of (2) are no
surface in the time-delayed space. longer defined by the readings before and after the sam-

We demonstrate the approach with the Gray-Scotpling interval. To derive an analogue of the control
model for cubic autocatalysis in a flow reactor [15]. Thesurface for such systems we first consider a linear two-

governing dimensionless equations have the form dimensional model and then generalize to include extra
da /ot = (1 — a)/Tws — aB?, ) dimensions and nonlinear terms. The time discretized be-
1 havior of a linear two-variable system around a station-
— _ 2 _ Yy
8'8/8{ = (Bo = B)/Tres + @B K2 ary state can be decomposed into the motion along the

With By = 15, k2 = 0, the model is one-dimensional
and displays one unstable and two stable stationary states
over the range of reciprocal residence tinhgT,., =
0.23-0.35. Transitions from one stable state to the other
can be induced by applying appropriate perturbations
to 1/T.s. Perturbations can also move the system to
the unstable stationary state, but it will relax back to
one of the stable states unless some form of feedback
stabilization is applied.

We now describe how to control transitions between the
stable and unstable states using a nonlinear control sur- =22
face constructed from time series. For a one-dimensional  -0.04
system, the control surface is constructed by observing  -o.08-

0,02~
o 0-

the transitions from an initial state (¢) to a final state o

xp(t + 7) that result from the application of perturbation

p during the sampling interval. The collected triplets of i

values §;,xr, p) lie on a surface in a three-dimensional FIG. 1. Control surface for time-discretized & 5.0) one-
space. This nonlinear surface, dimensional bistable system (1) btT,.; = 0.3. The perturba-

2) tion p, = 1/T; — 0.3 and the observable, = «(s;). Solid

_r = Clxy, R ; i
defi th ¢ pt; t'F th ()tcl Xr) th t f circle corresponds to transition from a stable sfate= 0.41)
efines the perturbation that moves the Ssystem Irom af e ynstable staterr = 0.76); open circle shows perturba-

initial statex; to a desired final statey in one iteration.  tion required to move the system from the unstable to the stable
Even though the identification stage can produce only atate (in one iteration).
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1.0 - ; ; - tem define the state as a linear combinatiomadelayed
@) observations angh — 1 perturbations:
08 | 1
(&ismis-- )
X 0.6
= Lp(Xis Xi—1s ..o Ximm+15 Pi> Di—1s- > Pi-m+2)»  (8)
0.4

whereLp, is a linear function.

‘ ‘ , . Once the system state is known, the control perturba-
166 168 1.70 172 174 176 tions can be applied to direct the system to a desired ob-
jective state. We assume that only one control parameter

0.0 is available to alter the system dynamics. From the second
(b) iteration of (3),
0.04 | 1
0 002 | §iva = )%'fi + (1 = Aag(Agpiv1 + pisa), ©
Niv2 = Ay + (1 = Ap)ay(Aypiv1 + piv2),
0.00
! ' ! we see that two perturbationg;;; and p;+,, can move
-0.02 ‘ ‘ : ‘ the system from any initial statéf;, n;) to any final
166 168 1.70 172 174 1.76 state(&; 12, ;+2) provided thatA; # A,, Ag, A, # 1 and

1051 ag, ay #0 [13]. The control perturbations are a linear
FIG. 2. (a) Time series of the one-dimensional bistable Systengombination of the initial and final states. - Even though
L B sequence of two perturbations must be applied before
égcisalé;?nm?ty)egggﬂgjdtggriﬁgiigait.e to the unstable state ar{ﬂe desired state is reached, it is necessary to determine
’ only the first perturbation explicitly, since the second is
calculated using the same expression at the next iteration
with the updated readings. For the lineardimensional
Eiv1 = A& + (1 — Agagpiva, 3) system, the control algorithm is written as
Mier = Agmi (1= Ay)aypic piet = Le(€min. . Ereme mivme-- ). (10)
whereA¢, A, are the eigenvalues along the corresponding o . ' .
eigenvectors, andv; = d¢s/dp and a, = ans/dp are WhereLc is a linear function. Sgch a function will always
the shifts of the stationary state arising from the appliecEXist provided that the system is controllable and observ-
perturbation. The perturbation is constant during theable, i.e.A; # Ay for j # k, A; # 1 ande;, t; # O for all j.
iteration, and wherp = 0 the stationary state is at the  The sequence o readingsx and m — 1 perturba-
origin. tions p can be utilized in (8) to realize the final state in
We assume the availability of only one observable(10). It will not be apparent to the observer, however,

on which the system dynamics is projected with somdhat the system has reached that state until rtite it-
coefficientsr; andz,: eration. It is therefore convenient to define the objec-

tive state in a form independent of the control perturba-
Xi = 1g&i Tty @) tions Pitls-.., pm. With this in mind, we consider two
If the system is initially at the stat&;, »n;, the next separate control problems: stabilizing unstable states and
observations ok will then be defined by Egs. (3) and (4), attaining a prescribed constant output. In each, the objec-
with x;11 being a linear combination af;, »;, andp;+1, tive state is realized in a minimum number of steps.
Xiv1 = Aete€i + Agtymi + Apii1. (5) _ With no e_xternal perturbations, statio_nary state behavior
] i is characterized by the absence of motion, kg.; — x; =

andx;+, which also includeg; +», Oandp; =0fori =1,...,m. The difference between

Xi+2 = /\étfg,- + /\%71‘7, mi + Bpi+1 + Api+2, (6)  readings for consecutive steps in the two-variable system
can be written by subtracting (6), (5) and (5), (4):

eigenvectorg and 7:

where
A= (1= Adagt; + (1 — Ap)ayt,, @) Xiv1 —xi =g = Dgé; + (A — Dtym; + Apiv,
B == A)reagty + (1 = Ay)dyanty. Xt = Xit1 = Ae(Ag = Dtgdi + Ay(Ay = Dymi - (11)
It follows from (4) and (5) that the state of the system (i.e., + (B—A)pis1 +Apita.

the coordinates along the system manifolds) at iteration

or i + 1 can be reconstructed from two time-delayed readit follows that the system state can be determined as a
ings of the observable and the perturbation applied to theolution of (11) from the two differences in readings and
system. Analogous arguments for erdimensional sys- two perturbations. For am-dimensional system, the state
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can be determined fromn consecutive differences amd  18]. It may be desirable, however, for the system to reach
applied perturbations: some prescribed objective state rapidly. Thus we now
consider how the system can be movedniperturbations
from any point to a desired point where the observable
= Ls[(Xi+m+1 = Xi+m), ..., (Xi+2m — Xi+2m-1);  has a constant valug. It is not necessary to know
the exact value of the bifurcation parameter at this point
if the final state in (10) is defined by, — p;=0
Equation (12) has a convenient form for defining aandx; =g for i=1,...,m andg corresponds to a state
stationary state or fixed point since no other informationexisting in the bifurcation diagram. It is possible to
is required for the corresponding position in phase spacereconstruct the state of the two-dimensional system, for
Combining (8) and (12) with (10) yields a general example, from three consecutive observationsxand
expression for the stabilization of unstable states iman one difference inp using (4), (5), and (6). In general,
dimensional system: m-dimensional systems require + 1 readings ofx and
m — 1 perturbation differences for the reconstruction:

(§i+ms Ni+ms - - )

Pi+m+1,---,Pi+2m]- (12)

Pit1=S[XisXi— 1y s Ximm 415 Pis Diels- s Pi-m+25

(xi+m+1 - xi+m), ceey (xi+2m - xi+2m—1); (§i+m’ Ni+ms - - ) = LG['xH'm’ oo Xit2ms

,Pivaml, (13) (Pi+m+2 = Pitm+1)s- > (Pit2m — Pi+am—1)].  (14)

Pi+m+1s---

whereSis the system invariant function. In the linear re- 1€ appropriate control surface for driving the system
gion, S can be identified from the time series of the ran-OUtput to some objective value is then constructed by
domly perturbed system by solving the associated set d{ombining (8), (10), and (14):
linear equations with #h unknown coefficients. We as- , _ o , C , .
sume that Eq. (13) can be expanded into the nonlinear ré- ' Gl Xite oo i3 P Pita - Pimm
gion with the system state determined by the coordinates Xitms - > Xi+2m3
on the curviline_ar sta}ble and unstable manifolds replacing (Pismss — Pisme)s- s (Pisam — Pizam—1)]. (15)
the corresponding eigenvectors. Nonlinear terms can be
incorporated through multivariable Fourier series expandheG function can be identified from the system response
sion or by creating a nonlinear surface imdimensional in a fashion similar to thé function identification. The
space using linear interpolation between nearest neighboreontrol perturbation is returned by ti{e function when
Neural networks that are suited for fitting nonlinear func-the second set of terms [middle line of (15)] yields
tions can also be used to learn tRéunction on the basis Xi+m.---.Xi+2n = g and the perturbation differences are
of available data sets. Once constructed,Slienction is ~ set to zero. The effective system dimensioris usually
a control invariant for a particular system that can be use@ot known in advance. Following methods developed for
to target unstable states from anywhere in phase space piiRear control [13], different values ah can be used for
vided the perturbations do not exceed limits imposed by thereating the control surface and the fitting error is then
system dynamics and that the function remains single valkevaluated. The value oh that yields the minimum error
ued. The convergence of the data points to a single-valugd selected for control.
function provides a criterion for system controllability in ~ We now demonstrate stationary state stabilization and
the nonlinear sense. In some cases, however, the applargeting objective states with the two-variable Gray-Scott
cation of theS function is ambiguous; for example, three model, where the parametes = % The model exhibits
different steady states are presentfor= 0 in the bistable a Hopf bifurcation afi /T,es = 0.0049. Changes in /Ty
region. Additional restrictions, such as limiting the rangefrom 0.0049 to 0.00508 and back again move the system
of the bifurcation parameter to single-valued regions caifrom one value of the stationary state to another, as
be imposed, or, alternatively, one can use G&nction shown in Fig. 3. The oscillatory transients exhibited by
described below to target a particular state. the autonomous system arise from the slowing down in
The process of stabilization is carried out as fol-the vicinity of the Hopf bifurcation. The solid line shows
lows: The m delayed readings andn — 1 delayed the tracking obtained by use of tifunction. The linear
perturbations that define the current state are substitutedersion of the algorithm works well in this region since
into the first set of terms in th& function [upper line of the variations are small. As shown in Fig. 3, only two
(13)]. The desired behavior yields zeros for the secondterations are necessary to move the system between the
set of terms inS. With these substitutions, tf@function  two stationary state values.
returns the first control perturbation. The second control The autonomous Gray-Scott system displays nonlinear
perturbation is returned on the next iteration, and so orrelaxation oscillations with /T,.; = 0.0037. The seven-
After completion of them-perturbation cycle, the system dimensional nonlinea® andG surfaces were obtained for
will reside very close to the objective state. these conditions by applying 1000 random perturbations
Unstable periodic orbits or stationary states can beo the system parametédyT.,. Each surface was con-
tracked as a bifurcation parameter is slowly varied [16-structed using linear interpolation from 8 neighboring data
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0.21 . ‘ , , iterations are required to move the system between these
020 | @ . values of the unstable state.
AL The algorithms proposed here can readily be extended to
X 0.19 JY\V ﬂ MM | include multiple observation and control channels by using
018 | WWV a vector form of théSor G functions. Because the control

laws are constructed directly from the time series, they are
0.17 : : : : robust and convenient to implement in experimental set-
5 151'12 114 1.16 118 120 122 tings. The number of unknown parameters for the control
) surface identification is generally higher than in the case
®) of linear system identification and may therefore require

- 5.05 larger data sets. The learning stage can be significantly

~ decreased, however, by refining the control surface adap-

"’g 4.95 tively in the process of control. Because the control prob-
. = = lem is formulated in terms of an invariant function, many

12 114 116 118 1.20 122 well-developed techniques for prediction from nonlinear
107t time series [19] can be used with the control algorithm.
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