
VOLUME 76, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 29 APRIL 1996

aizen

3

Can a Single-Pulse Standing Wave Induce Chaos in Atomic Motion?

J. C. Robinson, C. F. Bharucha, K. W. Madison, F. L. Moore,* Bala Sundaram, S. R. Wilkinson, and M. G. R
Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081

(Received 31 October 1995)

We measure momentum transferred from a single pulse of a standing wave of light to a sample of
ultracold sodium atoms, and observe a sharp increase in the momentum transfer when the pulse duration
exceeds a critical valuetcr . A classical analysis of nonlinear resonances shows that resonance overlap
occurs attcr , and there is a transition to global classical chaos. These results are a direct experimental
test of the “resonance overlap criteria” and illustrate that even the turning on and off of a simple
spatially periodic interaction can lead to surprising and novel results.

PACS numbers: 05.45.+b, 32.80.Pj, 42.50.Vk
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Time-dependent Hamiltonian dynamics exhibit a wid
range of novel effects in both classical and quantum d
mains [1,2]. Possibly the simplest time-dependent pote
tial is the turning on and off of an interaction, though eve
here our intuition is clear only for the two extreme cas
of fast passage and adiabatic interactions. Since the
jority of cases fall between these two limits, it is importan
to develop a clear understanding and simple physical p
tures at intermediate time scales. We show that when
interaction is nonlinear, the mere act of turning on and o
a potential in this intermediate regime can lead to classi
chaos. Further, we provide a clean experimental dem
stration of theclassical mechanism of resonance overla
[3–5] which leads to classically diffusive growth.

This general problem is posed in the context of ato
optics with ultracold atoms. The nonlinear interaction is
single pulse of a one-dimensional standing wave of lig
This type of time-dependent interaction is ubiquitous a
occurs, for example, whenever an atomic beam pas
through a standing wave of light.

The starting point for this discussion is the model of
two level atom (transition frequencyv0) interacting with a
standing wave of near-resonant light (frequencyvL) which
is turned on and off with a time-dependent functionfstd.
For sufficiently large detuningdL ­ v0 2 vL (relative to
the natural linewidth), the excited state amplitude can
adiabatically eliminated [6], leading to a Hamiltonian fo
the ground stateH ­ p2y2M 2 sh̄Veffy8dfstd cos2kLx.
kL is the wave number, andVeff ­ V

2
0ydL is the effec-

tive Rabi frequency. The resonant Rabi frequencyV0 is
proportional to the square root of the standing wave inte
sity [7]. We consider here the casefstd ­ sin2 vmty2,
wherevm is a radio frequency. In the experiment, only
single pulse of durationTs ­ 2pyvm is used.

The experimental study of this time-dependent intera
tion consists of three important components: initial co
ditions, interaction potential, and measurement of atom
momentum, which occur as a computer-controlled s
quence of steps. The sequence is repeated for a ra
of different interaction pulse durations. The initial cond
tions consist of ultracold sodium atoms trapped and la
304 0031-9007y96y76(18)y3304(4)$10.00
e
o-
n-
n
s
a-

t
ic-
the
ff

cal
n-
p

m
a
t.
d

ses

a

be
r

n-

a

c-
n-
ic
e-
nge
i-
er

cooled in a standards1 2 s2 magneto-optic cell trap
(MOT) [8]. A single-mode dye laser is intensity stab
lized to approximately 1% and servo locked 20 MHz
the red of thes3S1y2, F ­ 2d ! s3P3y2, F ­ 3d transition
at 589 nm. Optical pumping to theF ­ 1 ground state
is prevented by 15% sidebands at 1.712 GHz. Appro
mately105 atoms are trapped in a Gaussian distribution
position (sx ­ 0.12 mm) and momentum (of widthsp,
centered atp ­ 0). This sample is sufficiently dilute tha
atom-atom interactions are negligible. The experime
therefore probe single-atom phenomena although the m
surements are done on an ensemble. After the cooling
trapping stage, the MOT laser beams and gradient coils
turned off. The sidebands are turned off50 ms prior to the
turn off of the MOT beams in order to pump the atoms in
theF ­ 1 ground state.

The interaction potential is provided by a second s
bilized single-mode dye laser that is retroreflected from
mirror to form a standing wave at the atoms. To ensur
uniform light field the beam is first spatially filtered, an
is then focused to a waist which is large (1.2 mm) com
pared to the atomic sample. A fast acousto-optic modu
tor (25 ns rise time) controls the single sin2sptyTsd pulse
amplitude, whereTs ranges from 100 ns to 5ms. The first-
order diffraction efficiency of an acousto-optic modulat
is proportional to sin2spVy2Vsatd, whereV is the applied
voltage, andVsat the saturation voltage. Therefore a line
ramp up and down inV produces the desired line shape.
fast photodiode detects the amplitude as a function of tim
which is then digitized and stored. The photodiode outp
is also measured on an electronic spectrum analyzer to
termine spectral purity. The spectrum consists of the fu
damental at a frequency of1yTs, and the second harmoni
is 20 dB lower. The effect of the second harmonic on t
analysis of nonlinear resonances is small and is within o
experimental uncertainty. Harmonics higher than the s
ond are negligible.

After the interaction pulse the atoms expand freely f
5 ms, after which thes1 2 s2 beams are turned back
on, this time without the magnetic field gradient, formin
optical molasses [8]. The motion of the atoms in th
© 1996 The American Physical Society
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molasses is overdamped and is effectively “frozen”
short times during which the fluorescence is recorded
a charge-coupled device. The resulting 2D image can
integrated to give the 1D distribution along the interacti
potential axis. The final spatial distribution, along wi
the initial spatial distribution and the free-expansion tim
enable the determination of the momentum distribution
the atoms.

The measured momentum distributions as a funct
of pulse durationTs are shown in Fig. 1. For shor
interaction times, the final distribution is nearly identic
to the initial one (Ts ­ 0) indicating the fast passage limi
With increasing pulse duration the line shape broadens,
undergoes a transition to a flat, broad line shape. Fo
pulse duration of 1ms the line shape becomes exponen
which is a signature of dynamical localization within
bounded region of momentum, though this is not the fo
of this Letter. For even longer times the distributio
becomes narrow and asymptotically approaches the in
line shape which is to be expected in the adiabatic limi

At first sight the dependence of momentum spread
pulse duration appears counterintuitive, and clearly po
to new physics that is occurring at intermediate tim
scales between the limits of fast passage and adiab
interactions. As we will show below, this behavior
strongly correlated with changes in the classical dynam
To analyze our problem, we expand the Hamiltonian

H ­ p2y2M 2 sh̄Veffy8d sin2svmty2d cos2kLx , (1)

and obtain

H ­ p2y2M 2 sh̄Veffy16d
3 hcos2kLx 2 fcos2kLsx 2 ymtd

1 cos2kLsx 1 ymtdgy2j , (2)

FIG. 1. Experimentally measured momentum line shapes
function of pulse duration. The curve at time zero correspo
to the initial condition. Veffy2p ­ 50.7 MHz (rms) with a
10% uncertainty. The initial momentum distribution has
width of 2.9 6 0.2 in 2h̄kL units.
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where ym ­ vmy2kL. The effective interaction is tha
of a stationary wave with two counterpropagating wav
moving at6ym.

It is convenient to switch to scaled variablest ­ vmt,
f ­ 2kLx, r ­ s2kLyMvmdp, andH ­ s4k2

LyMv2
mdH

in terms of which

H ­ r2y2 2 khcosf 2 fcossf 1 td 1 cossf 2 tdgy2j ,
(3)

wherek ­ vrVeffy2v2
m andvr ­ h̄k2

Ly2M is the recoil
frequency (vry2p ­ 25 kHz for sodium). Note that in
our system of scaled units, the commutatorff, rg ­ ik2,
wherek2 ­ 8vryvm. There are three resonances whic
(from the stationary phase condition) are centered
ryk2s­ py2h̄kLd ­ 0, 6vmy8vr with widths Dr0yk2 ø
4
p

kyk2 ­
p

Veffy8vr and Dr6yk2 ø 2
p

2kyk2 ­p
Veffy16vr , respectively. When the conditionsDr0 1

Dr1dy2 . 2y3 is met [3,4], neighboring resonance
overlap and the particle can now classically diffuse
momentum over a bounded region demarcated by con
ing Kolmogorov-Arnold-Moser surfaces. Operationall
this condition is reached either by increasing the pu
duration for fixed laser intensity, as in our experiments,
by increasing the laser intensity for fixed pulse duratio
Substituting for the widths provides an estimate of t
time scaletcr

Ts . tcr ­
2
p

2

3s2 1
p

2d
2p

p
vrVeff

, (4)

beyond which the resonances overlap. On recogniz
tHO ­ 2py

p
vrVeff to be the period of the small os

cillation limit to the pendulum (harmonic oscillator), th
threshold for overlap is given byTs . 0.28tHO.

The three rows of panels in Fig. 2 display the cla
sical phase portraits (top), final momentum distributio
calculated from the classical dynamics (middle), and t
experimental results together with a quantum simulati
(bottom). Each column corresponds to a different sing
pulse duration. In both the classical and quantum calcu
tions, the initial momentum spread is taken from the te
perature measurements in the experiment. The quan
calculation is a space-time integration of the Schröding
equation starting from a squeezed wave-packet initial c
dition (see the second paper in Ref. [7] for details).

At these parameter values, resonance overlap is p
dicted to occur aroundtcr ­ 245 ns. As illustrated in the
first column of panels, for durations less than this val
the classical phase space consists of three isolated r
nances and the initial distribution remains trapped with
the central island. Some “heating” of the initial conditio
can occur as the distribution spreads within this island.
crossing the threshold for overlap, a chaotic band appe
over which the classical particle can diffuse. Quantum
fects usually suppress this behavior and lead to dyna
cal localization [6,7] which results in an exponential lin
3305
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FIG. 2. Classical phase portraits (upper panel), classical momentum distributions (middle panel), and experimentally m
momentum distributions with quantum theory (bottom panel, theory marked by thin lines) forTs ­ 0.2, 0.4, 0.75, and1.0 ms. The
vertical scales for the distributions are logarithmic and are marked in decades. Other parameters are the same as in Fig.
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shape for a pulse duration ofTs ­ 1 ms in Fig. 2. How-
ever, for interaction times short compared to the quant
break time [2,9], classical and quantum simulations agr
even in the presence of chaos, as evident in the second
third columns. Both simulations display peaks near
momentum boundaries which show up as less pronoun
shoulders in the experimental distributions. This regim
of short interaction times in the presence of nearby m
mentum boundaries is particularly sensitive to variatio
in Veff present in the experiment. The effect of this var
tion is similar to having a range of interaction times. W
have verified that time averaging resolves the discrepa
between the simulations and the experiment though
is not relevant to the focus of this Letter. It should b
noted that for parameters where the adiabatic time sca
comparable to the break time the regime of quantum s
pression is not clearly demarcated. As discussed later
results shown in Fig. 3 illustrate this feature.

To experimentally determine the classical thresholdtcr
for overlap, we must distinguish the momentum grow
associated with spreading within the primary resonan
from diffusion that can occur after resonance overlap. T
is accomplished by measuring the momentum transfer
from a potentialV sxd ­ sh̄Veffy16d coss2kLxd turned on
and off as a square pulse with the same duration as
sin2 case. Here, there is only a single resonance whic
identical to the primary resonance in the sin2 pulse due to
the choice of relative amplitudes. Therefore, the rms pr
to resonance overlap should be the same in both ca
After resonance overlap is crossed, there should be a
tinct increase in the sin2 rms as compared with the squa
pulse. The experimental results in Fig. 3(a) show the r
momentum for both cases as a function of pulse durat
3306
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(rise and fall times of 25 ns are included in the squa
pulse duration). These agree well with classical nume
cal simulations in Fig. 3(b) and the estimated resonan
overlap threshold. For the square pulse, the oscillati
within the spatially periodic potential is clear and agree
with the single particle quantum description of the expe
mental atomic ensemble. Note that the crossing of t
overlap threshold is clearly visible in the line shapes show
in Fig. 1 although the rms provides a simple quantitativ
signature.

In the limit of long pulse period one expects adiabat
behavior and in simple quantum systems such as
harmonic oscillator, the conditions for adiabaticity ar
clear. However, in nonlinear quantum systems there
generally not a single time scale, and the conditions f
adiabaticity must be analyzed more carefully. A promine
feature in the phase portraits in Fig. 2 is the narrowin
of the chaotic band, measured in momentum units
2h̄kL, with increasing pulse duration. This is seen eas
by considering the width of the band of chaos given b
Dryk2s­ Dpy2h̄kLd ­ 2s1 1

p
2kdyk2 which on defining

the pulse durationTs ­ atHO can be rewritten as

Dr

k2
­

p

2vrtHO

s1 1 ad
a

, (5)

Thus the number of states (separated by2h̄kL) within
the chaotic band decreases with increasing pulse durat
A simple estimate for an adiabatic threshold is obtain
by settingDryk2 equal to the initial thermal momentum
spread of the atoms. Operationally, this condition requir
the width of the chaotic band to be several times the wid
sp of the thermal Gaussian. For example, consideri
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FIG. 3. (a) rms momentum computed from experimenta
measured momentum distributions for sin2 (solid) and square
(open) pulses. (b) The corresponding classical simulatio
are the solid and dashed lines. The threshold estimated fr
resonance overlap is indicated by the arrow. A clear deviat
occurs at a pulse duration close to the predicted value. N
that an absolute power calibration was not available for the
data, but the momentum transfer for the square pulse w
consistent withVeff ­ 41 MHz. The initial momentum spread
was 3.8 6 0.2 in 2h̄kL units. For these parameter values
classical and quantum rms widths are in good agreement o
the entire range of pulse times.

Dryk2 ­ 4sp leads to

a $
1

s8spvrypdtHO 2 1
, (6)

which is valid when the denominator is positive and whic
shows a strong dependence on the initial momentum wid
Thus, for the parameters of Fig. 2 (sp ­ 2.9) adiabatic
behavior occurs only for times longer thanø25 ms while
for Fig. 3 (sp ­ 3.8) the threshold isø2 ms. These
time scales are fully consistent with the experimen
pulse durations where the line shape approaches the in
condition.

Our discussion has focused on the sin2 pulse profile,
though these results can be applied to other pulse sha
For example, earlier work on momentum transfer w
performed in an atomic beam crossing a standing wave
light [10]. The resulting temporal pulse is then of the form
e2styTd2

. In practice, the laser beam profile has a natu
cutoff imposed by spatial filtering which leads to a wel
defined period of the pulse analogous to the pulse durat
ly
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in the sin2 profile. The potential can now be written a
a discrete Fourier sum in multiples of this fundament
frequency and resonance overlap can result. Parame
where resonance overlap is significant can be attain
though this was not the case for the parameters in Ref. [1

In conclusion, we have tested experimentally the res
nance overlap route to global classical chaos. These
sults illustrate that for nonlinear time dependent system
novel physics can occur on intermediate time scales. T
“gray zone” between fast passage and adiabatic inter
tions is, in fact, the generic situation and must be studie
In particular, interactions of standing waves of light wit
ultracold atoms clearly fall into this category and progre
in control and manipulation of atomic motion must tak
these factors into account.
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