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Feedback control of multidimensional, nonlinear single-input single-output systems is formulat
terms of an invariant hypersurface in the delayed state space of a system observable and a
parameter. The surface is created directly from the response of the system to random perturb
providing a model-independent nonlinear control algorithm. The algorithm can be used to sta
unstable states or to drive a system to any particular objective state in a minimum numb
steps. [S0031-9007(96)00095-6]
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The OGY (Ott-Grebogi-Yorke) [1] method for stab
lizing unstable periodic orbits initiated a flurry of the
oretical developments and experimental applications
feedback control to nonlinear dynamical systems [2–1
Recent advances in control of high-dimensional syste
offer new possibilities for manipulating complex temp
ral and spatiotemporal behavior [12–14]. All of the
methods, however, are based on linearized models and
feedback control is therefore restricted to small pertur
tions in the linear regime. Here we present a new, in
grated approach for nonlinear feedback control, where
response of the system to random perturbations is use
rectly to construct the control law as a multidimension
surface in the time-delayed space.

We demonstrate the approach with the Gray-Sc
model for cubic autocatalysis in a flow reactor [15]. T
governing dimensionless equations have the form

≠ay≠t ­ s1 2 adyTres 2 ab2,

≠by≠t ­ sb0 2 bdyTres 1 ab2 2 k2b.
(1)

With b0 ­
1
15 , k2 ­ 0, the model is one-dimensiona

and displays one unstable and two stable stationary s
over the range of reciprocal residence time1yTres ­
0.23 0.35. Transitions from one stable state to the oth
can be induced by applying appropriate perturbatio
to 1yTres. Perturbations can also move the system
the unstable stationary state, but it will relax back
one of the stable states unless some form of feedb
stabilization is applied.

We now describe how to control transitions between
stable and unstable states using a nonlinear control
face constructed from time series. For a one-dimensio
system, the control surface is constructed by observ
the transitions from an initial statexI std to a final state
xFst 1 td that result from the application of perturbatio
p during the sampling intervalt. The collected triplets of
values (xI , xF , p) lie on a surface in a three-dimension
space. This nonlinear surface,

pI!F ­ CsxI , xFd , (2)
defines the perturbation that moves the system from
initial statexI to a desired final statexF in one iteration.
Even though the identification stage can produce onl
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finite number of points, linear interpolation between close
neighbors can be used to construct the remainder of
surface.

Figure 1 shows the control surface for (1) generat
from a series of responses to sequential random pertu
tions. The solid (open) circle corresponds to a transiti
from a stable (unstable) state to the coexisting unsta
(stable) state in the region of bistability. Figure 2 show
a time series with transitions between the stable and un
ble states. A similar procedure can be used for target
and stabilizing fixed points in 1D return maps.

The control of multidimensional systems is more cha
lenging since the initial and final states of (2) are n
longer defined by the readings before and after the sa
pling interval. To derive an analogue of the contro
surface for such systems we first consider a linear tw
dimensional model and then generalize to include ex
dimensions and nonlinear terms. The time discretized
havior of a linear two-variable system around a statio
ary state can be decomposed into the motion along

FIG. 1. Control surface for time-discretized (t ­ 5.0) one-
dimensional bistable system (1) at1yTres ­ 0.3. The perturba-
tion pi ­ 1yTres 2 0.3 and the observablexi ­ astid. Solid
circle corresponds to transition from a stable statesxI ­ 0.41d
to the unstable statesxF ­ 0.76d; open circle shows perturba-
tion required to move the system from the unstable to the sta
state (in one iteration).
© 1996 The American Physical Society
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FIG. 2. (a) Time series of the one-dimensional bistable syst
(1) as it is moved from the stable state to the unstable state
back again; (b) applied perturbations.

eigenvectorsj andh:

ji11 ­ ljji 1 s1 2 ljdajpi11 ,

hi11 ­ lhhi 1 s1 2 lhdahpi11 ,
(3)

wherelj, lh are the eigenvalues along the correspondi
eigenvectors, andaj ­ ≠jSy≠p and ah ­ ≠hSy≠p are
the shifts of the stationary state arising from the applie
perturbation. The perturbation is constant during th
iteration, and whenp ­ 0 the stationary state is at the
origin.

We assume the availability of only one observab
on which the system dynamics is projected with som
coefficientstj andth :

xi ­ tjji 1 thhi . (4)

If the system is initially at the stateji, hi, the next
observations ofx will then be defined by Eqs. (3) and (4)
with xi11 being a linear combination ofji, hi, andpi11,

xi11 ­ ljtjji 1 lhthhi 1 Api11 , (5)

andxi12, which also includespi12,

xi12 ­ l2
jtjji 1 l2

hthhi 1 Bpi11 1 Api12 , (6)

where

A ­ s1 2 ljdajtj 1 s1 2 lhdahth ,

B ­ s1 2 ljdljajtj 1 s1 2 lhdlhahth .
(7)

It follows from (4) and (5) that the state of the system (i.e
the coordinates along the system manifolds) at iteratioi
or i 1 1 can be reconstructed from two time-delayed rea
ings of the observable and the perturbation applied to t
system. Analogous arguments for anm-dimensional sys-
m
nd
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tem define the state as a linear combination ofm delayed
observations andm 2 1 perturbations:

sji , hi , . . .d

­ LDsxi , xi2l , . . . , xi2m11; pi, pi21, . . . , pi2m12d , (8)

whereLD is a linear function.
Once the system state is known, the control perturb

tions can be applied to direct the system to a desired
jective state. We assume that only one control parame
is available to alter the system dynamics. From the seco
iteration of (3),

ji12 ­ l2
jji 1 s1 2 ljdajsljpi11 1 pi12d ,

hi12 ­ l2
hhi 1 s1 2 lhdahslhpi11 1 pi12d ,

(9)

we see that two perturbations,pi11 and pi12, can move
the system from any initial statesji , hid to any final
statesji12, hi12d provided thatlj fi lh, lj , lh fi 1 and
aj , ah fi 0 [13]. The control perturbations are a linea
combination of the initial and final states. Even thoug
a sequence of two perturbations must be applied bef
the desired state is reached, it is necessary to determ
only the first perturbation explicitly, since the second
calculated using the same expression at the next itera
with the updated readings. For the linearm-dimensional
system, the control algorithm is written as

pi11 ­ LCssssji , hi , . . .d, sji1m, hi1m, . . .dddd , (10)

whereLC is a linear function. Such a function will always
exist provided that the system is controllable and obse
able, i.e.,lj fi lk for j fi k, lj fi 1 andaj , tj fi 0 for all j.

The sequence ofm readingsx and m 2 1 perturba-
tions p can be utilized in (8) to realize the final state i
(10). It will not be apparent to the observer, howeve
that the system has reached that state until themth it-
eration. It is therefore convenient to define the obje
tive state in a form independent of the control perturb
tions pi11, . . . , pm. With this in mind, we consider two
separate control problems: stabilizing unstable states
attaining a prescribed constant output. In each, the obj
tive state is realized in a minimum number of steps.

With no external perturbations, stationary state behav
is characterized by the absence of motion, i.e.,xi11 2 xi ­
0 and pi ­ 0 for i ­ 1, . . . , m. The difference between
readings for consecutive steps in the two-variable syst
can be written by subtracting (6), (5) and (5), (4):

xi11 2 xi ­ slj 2 1dtjji 1 slh 2 1dthhi 1 Api11 ,

xi12 2 xi11 ­ ljslj 2 1dtjji 1 lhslh 2 1dthhi (11)

1 sB 2 Adpi11 1 Api12 .

It follows that the system state can be determined a
solution of (11) from the two differences in readings an
two perturbations. For anm-dimensional system, the stat
3313
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can be determined fromm consecutive differences andm
applied perturbations:

sji1m, hi1m, . . .d

­ LSfsxi1m11 2 xi1md, . . . , sxi12m 2 xi12m21d;

pi1m11, . . . , pi12mg . (12)

Equation (12) has a convenient form for defining
stationary state or fixed point since no other informatio
is required for the corresponding position in phase spac

Combining (8) and (12) with (10) yields a genera
expression for the stabilization of unstable states in anm-
dimensional system:

pi11 ­ Sfxi , xi21, . . . , xi2m11; pi , pi21, . . . , pi2m12;

sxi1m11 2 xi1md, . . . , sxi12m 2 xi12m21d;

pi1m11, . . . , pi12mg , (13)

whereS is the system invariant function. In the linear re
gion, S can be identified from the time series of the ra
domly perturbed system by solving the associated set
linear equations with 4m unknown coefficients. We as-
sume that Eq. (13) can be expanded into the nonlinear
gion with the system state determined by the coordina
on the curvilinear stable and unstable manifolds replac
the corresponding eigenvectors. Nonlinear terms can
incorporated through multivariable Fourier series expa
sion or by creating a nonlinear surface in 4m-dimensional
space using linear interpolation between nearest neighb
Neural networks that are suited for fitting nonlinear fun
tions can also be used to learn theS function on the basis
of available data sets. Once constructed, theS function is
a control invariant for a particular system that can be us
to target unstable states from anywhere in phase space
vided the perturbations do not exceed limits imposed by
system dynamics and that the function remains single v
ued. The convergence of the data points to a single-valu
function provides a criterion for system controllability in
the nonlinear sense. In some cases, however, the ap
cation of theS function is ambiguous; for example, thre
different steady states are present forp ­ 0 in the bistable
region. Additional restrictions, such as limiting the rang
of the bifurcation parameter to single-valued regions c
be imposed, or, alternatively, one can use theG function
described below to target a particular state.

The process of stabilization is carried out as fo
lows: The m delayed readings andm 2 1 delayed
perturbations that define the current state are substitu
into the first set of terms in theS function [upper line of
(13)]. The desired behavior yields zeros for the seco
set of terms inS. With these substitutions, theS function
returns the first control perturbation. The second cont
perturbation is returned on the next iteration, and so o
After completion of them-perturbation cycle, the system
will reside very close to the objective state.

Unstable periodic orbits or stationary states can
tracked as a bifurcation parameter is slowly varied [16
3314
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18]. It may be desirable, however, for the system to rea
some prescribed objective state rapidly. Thus we no
consider how the system can be moved inm perturbations
from any point to a desired point where the observab
has a constant valueg. It is not necessary to know
the exact value of the bifurcation parameter at this po
if the final state in (10) is defined bypi11 2 pi ­ 0
and xi ­ g for i ­ 1, . . . , m and g corresponds to a state
existing in the bifurcation diagram. It is possible t
reconstruct the state of the two-dimensional system,
example, from three consecutive observations ofx and
one difference inp using (4), (5), and (6). In general,
m-dimensional systems requirem 1 1 readings ofx and
m 2 1 perturbation differences for the reconstruction:

sji1m, hi1m, . . .d ­ LGfxi1m, . . . , xi12m;

s pi1m12 2 pi1m11d, . . . , s pi12m 2 pi12m21dg . (14)

The appropriate control surfaceG for driving the system
output to some objective value is then constructed
combining (8), (10), and (14):

pi11 ­ Gfxi , xi21, . . . , xi2m11; pi, pi21, . . . , pi2m12;

xi1m, . . . , xi12m;

s pi1m12 2 pi1m11d, . . . , s pi12m 2 pi12m21dg . (15)

TheG function can be identified from the system respon
in a fashion similar to theS function identification. The
control perturbation is returned by theG function when
the second set of terms [middle line of (15)] yield
xi1m, . . . , xi12m ­ g and the perturbation differences ar
set to zero. The effective system dimensionm is usually
not known in advance. Following methods developed f
linear control [13], different values ofm can be used for
creating the control surface and the fitting error is the
evaluated. The value ofm that yields the minimum error
is selected for control.

We now demonstrate stationary state stabilization a
targeting objective states with the two-variable Gray-Sco
model, where the parameterk2 ­

1
40 . The model exhibits

a Hopf bifurcation at1yTres ­ 0.0049. Changes in1yTres
from 0.0049 to 0.00508 and back again move the syst
from one value of the stationary state to another,
shown in Fig. 3. The oscillatory transients exhibited b
the autonomous system arise from the slowing down
the vicinity of the Hopf bifurcation. The solid line shows
the tracking obtained by use of theG function. The linear
version of the algorithm works well in this region sinc
the variations are small. As shown in Fig. 3, only tw
iterations are necessary to move the system between
two stationary state values.

The autonomous Gray-Scott system displays nonline
relaxation oscillations with1yTres ­ 0.0037. The seven-
dimensional nonlinearSandG surfaces were obtained for
these conditions by applying 1000 random perturbatio
to the system parameter1yTres. Each surface was con-
structed using linear interpolation from 8 neighboring da
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FIG. 3. (a) Response of autonomouss d and controlled
s d two-dimensional Gray-Scott model when chang
in the control parameter move the system between t
stationary state valuess±±±±±±±d, wherex ­ a in Eq. (1); (b)
corresponding variations ofp ­ 1yTres.

points in the phase space. The system converges to
stationary state upon activation of the control algorith
The convergence rate is initially slow, however, due to t
sparseness of the control surface and the restriction
posed by the system dynamics on the perturbation size.
the system converges, the new data are used to refine
shape of theSsurface in the vicinity of the stationary stat
The same procedure was used to create and refine thG
function. Figure 4 shows an application of theS function
to suppress the oscillations of the autonomous system
to stabilize the unstable stationary state. TheS function
was replaced by theG function att ­ 14 500 to alter the
system output between the values of 0.2 and 0.3. Only

FIG. 4. (a) Stationary state stabilization and targeting obj
tive states using seven-dimensional control surfacesS and G.
Broken line shows the objective states. (b) Applied pertur
tions, where dashed lines show the maximum allowed pertu
tion.
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iterations are required to move the system between th
values of the unstable state.

The algorithms proposed here can readily be extende
include multiple observation and control channels by us
a vector form of theSor G functions. Because the contro
laws are constructed directly from the time series, they
robust and convenient to implement in experimental s
tings. The number of unknown parameters for the cont
surface identification is generally higher than in the ca
of linear system identification and may therefore requ
larger data sets. The learning stage can be significa
decreased, however, by refining the control surface ad
tively in the process of control. Because the control pro
lem is formulated in terms of an invariant function, man
well-developed techniques for prediction from nonline
time series [19] can be used with the control algorithm.
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