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Can a Single-Pulse Standing Wave Induce Chaos in Atomic Motion?
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We measure momentum transferred from a single pulse of a standing wave of light to a sample of
ultracold sodium atoms, and observe a sharp increase in the momentum transfer when the pulse duration
exceeds a critical value.;. A classical analysis of nonlinear resonances shows that resonance overlap
occurs atr.., and there is a transition to global classical chaos. These results are a direct experimental
test of the “resonance overlap criteria” and illustrate that even the turning on and off of a simple
spatially periodic interaction can lead to surprising and novel results.

PACS numbers: 05.45.+b, 32.80.Pj, 42.50.Vk

Time-dependent Hamiltonian dynamics exhibit a widecooled in a standard-" — o~ magneto-optic cell trap
range of novel effects in both classical and quantum dofMOT) [8]. A single-mode dye laser is intensity stabi-
mains [1,2]. Possibly the simplest time-dependent potenlized to approximately 1% and servo locked 20 MHz to
tial is the turning on and off of an interaction, though eventhe red of thg3S,», F = 2) — (3P3,, F = 3) transition
here our intuition is clear only for the two extreme casesat 589 nm. Optical pumping to the = 1 ground state
of fast passage and adiabatic interactions. Since the m& prevented by 15% sidebands at 1.712 GHz. Approxi-
jority of cases fall between these two limits, it is importantmately 10° atoms are trapped in a Gaussian distribution of
to develop a clear understanding and simple physical piggosition (. = 0.12 mm) and momentum (of widtlr,,
tures at intermediate time scales. We show that when theentered ap = 0). This sample is sufficiently dilute that
interaction is nonlinear, the mere act of turning on and offatom-atom interactions are negligible. The experiments
a potential in this intermediate regime can lead to classicagherefore probe single-atom phenomena although the mea-
chaos. Further, we provide a clean experimental demorsurements are done on an ensemble. After the cooling and
stration of theclassical mechanism of resonance overlaptrapping stage, the MOT laser beams and gradient coils are
[3-5] which leads to classically diffusive growth. turned off. The sidebands are turned &f s prior to the

This general problem is posed in the context of atonturn off of the MOT beams in order to pump the atoms into
optics with ultracold atoms. The nonlinear interaction is athe F = 1 ground state.
single pulse of a one-dimensional standing wave of light. The interaction potential is provided by a second sta-
This type of time-dependent interaction is ubiquitous andilized single-mode dye laser that is retroreflected from a
occurs, for example, whenever an atomic beam passasirror to form a standing wave at the atoms. To ensure a
through a standing wave of light. uniform light field the beam is first spatially filtered, and

The starting point for this discussion is the model of ais then focused to a waist which is large (1.2 mm) com-
two level atom (transition frequenayy) interacting with a  pared to the atomic sample. A fast acousto-optic modula-
standing wave of near-resonant light (frequengy which  tor (25 ns rise time) controls the single ¥inz/T,) pulse
is turned on and off with a time-dependent functipfa).  amplitude, wherd; ranges from 100 nsto s. The first-

For sufficiently large detuning; = wg — w (relativeto  order diffraction efficiency of an acousto-optic modulator
the natural linewidth), the excited state amplitude can bés proportional to sit(7V /2V,,,), whereV is the applied
adiabatically eliminated [6], leading to a Hamiltonian for voltage, and/,,, the saturation voltage. Therefore a linear
the ground statél = p?/2M — (hQ.s/8)f(r) cok,x.  ramp up and down i produces the desired line shape. A
k. is the wave number, anf.; = Q3/8, is the effec- fast photodiode detects the amplitude as a function of time,
tive Rabi frequency. The resonant Rabi frequefigyis  which is then digitized and stored. The photodiode output
proportional to the square root of the standing wave intenis also measured on an electronic spectrum analyzer to de-
sity [7]. We consider here the cagér) = sir’ w,,z/2,  termine spectral purity. The spectrum consists of the fun-
wherew,, is a radio frequency. In the experiment, only adamental at a frequency @f 7, and the second harmonic
single pulse of duratioff; = 27/ w,, is used. is 20 dB lower. The effect of the second harmonic on the

The experimental study of this time-dependent interacanalysis of nonlinear resonances is small and is within our
tion consists of three important components: initial con-experimental uncertainty. Harmonics higher than the sec-
ditions, interaction potential, and measurement of atomiond are negligible.
momentum, which occur as a computer-controlled se- After the interaction pulse the atoms expand freely for
quence of steps. The sequence is repeated for a ran§ems, after which ther™ — o~ beams are turned back
of different interaction pulse durations. The initial condi- on, this time without the magnetic field gradient, forming
tions consist of ultracold sodium atoms trapped and lasesptical molasses [8]. The motion of the atoms in the
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molasses is overdamped and is effectively “frozen” forwhere v,, = w,,/2k;. The effective interaction is that

short times during which the fluorescence is recorded oof a stationary wave with two counterpropagating waves

a charge-coupled device. The resulting 2D image can bmoving at*wv,,.

integrated to give the 1D distribution along the interaction It is convenient to switch to scaled variables= w,,t,

potential axis. The final spatial distribution, along with ¢ = 2k;x, p = 2k, /Mw,,)p,andH = (4k}/Mw?)H

the initial spatial distribution and the free-expansion time,in terms of which

enable the determination of the momentum distribution of

the atoms. H = p*/2 — k{cosp — [cog¢ + 7) + cosp — 7)]/2},
The measured momentum distributions as a function 3)

of pulse duration7; are shown in Fig. 1. For short

interaction times, the final distribution is nearly identicalwherek = w, Qerr/202 andw, = lik; /2M is the recoil

to the initial one {, = 0) indicating the fast passage limit. frequency &, /27 = 25 kHz for sodium). Note that in

With increasing pulse duration the line shape broadens, arféir system of scaled units, the commutdtér, p ] = ik,

undergoes a transition to a flat, broad line shape. For wherek = 8w, /w,,. There are three resonances which

pulse duration of 1us the line shape becomes exponential(from the stationary phase condition) are centered at

which is a signature of dynamical localization within a p/k(= p/2hk.) = 0, *®,/8w, with widths Ap,/k =~

bounded region of momentum, though this is not the focugvk/k = /Qeit /8w,  and  Ap-/k = 2V2k/k =

of this Letter. For even longer times the distribution/Qerr/16w,, respectively. When the conditid po +

becomes narrow and asymptotically approaches the initidhp+)/2 > 2/3 is met [3,4], neighboring resonances

line shape which is to be expected in the adiabatic limit. overlap and the particle can now classically diffuse in
At first sight the dependence of momentum spread ommomentum over a bounded region demarcated by confin-

pulse duration appears counterintuitive, and clearly point#1g Kolmogorov-Arnold-Moser surfaces. Operationally,

to new physics that is occurring at intermediate timethis condition is reached either by increasing the pulse

scales between the limits of fast passage and adiabatituration for fixed laser intensity, as in our experiments, or

interactions. As we will show below, this behavior is by increasing the laser intensity for fixed pulse duration.

strongly correlated with changes in the classical dynamicsSubstituting for the widths provides an estimate of the

To analyze our problem, we expand the Hamiltonian ~ time scaler,

242 27
H = p?/2M — (5Qest/8) Sirt(w,,1/2) coRkyx, (1 Ty > Ter = — 4
P/ ( ff/) (@ /) LX 1) Ter 32 + \/z) \/wrQeff (4)
and obtain beyond which the resonances overlap. On recognizing
) Tao = 27/, Qs t0 be the period of the small os-
H = p=/2M — (hQes;/16) cillation limit to the pendulum (harmonic oscillator), the
X {coRk,x — [cOLky(x — vpt) threshold for overlap is given b, > 0.287y0.

The three rows of panels in Fig. 2 display the clas-
sical phase portraits (top), final momentum distributions
calculated from the classical dynamics (middle), and the
experimental results together with a quantum simulation
(bottom). Each column corresponds to a different single
pulse duration. In both the classical and quantum calcula-
tions, the initial momentum spread is taken from the tem-
perature measurements in the experiment. The quantum
calculation is a space-time integration of the Schrodinger
equation starting from a squeezed wave-packet initial con-
dition (see the second paper in Ref. [7] for details).

At these parameter values, resonance overlap is pre-
dicted to occur around,, = 245 ns. As illustrated in the
SR first column of panels, for durations less than this value

& the classical phase space consists of three isolated reso-
nances and the initial distribution remains trapped within
the central island. Some “heating” of the initial condition
) _ can occur as the distribution spreads within this island. On
FIG. 1. Experimentally measured momentum line shapes as @rossing the threshold for overlap, a chaotic band appears

function of pulse duration. The curve at time zero corresponds ' . . ;
to the initial condition. Q. /27 = 50.7 MHz (rms) with a over which the classical particle can diffuse. Quantum ef-

10% uncertainty. The initial momentum distribution has afects USl_Ja”)_/ suppress tlhis behaViQ" and lead to Qyn_ami-
width of 2.9 * 0.2 in 2%k, units. cal localization [6,7] which results in an exponential line

+ COQkL(x + U,nl)]/Z}, (2)

Intensity
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FIG. 2. Classical phase portraits (upper panel), classical momentum distributions (middle panel), and experimentally measured
momentum distributions with quantum theory (bottom panel, theory marked by thin lineg) fer0.2,0.4,0.75, and1.0 us. The
vertical scales for the distributions are logarithmic and are marked in decades. Other parameters are the same as in Fig. 1.

shape for a pulse duration @ = 1 us in Fig. 2. How- (rise and fall times of 25 ns are included in the square
ever, for interaction times short compared to the quantunpulse duration). These agree well with classical numeri-
break time [2,9], classical and quantum simulations agreegal simulations in Fig. 3(b) and the estimated resonance
even in the presence of chaos, as evident in the second aaderlap threshold. For the square pulse, the oscillation
third columns. Both simulations display peaks near thewithin the spatially periodic potential is clear and agrees
momentum boundaries which show up as less pronouncealith the single particle quantum description of the experi-
shoulders in the experimental distributions. This regimemental atomic ensemble. Note that the crossing of the
of short interaction times in the presence of nearby moeverlap threshold is clearly visible in the line shapes shown
mentum boundaries is particularly sensitive to variationsn Fig. 1 although the rms provides a simple quantitative
in Q¢ present in the experiment. The effect of this varia-signature.
tion is similar to having a range of interaction times. We In the limit of long pulse period one expects adiabatic
have verified that time averaging resolves the discrepandyehavior and in simple quantum systems such as the
between the simulations and the experiment though thiearmonic oscillator, the conditions for adiabaticity are
is not relevant to the focus of this Letter. It should beclear. However, in nonlinear quantum systems there is
noted that for parameters where the adiabatic time scale generally not a single time scale, and the conditions for
comparable to the break time the regime of quantum supadiabaticity must be analyzed more carefully. A prominent
pression is not clearly demarcated. As discussed later, tifeature in the phase portraits in Fig. 2 is the narrowing
results shown in Fig. 3 illustrate this feature. of the chaotic band, measured in momentum units of
To experimentally determine the classical threshqld  27k., with increasing pulse duration. This is seen easily
for overlap, we must distinguish the momentum growthby considering the width of the band of chaos given by
associated with spreading within the primary resonancép/k(= Ap/2hik;) = 2(1 + ~/2k)/k which on defining
from diffusion that can occur after resonance overlap. Thishe pulse duratiof; = a7Tyo can be rewritten as
is accomplished by measuring the momentum transferred
from a potentialV (x) = (iQ.s/16) cog2k; x) turned on Ap 7 (1 +a)
and off as a square pulse with the same duration as the £k 2w,7H0 a
sir? case. Here, there is only a single resonance which is
identical to the primary resonance in the’spulse due to  Thus the number of states (separated 2dyk;) within
the choice of relative amplitudes. Therefore, the rms priothe chaotic band decreases with increasing pulse duration.
to resonance overlap should be the same in both case&.simple estimate for an adiabatic threshold is obtained
After resonance overlap is crossed, there should be a digy settingAp/k equal to the initial thermal momentum
tinct increase in the strrms as compared with the square spread of the atoms. Operationally, this condition requires
pulse. The experimental results in Fig. 3(a) show the rmshe width of the chaotic band to be several times the width
momentum for both cases as a function of pulse duratiowr, of the thermal Gaussian. For example, considering

(5)
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in the sirt profile. The potential can now be written as
L (a) a discrete Fourier sum in multiples of this fundamental
frequency and resonance overlap can result. Parameters

where resonance overlap is significant can be attained
though this was not the case for the parameters in Ref. [10].

In conclusion, we have tested experimentally the reso-
nance overlap route to global classical chaos. These re-
sults illustrate that for nonlinear time dependent systems,
novel physics can occur on intermediate time scales. This
“gray zone” between fast passage and adiabatic interac-
tions is, in fact, the generic situation and must be studied.
In particular, interactions of standing waves of light with
ultracold atoms clearly fall into this category and progress
in control and manipulation of atomic motion must take
these factors into account.
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FIG. 3. (a) rms momentum computed from experimentally ) .
measured momentum distributions for sigsolid) and square *Present address: NOAACMDL, Mail Stop R/E/CGL,

(open) pulses. (b) The corresponding classical simulations Nitrous Oxide and Halocompounds Division, Boulder,
are the solid and dashed lines. The threshold estimated from CO 80303.
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