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From Soliton Equations to Integrable Cellular Automata through a Limiting Procedure
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We show a direct connection between a cellular automaton and integrable nonlinear wave
equations. We also present tihesoliton formula for the cellular automaton. Finally, we propose
a general method for constructing such integrable cellular automata andN#salliton solutions.
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PACS numbers: 03.40.Kf, 02.10.Jf, 52.35.Sb

In order to investigate complex physical phenomenoninfinite sequence composed of 0 and 1. The number of
we have to adopt a simple model which exhibits essential’s is finite. The rule to determine the staterat 1 is
features of the phenomenon. Cellular automata (CA'shas follows: (1) Move every 1 only once. (2) Exchange
serve as such simple models and have been widelthe leftmost 1 with its nearest right 0. (3) Exchange the
investigated in physics, chemistry, biology, and computeteftmost 1 among the rest of the 1's with its nearest right
sciences [1]. They present a large variety of structure®. (4) Repeat this procedure until all of the 1's are moved.
in their evolution. About a decade ago, Park, Steiglitz, A peculiar feature of the CA is that any state consists
and Thurston extracted a notion gbliton from them  only of solitons, interacting in the same manner as KdV
[2]. They found in a filter type of CA that some solitons (Fig. 1). Moreover, it possesses infinitely many
patterns of nonzero cell values often propagate wittconserved quantities [8]. Hence it was considered to
fixed finite velocity and they retain their identity after be an analog of integrable nonlinear wave equations.
collisions. These behaviors are quite similar to solitaryThe purpose of the present Letter is to show a direct
wave solutions (solitons) of nonlinear wave equationsonnection of a class of CA’s (or difference-difference
such as the Korteweg—de Vries (KdV) equation. Severagquations which take discrete values) with integrable
types of CA’s which possess soliton structures have beenonlinear wave equations by clarifying the relation of the
studied and many features of the systems have beddA [Eg. (1)] to them. Hence we can present a general
clarified [3-5], though, to our best knowledge, no directmethod for construction of suchtegrableCA’s. Explicit
relation of these CA'’s to the nonlinear wave equations haforms of N-soliton solutions are also presented.
been reported yet.

Several years ago, two of the authors (D.T.and J.S.) ... )11110000011001000000000000000000---
proposed a new type of filter CA [6]. The CAis 1 (space)

+ 1 (time) dimensional and two valued (0 and 1). The
value of thejth cell at timet, u;, is given as -+-000000000111001011100000000000000---

-000001111000110100000000000000000---

. j—1 j—1 -+000000000000110100011110000000000---
=11 if u; = 0 and St > S utt
j 0 othérwise +000000000000001011000001111000000---
-+000000000000000100110000000111100---
1)

. . ) FIG. 1. An example of time evolution of Eq. (1). Three
whereu; = 0 is assumed folj| > 1. We can put the patterns of 1's (1111, 11, and 1) retain their forms with some
evolution rule in another way [7]. At timg we have an phase shifts after collisions.
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One of the most familiar nonlinear wave equations is i -
the KdV equation uitt = min| 1 — u! Z ul — Z u!
9 PE T T
N + -
54060 = —zale ) + alen) a(x . (2 _ Z ul - Z u
The KdV equation is integrable in the sense that it admits = ’j_:l“ i1
Lax representation, has a Hamiltonian structure, and is — max 0 Z U — Z Wt — 1), (8)
exactly solvable in some profound nontrivial sense by et e / ’

inverse scattering transform [9]. . . _ .
An integrable discretization (differential-difference Py using min or max function. Introducings; =
equation) of the KdV equation is the Lotka-Volterra Z’,_w ut, we get

equation [10]: (41 ¢ ¢ +1

d
b,,(t) bj(t) [bj+1(t) — bj—1(1)]. 3) This is equivalent to Eq. (7) by setting} = S —

It appears in a model of struggle for existence of bio- S“r1 A; - A,)S]’-. Thus we have shown the connec-
logical species and thin structures of Langmuir oscnla-tlon of the CA (1) with KdV and Lotka-Volterra equa-
tions in plasma. By putting;(t) = 1 + (1/6)e*a((j + tions. The route from the KdV equation to the CA is
21)e, €3t/3), and taking the limit — 0, Eq. (3) is trans- summarized in Fig. 2.
formed into the KdV equation. The Lotka-Volterra equa- As we clarified above, Eq. (1) is a (nonanalytic) limit
tion is also integrable, and hence it has an infinite numbeof the difference-difference equation (4) so that we may
of conserved quantities [10,11]. expect that anN-soliton solution of Eg. (4) turns into

An integrable difference-difference equation related toan N-soliton solution for Eq. (1). This is, indeed, the
the Lotka-Volterra equation was proposed by Hirota ancdcase. TheN-soliton solution to Eq. (4) is given by

Tsujimoto [12]: the Casorati determinant or the Gram type determinant
C;H 1+ 8¢, through Hirota’s bilinear identity [13]. By t.aking the limit
'C,_ = [T pol] (j,reZ). (4) € — +0, we can prove th&-soliton solution to Eq. (4)
J i+l really gives the solution to Eq. (1) as
This equation also possességsoliton solutions and 1 ; 1
infinite conserved quantities. One can easily check that Wy =pj = p; = P TP (10)

the Lotka-Volterra equatlon is a continuous limit of \yiip
Eq. (4) by denotlngcj = b;(—61) and takingé — 0.

By replacingc; by exp(d;), we get
y replacingc; by exp(d)), we g . pj = maX[ZMmz meAu} (11)
(1 ; 1 + SeXF(dj,l) =0.1 i>1
dj”" —d; = In{ ———— 1 (5)
1+ 5equj+1)
Now we take an important limiting procedure, which
is a _key to obtaining integrable CA’s. We introduce a |K0rteweg_de Vries eq.- - (2)|
positive parametee = —(In8)~' or 8§ = ¢~ /¢ and set
d; = e;/e_ Then, noticing the fact that continuous limit T l discretization
— i X —
F(X) = EI_I’rE()Eln(l e /E) - ma){(), X]’ (6) |Lotka Volterra eq.- - - (3)|
we obtain from Eg. (5) in the limig — +0 continuous limit T l discretization
e}“ — e; = —F(e;ill -1+ F(e;-,l - 1),
oy |Discrete analogue of Eq.(3) - -+ (4) or (5)|
or, settlngfx = e, l
. (nonanalytic) limiting procedure
fiin = fi= —F(flo =D+ F(fF7 = 1)
= _(Ai _ A;)F(fl _ 1) (7) Discrete equation (an extended CA) - - - (6)‘
E J
where A X = X — X; and AtX = XH—1 — X]t I variable transformation

Note that thls equat|on describes a fllter type CA when
we restrict values off; to integers. (Here we use the
term CA in an extended meaning, that is, we allow the

. : . . FIG. 2. The route from the KdV equation [Eq. (2)] to the
dependent variablg; to take values in all integers.) integrable cellular automaton [Eq. (1)]. The numbers on the

We now show that Egs. (7) and (1) are essentially thejght side of the boxes correspond to those of equations in
same. We can express Eg. (1) as the text.

Cellular Automaton - - - (1)‘
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where n = kij — w;it + 7]?, A = 2min(w;, w;), eftp)—£(tg) — e(_wt+kljl+'“+kmjm)/5, where two of

and the w and k;’s are arbitrary integers. This condition
_ . gives the dispersion relationw = w(ki,...,k, : €)
ki = sgnw;) min(1, |;]) . (12) " for we have only two free parameteps and ¢. At

Heren) (i = 1,2,...,N) are arbitrary integersy; (i = the same time,p and ¢ have asymptotic forms:
1,2,...,N) are arbitrary but either all positive or all p = e/¢ +..- and g =e%/c +.... Thus putting

negative integers, and maxo [X({u:})] denotes the p(t) = limeln[r(t)]e — +0 with some careful choice
maximal value in2" values of X({u;}) obtained by of coefficients of the bilinear identity(t) satisfies an
replacing eachu; by 0 or 1. (We can remove the equation similar to Eq. (13), from which we obtain an
constraint onw;, but then A; has some complicated m-dimensional CA and its\N-soliton solutions. Since

forms.) For example, a 3-soliton solution is given by the CA is thus constructed, it naturally inherits the
geometrical and algebraic nature of théunction.

pj = ma{0, n1, m2, n3, M + M — An, To be more specific, let = {t,j}, ! = pi(p +
M+ M3 — A, m3 + M — Az, 8)7/(p + 1 + &)~ andg = —p — 25 — 1. The gen-
eral consideration given in Ref. [16] leads to the bilinear
n + M+ M3 — Ap — A — Az, identity for r; = 7(t):
P
It should be noted thai; satisfies Pt — (L4 8)r T + st = 0. (15)

t+1 =1 _ t ro -1 +1
pivi t o = mpjy F pppjer P 1, The condition e¢®-P)~¢(ta) = ((—wrtki/e implies p =
(13) -5 -1+ e @ !and

which is obtained from Egs. (8) and (10), and may be /e e
considered as an analog of bilinear identity. k= —elnl & tollte ) (16)
Once the connection of the CA equation (1) with 1+ 6(1+ e @/e)

the integrable nonlinear wave equations is found, it is

straightforward to construct other kinds of integrableThen we can show that; is always positive for any
CA’s from other nonlinear integrable equations. Weintegersw;’s and suitable;’s, so that, takingd = ¢~'/¢,
sketch out how to construct integrable CA's in general Ed. (15) is rewritten as

from the viewpoint of the so-called Sato theory [14].
In the early 1980s, Sato established a unified theory
of solitons. He showed that any integrable differential + e Vertiri.
equation can be regarded as a dynamical system on a (17)
universal Grassmann manifold (UGM). A solution to the

nonlinear equation corresponds to a point of UGM. ItThys, denoting p} = lim._..oeln7}, we find from

is called ther function. Using the Pliicker relation of gq. (17) thatp! satisfies Eq. (13) and (16) reduces to
UGM, we obtain Hirota’s bilinear identity for ther  (12)  Since the right side of Eq. (14) is calculated as

function. Date, Jimbo, Kashiwara, and Miwa developedde(;(t)’ where thei,j element of theN X N matrix
the Sato theory giving its link with infinite dimensional G(t) is given as

Lie algebras by the method of field theory and vertex
operators [15]. Then the function is expressed as a s Ci E(tp)—£(tq))
. . . [G(t)],,‘, - 61,] + ¢ "
vacuum expectation value of a fermion field operator. Pi — qj
In terms of usual fermion creation and annihilation . ) ] ]
operators, which satisf;, ;1. = [, ]+ = 0, and itis also easily seen that thé-soliton solution (14) turns
[, 471+ = 8:—; (i,j € Z + 1/2), the N-soliton solu- into (11). , o
tion is expressed as [16] 'We can construct other types of integrable CA’s with
v tr}]s ré]eLthcl)(d,\i;orl example the CA’s rel?jted tod_the ge.ner-I
_ e wo alized Lotka-Volterra systems, one- and two-dimensional
7(t) = {vad l.l:![l *a(pi 9 (g Olvag,  (14) Toda lattices, and the Kadomtsev-Petviashvili equations.
We shall report them with detailed analysis of the solu-
where ¢ (p.t) = e£EPy(p), (g, t) = e £y *(g),  tions and conserved quantities in separate papers.
Y(p) = Djezeipip V2 andy(q) = Yjezi1p ¥ The authors are grateful to Professor R. Hirota for
gbfq*f*l/z. Here ¢; is an arbitrary constant, denotes useful comments. One of the authors (T.T.) is indebted
the time variables, and a functigf(t, p) is arbitrary in  to Professor Y. Itoh for helpful comments on the Lotka-
principle, though we need a careful choice in order to geVolterra system. Discussions with S. Kakei, S. Moriwaki,
a significant differential or difference equation. A. Nagai, and M. Torii are also acknowledged. This work
In order to construct integrable CA’s, we should was supported in part by a Grant-in-Aid from the Japan
put t ={t,j1,/2,...,jm} and impose the condition: Ministry of Education, Science and Culture.

eln[(1 + e_l/e)rj’»_lfj»ﬂ] = eln[r},7}
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