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We study thermal transport in a one-dimensional (1D) interacting electron gas, employing the
Luttinger liquid model. Both thermal conductance and thermopower are analyzed for a pure 1D gas
and with impurities. The universal ratio of electrical to thermal conductance in a Fermi liquid—
the Wiedemann-Franz law—is modified, whereas the thermopower is still linear in temperature. For a
single impurity the Lorentz number is given ByT — 0) = 3L,/(2g + g?)—with L, the Fermi liquid
value—and the conductance’2 < g < 1. For g < 1/2 the Lorentz numbedivergesas T — 0.
Possible relevance to thermal transport in conducting polymer systems is discussed.

PACS numbers: 72.15.3f, 71.27.+a

The Wiedemann-Franz law, which relates the thermalLorentz number can be substantially modified from its
and electrical conductivitykx, o) of metals, played a cen- Fermi-liquid value,L,. The thermopowerQ, on the
tral role in the historical development of the quantumother hand, shows characteristically metallic behavior,
theory of solids. The Lorentz number,= «/oT, origi- Q = ¢T. As in conventional metals, the coefficient
nally computed within classical Drude theory, gave fortu-is nonuniversal, depending on the curvature of the energy
itous agreement with experiment due to canceling errordands and the energy dependence of the scattering rates.
The quantum theory corrected the errors and improved the While thermal transport measurements in quantum
agreement. For noninteracting electrons Chester and Thekires and quantum Hall samples are undoubtedly ex-
lung [1] showed that the Lorentz number is given exactlytremely challenging, a remarkable recent experiment has
by Ly = (7w2/3) (kg/e)?, for arbitrary impurity scattering demonstrated the feasibility of such experiments [10].
strength. In the 1980s Castellagtial. [2] argued that this Thermal transport measurements in bulk quasi-1D sam-
universal value was robust even with the inclusion of elecples, such as conducting polymers, are much easier, but
tron interactions, provided the system remained metallic3D crossovers may tend to complicate the analysis.
Thus, a universal Lorentz number appears to be a defining Pure Luttinger liquid—We begin with a model for an

characteristic of the Fermi-liquid phase. interacting spinless 1D electron gas in the absence of any
In recent years there has been tremendous intereshpurities, which has a bosonized Hamiltonian density
in conducting phases which amot Fermi liquids. A Hy = mvo(N2 + N? + 2AN,N_). )

paradigm for these are 1D interacting electron gas models, _ N _
which exhibit a non-Fermi-liquid phase even for weak The right and left moving electron densitig8,, satisfy
interactions [3]. The resulting Luttinger liquid phase is Kac-Moody commutation relations,
characterize.d by a dimensionless conductagcemhich . [N« (x), N«(x")] = *(i/2m)d,6(x — x'). (2)
controls various power laws, such as the singularity |nT
the momentum distribution function. The resurgence o
interest in the 1D Luttinger liquids stems both from
the recent ability to lithographically pattern true one- N
channel quantum wires [4,5] and from the realization Ne =I[glns + n-) = (ny —n-)]/2¢, 3)
that 1D edge states in the fractional quantum Hall effect . o ’ ,
are Luttinger liquids [6]. Other non-Fermi-liquid phasesWVIth A = (1 = ¢7)/(1 + g7). Interms ofu- the Hamil-
arise in quantum impurity problems [7], such as thetonlan decouples into right and left moving sectors,
multichannel Kondo model which is possibly relevant
to heavy fermion materials. Bulk 2D non-Fermi-liquid
phases have also been suggested in compressible Hall . . _ 2
fluid phases [8] and in the cuprate superconductors [9]. \évgvt:l firglggrgsgzsea?is\f/;g)iggM_oggU(za/l(lel;rrag ). The
It is natural to anticipate that thermal transport in such y a9 '
non-Fermi-liquid phases will be qualitatively different, N ,
and might help characterize and distinguish them experi- [n=(0), n= ()] = *(ig/2m)ax6(x — x). (5)
mentally. In this paper, we consider in detail thermal Consider now transportin an ideal Luttinger liquid. Ini-
transport in the 1D Luttinger liquids. We show that thetially, we ignore additional anharmonic interaction terms

he interaction term mixes right and left movers, but can
e shifted away as usual by defining new fields

Ho = Hyt + Hy = (wv/g) (ni + n?), 4
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(e.g.,n% n_) which couple the right and left moving modes monic interactions might nevertheless effect the value of
in (4). (For chiral guantum Hall edge states, these will beK. Umklapp processes would allow a decay of thermal
absent.) It then suffices to consider only a single rightcurrent, but freeze out at low temperatures. In any event,
moving channely = n. Such an ideal chiral channel can impurity backscattering will dominate these interaction ef-
be characterized by transport coefficiefit§, which relate  fects in the thermal resistance of real quantum wires.
changes in the electrical and thermal currents to changes Single impurity—We now consider a single impurity

in the chemical potential, and temperatur@. These in an otherwise ideal Luttinger liquid as a first step toward
coefficients are equivalent to Landauer two-terminal transinclusion of many impurities. (A single impurity is also
port coefficients [11], defined with “ideal” reservoirs. For relevant to point contact experiments in the quantum Hall
ideal quantum wires, these coefficients are not measurezffect.) A weak potential scatterer at the origin can be
directly, since the contacts do not couple selectively tanodeled by adding a term to the Hamiltonian,

right and left moving modes. However, they can be mea-

sured directly for quantum Hall edge states. Hier = —tcoddps — $-)3(x), ©)

The charge density in a chiral channel is conserved byherer; is the amplitude foky electron backscattering.
(4), and satisfies,n + 9,J = 0 with an electrical current This process has been expressed in terms of the boson
J = vn. Changing the chemical potentigk, alters the fields ¢ -, related to the densities. = =, ¢~ /27. The
electrical current. Balancing the® energy in (4) with operator exfi¢,) creates an excitation with fractional
a —un term givesAJ = (g/2m)Au or upon restoring charge, ge. Thus each backscattering process reflects
units an electrical conductana@,= L£'! = ge?/h. fractional electron charge.

Heat carried by a chiral channel is likewise conserved An impurity which strongly backscatters can alterna-
by (4). The continuity equatiord,ng + d,Jo = 0 is tively be modeled as a tunnel junction between two decou-
satisfied by the thermal energy density = (7v/g)n*  pled semi-infinite Luttinger liquids [5]. In this case, the
and thermal currenfy, = vngp. The thermal energy at chiral densityn, can be taken to describe the right and
temperaturel’ can be expressed in terms of the chiralleft moving pieces of one semi-infinite Luttinger liquid.

Luttinger modes as The appropriate term which tunnels an electron (chajge
= dk through the junction is then
nQ = - wkbwk , (6)

0o 2m -q-[tunn = —1l CO'{(¢+ - ¢_)/g]5(x) (10)
with b, = (ef® — 1)"! andw; = vk. This gives/y = To proceed we first define new fields [13,14] which
(72/6) (kgT)*/h, and leads to a “quantized” thermal propagate in the same direction;(x) = ¢+ (x) and
conductancek = L£22 = 9J,/0T = (7%/3)k3T/h. ¢2(x) = ¢_(—x), and associated densities; = 9.¢;

For an ideal Luttinger liquid we can then define a“two-with j = 1,2. One can then define commuting even and
terminal” Lorentz number odd densitiesp = n; — ny = d,¢ /27 and N = n| +
Ligeas = K/TG = Lo/ 7 " The full Hamiltonian with backscattering factorizes,
For g = 1, we recover the Fermi-liquid valud, = H = (mv/2g) (n* + N?) — 15cospd(x).  (11)

(7m2/3) (kg/e)?>. With repulsive interactionsg(< 1) the
Lorentz number is larger.

The off-diagonal transport coefficienf '> = 9J/aT, )
which determines the thermopower, is zero within the J = fxat”/z = gtpsing(x = 0), (12)
present model, due to the implicit linearization of the elec-
tronic band structure near the Fermi energy. The effects oivhere the second equality follows from commutingyith
dispersion can be included via the third order interactiorthe Hamiltonian. For the case of a tunnel junction, the
term H;,, = An®, which is normally ignored because it tunnel current is/ = ¢, sif¢(x = 0)/g]. Similarly, the
is formally “irrelevant.” The coefficiend is proportional backscattered thermal current can be written
to the change in Fermi velocity with chemical potential,
dv/du. The resulting thermopoweg) = £'2/L£ ' is Jo = f 3(Hy" — Hy)/2 = (mv/g)N(x = 0)J,
linear in temperature [12], * (13)

The backscattered electrical current is given by

Q = —(m’ky/3gev) (dv/du)T . ®)  where again the time derivatives are evaluated by com-
muting with the Hamiltonian. This form also holds for
In quantum wires, anharmonic interactions ignoredthe tunnel junction. Notice that the thermal current has
above will couple the right and left moving modes. Thebeen decomposed into a product of two commuting con-
right and left moving thermal currents will no longer be tributions: the even density and the electrical current
independently conserved. However, in a translationallyhich depends only on the odd boson. This remarkable
invariant system, thermal currents cannot fully relax duesimplification enables us to derive an expression relating
to constraints of momentum conservation. Such anharthe thermal and electrical conductances.
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To this end consider the current correlation function,
PR@) = i®@) ([J(1),J(0)]) = i®(1) [P~ (t) — P=(1)],
(14)
from which the electrical conductance follows:
ReG(w) = ~ ImPR(w) = —— [P™(w) — P=()].
w 2w
(15)

Denoting the corresponding correlators for the thermal ReG(w) =
current,J,, with a subscript, the thermal conductance

can be obtained from

o . |

® T?

As one lowers the temperature, the Lorentz number
crosses over from the pure valug, = Ly/g, to the
strong backscattering value (20). For the special case of
g = 1/2, an expression for this crossover can be obtained
explicitly. In particular, wheng = 1/2, a closed form
expression for the ac conductance follows from the exact
solution [5]:

2

8 _ _E
5o | e~ g e @D

with f,, = (ef® + 1)~'. HereT}y is a crossover tempera-
ture scale,Tp ~ té/(lfg) ~ 1} (for g = 1/2). Together
(19) and (21) allow one to compute the Lorentz number

where the latter equality follows upon using the detailedfor arbitrary T/T3. For T > T one findsL = 2L, in

balance relationP; (w) = expBw)Pg(w).

agreement with the pure result (7), but fBr< Tp, the

The relation between the thermal and electrical currentesult is L = 18L,/5—a factor of 32 larger than the
operators (13) allows us to relate their respective correlastrong backscattering result (20). This discrepancy can be

tion functions,
P5(1) = (mv/g)’ D5y ()P=(1), (17)

where D, is the even boson density-density — N)
correlation function. Using the fadb; (1) = D5 (—1)
allows one to express the thermal conductance as

2
K = l(ﬂ> d—wa(w)P<(w)-

18
2\ gT 2 (18)

The functionD; can be readily extracted sindd in (11)
is quadratic inN, giving D; (w) = (g/mv?)welb,.
In addition, using (15),
ance, relates P~ to the electrical

P~(w) = 2wb,ReG(w). We thereby obtain our

along with detailed bal-
conductance:

traced to an irrelevant operator ignored in the perturbative
calculation leading to (20), but included implicitly in the
g = 1/2 crossover. Specifically, consider a perturbation
coupling the electron densities across the junction in the
strong backscattering limit

ﬂpert = ad(x)n+n—. (22)
This term does not transfer charge across the junction,
but does transfer energy and so contributes to thermal
conduction. Moreover, it feeds into the ac electrical
conductance [15] as REw) ~ a’>w?. Insertion into (19)

then gives a contribution to the thermal conductance
varying ask ~ 4*T°3, which must be added to te/¢~!

final expression relating the thermal and electrical conyerm coming from electron tunneling.

ductances through the impurity,

_ 1 w’ReG(w)
k= 8gT? ]d‘“ sint(w /2T)

In the absence of any backscattering, GRe) =
g/2m, which gives the pure resuk = (72/3)k3T /h.
In the limit of strong backscatteringk can be ob-
tained from (18) by calculating®<(w) perturbatively in

(19)

powers of¢,, the electron amplitude to tunnel through

the junction. To leading orderP is the correlation
function of the current/ = r, sin(¢/g), evaluated with
the free odd boson Hamiltonian [i.e., (11) with = 0].

Explicitly, P<(r) = ct2(w T/ sinhartT)*/¢ , wherec is a

nonuniversal constant depending on a short-time cutoff.
The Fourier transform of (17) may then be computed

exactly for o = 0, leading to K = ¢/r2T%¢~!, where

¢ = mc/4gB(1/2,1/g + 1) and B is the beta function.
Sincec also enters irG, it drops out in the Lorentz ratio,
which in this limit is found to be

L =3Lo/(2g + g%). (20)

For noninteracting electrong (= 1) this reduces to the
Fermi-liquid value, but with repulsive interactiong €
1), is larger.
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Three cases should then be distinguished, as sketched
in Fig. 1. For g > 1/2 the electron tunneling term
dominates the thermal transport at low temperatures, and
(20) is correct ag" — 0. For the soluble casg = 1/2
both processes vary &’ and contribute to the Lorentz
number asl’ — 0. Since the coefficientd” depends on
details of the junction, a nonuniversal Lorentz number is
predicted in this case. However, since the contribution to
K from (22) is positive (proportional ta?), the Lorentz

L, A
4-2/g

12/5+C

g<1/2
g=12
g>1/2
g=1

TIT
L S

3/2g+2)
2
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FIG. 1. Lorentz numberL for transport though a single
impurity versus temperature, for several valueg of
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number should be bounded below by (2R).= 12/5 +  number given by (20). Fog < 1/2 an even larger (and
C with C > 0, consistent with the exact solution. Finally, diverging) Lorentz ratio is predicted.
for g < 1/2, the interaction term (22) dominaté&sat low In some conducting polymer samples, the electrical
temperatures and the Lorentz numbarergesasT — 0, conductivity does vary as a power law with temperature
[18]. This power law has been interpreted [18] as
being in the vicinity of a bulk metal-insulator transition.
However, at a 3D Anderson localization transition a
temperature independent thermopower is predicted [19],
Physically, the inclusion of strong electron interactionsin contrast to the measured behavig,~ 7. In a
enables heat to be transported across the junction muchodel of 1D conductors with dilute weak links, a linear
more readily than charge. metallic thermopower would be expected. The Lorentz
To compute the thermopower associated with transaumber provides a further difference between these two
port through the impurity it is necessary to include in themodels. At the Anderson transition the Lorentz number
Hamiltonian (11) terms which break particle-hole symme-is predicted to be suppressed [19] below the Fermi-
try. In addition to bulk cubic interactions arising from dis- liquid value L, by roughly 2/3, whereas our results show
persion, another local term is of the forMicog¢)5(x), an enhanced Lorentz number for 1D thermal transport
which arises from an energy dependence of the matrix eldhrough dilute impurities. It would be most interesting
mentzg. One finds a thermopower linear in temperatureto measure thermal conductivity in conducting polymer
Q = cT, with a nonuniversal coefficient. samples which exhibit power law electrical conductivities.
The present results can readily be generalized to include We thank D.S. Fisher, S.M. Girvin A.J. Heeger,
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