
PHYSICAL REVIEW

LETTERS

VOLUME 76 29 APRIL 1996 NUMBER 18
From Soliton Equations to Integrable Cellular Automata through a Limiting Procedure
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We show a direct connection between a cellular automaton and integrable nonlinear wave
equations. We also present theN-soliton formula for the cellular automaton. Finally, we propose
a general method for constructing such integrable cellular automata and theirN-soliton solutions.
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In order to investigate complex physical phenomen
we have to adopt a simple model which exhibits essen
features of the phenomenon. Cellular automata (CA
serve as such simple models and have been wi
investigated in physics, chemistry, biology, and compu
sciences [1]. They present a large variety of structu
in their evolution. About a decade ago, Park, Steigl
and Thurston extracted a notion ofsoliton from them
[2]. They found in a filter type of CA that som
patterns of nonzero cell values often propagate w
fixed finite velocity and they retain their identity aft
collisions. These behaviors are quite similar to solit
wave solutions (solitons) of nonlinear wave equatio
such as the Korteweg–de Vries (KdV) equation. Seve
types of CA’s which possess soliton structures have b
studied and many features of the systems have b
clarified [3–5], though, to our best knowledge, no dire
relation of these CA’s to the nonlinear wave equations
been reported yet.

Several years ago, two of the authors (D. T. and J
proposed a new type of filter CA [6]. The CA is 1 (spac
1 1 (time) dimensional and two valued (0 and 1). T
value of thejth cell at timet, ut

j, is given as

ut11
j ­

(
1 if ut

j ­ 0 and
Pj21

i­2` ut
i .

Pj21
i­2` ut11

i ,
0 otherwise,

(1)
whereut

j ­ 0 is assumed forjjj ¿ 1. We can put the
evolution rule in another way [7]. At timet, we have an
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infinite sequence composed of 0 and 1. The number
1’s is finite. The rule to determine the state att 1 1 is
as follows: (1) Move every 1 only once. (2) Exchang
the leftmost 1 with its nearest right 0. (3) Exchange th
leftmost 1 among the rest of the 1’s with its nearest rig
0. (4) Repeat this procedure until all of the 1’s are move

A peculiar feature of the CA is that any state consis
only of solitons, interacting in the same manner as Kd
solitons (Fig. 1). Moreover, it possesses infinitely man
conserved quantities [8]. Hence it was considered
be an analog of integrable nonlinear wave equatio
The purpose of the present Letter is to show a dire
connection of a class of CA’s (or difference-differenc
equations which take discrete values) with integrab
nonlinear wave equations by clarifying the relation of th
CA [Eq. (1)] to them. Hence we can present a gene
method for construction of suchintegrableCA’s. Explicit
forms ofN-soliton solutions are also presented.

FIG. 1. An example of time evolution of Eq. (1). Three
patterns of 1’s (1111, 11, and 1) retain their forms with som
phase shifts after collisions.
© 1996 The American Physical Society 3247
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One of the most familiar nonlinear wave equations
the KdV equation

≠

≠t
asx, td ­

≠3

≠x3 asx, td 1 asx, td
≠

≠x
asx, td . (2)

The KdV equation is integrable in the sense that it adm
Lax representation, has a Hamiltonian structure, and
exactly solvable in some profound nontrivial sense
inverse scattering transform [9].

An integrable discretization (differential-differenc
equation) of the KdV equation is the Lotka-Volterr
equation [10]:

d
dt

bjstd ­ bjstd
£
bj11std 2 bj21std

§
. (3)

It appears in a model of struggle for existence of bi
logical species and thin structures of Langmuir oscill
tions in plasma. By puttingbjstd ­ 1 1 s1y6de2assss j 1

2tde, e3ty3ddd, and taking the limite °! 0, Eq. (3) is trans-
formed into the KdV equation. The Lotka-Volterra equa
tion is also integrable, and hence it has an infinite numb
of conserved quantities [10,11].

An integrable difference-difference equation related
the Lotka-Volterra equation was proposed by Hirota a
Tsujimoto [12]:

ct11
j

ct
j

­
1 1 dct

j21

1 1 dct11
j11

sj, t [ Zd . (4)

This equation also possessesN-soliton solutions and
infinite conserved quantities. One can easily check th
the Lotka-Volterra equation is a continuous limit o
Eq. (4) by denotingct

j ­ bjs2dtd and takingd °! 0.
By replacingct

j by expsdt
jd, we get

dt11
j 2 dt

j ­ ln

µ
1 1 d expsdt

j21d
1 1 d expsdt11

j11d

∂
. (5)

Now we take an important limiting procedure, whic
is a key to obtaining integrable CA’s. We introduce
positive parametere ; 2slndd21 or d ­ e21ye and set
dt

j ­ et
jye. Then, noticing the fact that

FsXd ; lim
e!10

elns1 1 eXyed ­ maxf0, Xg , (6)

we obtain from Eq. (5) in the limite °! 10

et11
j 2 et

j ­ 2Fset11
j11 2 1d 1 Fset

j21 2 1d ,

or, settingf
2y1x
x ; ex

y ,

ft11
j11 2 ft

j ­ 2Fs ft
j11 2 1d 1 Fs ft11

j 2 1d

; 2sDj 2 DtdFs ft
j 2 1d , (7)

where DjXt
j ; Xt

j11 2 Xt
j and DtX

t
j ; Xt11

j 2 Xt
j .

Note that this equation describes a filter type CA wh
we restrict values offt

j to integers. (Here we use the
term CA in an extended meaning, that is, we allow th
dependent variableft

j to take values in all integers.)
We now show that Eqs. (7) and (1) are essentially t

same. We can express Eq. (1) as
3248
is

its
is
y

-
a-

-
er

to
d

at
f

h
a

n

e

he

ut11
j ­ min

√
1 2 ut

j ,
j21X

i­2`

ut
i 2

j21X
i­2`

ut11
i

!

­
j21X

i­2`

ut
i 2

j21X
i­2`

ut11
i

2 max

√
0,

j21X
i­2`

ut
i 2

j21X
i­2`

ut11
i 1 ut

j 2 1

!
, (8)

by using min or max function. IntroducingSt
j ­Pj

i­2` ut
i , we get

St11
j11 2 St

j ­ 2FsSt
j11 2 St11

j 2 1d . (9)

This is equivalent to Eq. (7) by settingft
j ­ St

j11 2

St11
j ­ sDj 2 DtdSt

j. Thus we have shown the connec
tion of the CA (1) with KdV and Lotka-Volterra equa
tions. The route from the KdV equation to the CA
summarized in Fig. 2.

As we clarified above, Eq. (1) is a (nonanalytic) lim
of the difference-difference equation (4) so that we m
expect that anN-soliton solution of Eq. (4) turns into
an N-soliton solution for Eq. (1). This is, indeed, th
case. TheN-soliton solution to Eq. (4) is given by
the Casorati determinant or the Gram type determin
through Hirota’s bilinear identity [13]. By taking the limit
e °! 10, we can prove theN-soliton solution to Eq. (4)
really gives the solution to Eq. (1) as

ut
j ­ rt

j 2 rt11
j 2 rt

j21 1 rt11
j21 , (10)

with

rt
j ­ max

mi­0,1

"
NX

i­1

mihi 2
X
i.l

mimlAil

#
, (11)

FIG. 2. The route from the KdV equation [Eq. (2)] to th
integrable cellular automaton [Eq. (1)]. The numbers on t
right side of the boxes correspond to those of equations
the text.
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where hi ­ kij 2 vit 1 h
0
i , Ail ­ 2 minsvi , vld,

and

ki ­ sgnsvid mins1, jvijd . (12)

Here h
0
i si ­ 1, 2, . . . , Nd are arbitrary integers,vi si ­

1, 2, . . . , Nd are arbitrary but either all positive or al
negative integers, and maxmi­0,1fXshmijdg denotes the
maximal value in 2N values of Xshmijd obtained by
replacing eachmi by 0 or 1. (We can remove the
constraint onvi , but then Ail has some complicated
forms.) For example, a 3-soliton solution is given by

rt
j ­ maxf0, h1, h2, h3, h1 1 h2 2 A12,

h2 1 h3 2 A23, h3 1 h1 2 A31,

h1 1 h2 1 h3 2 A12 2 A23 2 A31g .

It should be noted thatrt
j satisfies

rt11
j11 1 rt21

j ­ maxfrt
j11 1 rt

j , rt21
j11 1 rt11

j 2 1g ,

(13)
which is obtained from Eqs. (8) and (10), and may b
considered as an analog of bilinear identity.

Once the connection of the CA equation (1) wit
the integrable nonlinear wave equations is found, it
straightforward to construct other kinds of integrab
CA’s from other nonlinear integrable equations. W
sketch out how to construct integrable CA’s in genera
from the viewpoint of the so-called Sato theory [14
In the early 1980s, Sato established a unified theo
of solitons. He showed that any integrable differenti
equation can be regarded as a dynamical system o
universal Grassmann manifold (UGM). A solution to th
nonlinear equation corresponds to a point of UGM.
is called thet function. Using the Plücker relation of
UGM, we obtain Hirota’s bilinear identity for thet
function. Date, Jimbo, Kashiwara, and Miwa develope
the Sato theory giving its link with infinite dimensiona
Lie algebras by the method of field theory and verte
operators [15]. Then thet function is expressed as a
vacuum expectation value of a fermion field operator.

In terms of usual fermion creation and annihilatio
operators, which satisfyfci , cjg1 ­ fcp

i , c
p
j g1 ­ 0, and

fci , c
p
j g1 ­ di,2j si, j [ Z 1 1y2d, the N-soliton solu-

tion is expressed as [16]

tstd ­ kvacj
NY

i­1

f1 1 cicspi, tdcpsqi , tdgjvacl , (14)

where csp, td ; ejst,pdcspd, cpsq, td ; e2jst,qdcpsqd,
cspd ;

P
j[Z11y2 cjp2j21y2, andcpsqd ;

P
j[Z11y2 3

c
p
j q2j21y2. Here ci is an arbitrary constant,t denotes

the time variables, and a functionjst, pd is arbitrary in
principle, though we need a careful choice in order to g
a significant differential or difference equation.

In order to construct integrable CA’s, we shoul
put t ­ ht, j1, j2, . . . , jmj and impose the condition:
e

is
e
e
l,
.
ry
l

a
e
It

d
l
x

n

et

ejst,pd2jst,qd ­ es2vt1k1j11···1kmjmdye, where two of
the v and kj ’s are arbitrary integers. This condition
gives the dispersion relationv ­ vsk1, . . . , km : ed
for we have only two free parametersp and q. At
the same time,p and q have asymptotic forms:
p ­ ePye 1 · · · and q ­ eQye 1 · · ·. Thus putting
rstd ; lim e lnftstdge °! 10 with some careful choice
of coefficients of the bilinear identityrstd satisfies an
equation similar to Eq. (13), from which we obtain a
m-dimensional CA and itsN-soliton solutions. Since
the CA is thus constructed, it naturally inherits th
geometrical and algebraic nature of thet function.

To be more specific, lett ­ ht, jj, ejst,pd ­ pjsp 1

dd2jsp 1 1 1 ddj2t, andq ­ 2p 2 2d 2 1. The gen-
eral consideration given in Ref. [16] leads to the biline
identity for t

t
j ; tstd:

tt
j11tt

j 2 s1 1 ddtt21
j tt11

j11 1 dtt11
j tt21

j11 ­ 0 . (15)

The condition ejst,pd2jst,qd ­ es2vt1kjdye implies p ­
2d 2 s1 1 e2vyed21 and

k ­ 2e ln

"
e2vye 1 ds1 1 e2vyed

1 1 ds1 1 e2vyed

#
. (16)

Then we can show thattt
j is always positive for any

integersvi ’s and suitableci ’s, so that, takingd ­ e21ye ,
Eq. (15) is rewritten as

e lnfs1 1 e21yedtt21
j tt11

j11g ­ e lnftt
j11tt

j

1 e21yett11
j tt21

j11g .

(17)

Thus, denoting r
t
j ­ lime°!10 e ln t

t
j , we find from

Eq. (17) thatrt
j satisfies Eq. (13) and (16) reduces t

(12). Since the right side of Eq. (14) is calculated
detGstd, where thei, j element of theN 3 N matrix
Gstd is given as

fGstdgi,j ­ di,j 1
ci

pi 2 qj
ejst,pid2jst,qjd,

it is also easily seen that theN-soliton solution (14) turns
into (11).

We can construct other types of integrable CA’s wi
this method, for example the CA’s related to the gene
alized Lotka-Volterra systems, one- and two-dimension
Toda lattices, and the Kadomtsev-Petviashvili equatio
We shall report them with detailed analysis of the sol
tions and conserved quantities in separate papers.
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