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Origin of Traveling Rolls in Electroconvection of Nematic Liquid Crystals
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Electroconvection in nematic liquid crystals exhibits a Hopf bifurcation to traveling rolls for a wide
parameter range. The model normally used to describe electroconvection fails to predict this. A recent
theoretical extension, the weak-electrolyte model, incorporates the dissociation-recombination reaction
of the ionic dopant in the sample and does predict a Hopf bifurcation for a range of parameter values.
We present a quantitative experimental test of this theory using the nematic liquid crystal 152. Measured
Hopf frequencies at the onset of convection agree well with the theory.

PACS numbers: 83.70.Jr, 47.20.Ky, 47.65.+a

Electroconvection (EC) in nematic liquid crystals as assumed. The WEM incorporates into the SM disso-
(NLC) is a paradigm for pattern formation in anisotropic ciation and recombination of the dopant [16,17], and its
systems [1-4]. An EC cell consists of a NLC doped witheffects on the conductivity. These WEM effects are also
ionic impurities and confined between glass plates whiclknown to exist in other NLC'’s [18].
are coated with transparent electrodes and treated to The WEM reproduces the experimentally observed
produce uniform planar (parallel to the plates) alignmentdependence of the frequeney of the pattern on the
of the directonii (the average molecular orientation). At anisotropye, = ¢ — e, of the dielectric constant, the
a critical valueV, of an applied ac voltage amplitude, conductivity, and the cell thickness. The WEM in-
fluctuations in the anisotropic conductivity resulting from cludes a competition of two fields with different intrinsic
fluctuations ofii generate a local charge density sufficienttime scales, which is a common mechanism of Hopf
to drive a transition from a uniform state to a state withbifurcations in pattern-forming systems [19,20]. The
spatial variation (Carr-Helfrich mechanism) [5]. A great success of the WEM in explaining tHmear properties
variety of spatiotemporal structures is observed, includingf our system is especially important because there is a
rolls [6,7], traveling waves [7—12], defect chaos [9,13], continuous oscillatory instability to spatiotemporal chaos
and chaos at onset [12]. [12]. In principle, it is possible to derivanonlinear

In a theory of EC, the equations for the velocity field, coupled complex Ginzburg-Landau equations from the
the director field, the charge density, and the electrioVEM and to compare their spatiotemporal properties with
field require at least 14 parameters [5]. Nonetheless, the observed [12] spatiotemporal complexity. Usually
detailed linear stability analysis [2] of the model originally this is not possible for chaotic systems [21] because the
introduced by Helfrich [14] and subsequently developed byrimary bifurcation is backwards, because chaos occurs
a number of authors (see Ref. [5] and references thereimnly after secondary bifurcations, or because the system
guantitatively predicts botl, and the initial wave vector size accessible to experiments is too small.
of the pattern. However, this model, which we will referto  In the WEM, there are two ionic charge carriers
as the standard model (SM), fails to predict the travelingwith charges=e [16], which are coupled through a
roll states (Hopf bifurcation), which are observed experi-dissociation-recombination reaction for their number den-
mentally [7—-12]. A number ofpossiblereasons have sities n*(x,t) and n~(x,t) [17], and the ionic species
been suggested, including imperfect director alignmenhave constant, possibly different, mobility tensqus
and conductivity effects [2,3]; however, until the recentlywith principal values perpendicular and parallel #o
introduced generalization of the SM, the weak-electrolyteuT, and ,u”i respectively. The,u(j”) are defined in
model (WEM) [15], no detailed theory has predicted theterms of the ion’s steady-state velocities in a quiescent
existence of traveling rolls in EC. fluid with an applied electric fieldu(im = Ma,”)E(L,H)-

In the SM, the dynamics of the velocity and director The ratio u/®, is assumed to be the same for both
fields are governed by a generalized Navier-Stokes equapecies. The WEM expresses the total space-charge den-
tion and by equations for the director [2,5]. The dynam-sity p(x, ), which already appears in the SM a&, 1) =
ics of the charge density is governed by the continuitye[n " (x,7) — n~(x,1)]. Unlike for the SM, the local con-
equation with the charge and current densities related tductivity tensor is an additional variable with components
the electric field by Gauss’ law and Ohm’s law. Experi-given by o;;j(x,1) = o(x,1)[6;; + ninj(u/m. — D],
mental work on EC [11] using the NL@-ethyl-2-fluoro- wheren; are the director components adAg is the Kro-
4'-[2-(trans-4-pentylcyclohexyl)-ethyl] biphen{l62) has necker delta function. Here(x,1) = e[uin™(x,1) +
shown that the conductivity is not frequency independenju n~ (x, )]
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The WEM consists of two equations which couplewhere R = (V/V©)? is the control parameter anf
o(x,1) and p(x, r) plus the SM equations fai and fluid the angular frequency of the applied voltage. The di-
velocity v. The new equations for and p are given agonal coefficientsA,(R) = —7,.! — le(Rdz,B)/[l +
in Ref. [15], and the SM equations are in Ref. [2]. The(gQ7,)*] < 0 and A,(R) = e/mo" are the growth rates
charge density is coupled # andv as in the SM, and of the ¢ mode and the SM amplitude, respectively. Here
o(x,t) couples toi andv via the conductivity tensor and € = R/R. — 1 is the relative distance from threshatd,
the advection term. The boundary conditions in the experir$™ is the correlation time of the SM amplitude equation
ment are unknown, but using the frequency dependend® (r,;)], and B =[(1 + e,/€.)(g.d)* + (p.d)* +
of the capacitance we determined experimentally that the]/[(1 + o,/0 ) (g.d)* + (p.d)*> + 1] = 0.85. The
thickness of the charged boundary layers at the electrodgimensionless quantityC contains only SM quanti-
is small compared tad. In this limit, the model is ties [15] and is of order unity for our experiments
insensitive to the boundary conditions [15]. [22]. The effective conductivity anisotropyri ~

The.SM has two relevant time scales: a charge-ga[ﬂ — e,0,/oq.€,)/[1 + (BQr,)?] is  propor-
relaxation time 7, = epe /oy and the director- tional to the charge produced by the Carr-Helfrich mecha-
relaxation time 7, = y1d*>/Kiw®. Here e, is the pism [5]. The decisive coupling which provides the Hopf
principal value of the dielectric-constant tensor per-mechanism is proportional t@> = ut puly172/oad>.

pendicular ton, y; is a typical viscosity,Ki1 is an |t grivesA, negative ast, grows, with the result that,,
orientational elastic constant, and, and o are the acts to retard the growth of,.

equilibrium principal values of the conductivity tensor. There are two main predictions of the WEM. For
Typically, 74 is O(1 s) and 7, is 0107 9). The WEM  gyfficiently high mobilities and small recombination rates,
has two additional time scales: a recombination timnere is a nonzero Hopf frequenay at threshold (the
Tec = 1/(2k.ngp) for the dissociation-recombination reac- imaginary part of the growth rate of tfeX 2 equations

tion and a migration timemi; = d*/7*(ul + w1 )V? s nonzero for zero real pary = @ /1 — [As(R.)/@ 2,
for a charge to traverse the cell under an applied voltagghere

V©® which is of the order of the critical voltage for —

low external frequencies. Here is the recombination & = (1)3 R.K1y MM )
rate of the ions,ng is the equilibrium number density d) 1+ (BQr,)? \ yiow

of either species of ions, and® = #[K,/(7,0,)]"/?, _ _ _
with o, = o) — .. The SM is recovered in the limit There is an upward shift oR. relative to the SM

Of Trec /7y — 0 @NdTypig /7, — . prediction. For nonzera, the shift is
In Ref. [15] the WEM was applied to rolls with their R. — RSM
axes perpendicular td (normal rolls). For quantitative Ae = ——— = —$MA,(R.), 3)

. . . . . SM
comparison with the present experiment, we applied it to R:
the more general case of rolls with a nonzero anle which is generally less than 1%. Within the accuracy

between their wave vectors and the undistorted directo(gf the measured material parameters, the WEM predicts
(oblique rolls), where one also hgsomponents ofi and the SM values folV, and ® which generally agree with

the velocity field which are already predicted by the SM'experiment 2]

With zperpiendicullar to the electrodes anparallel to the_ The apparatus [11] consisted of a computer-controlled
undistortedh, the fields of the WEM were expanded using imagining system, temperature-control stage with a stabil-

a Galerkin expansion im and a Fourier mode with wave ity of =1 mK and range up to 68C, and electronics for

numbersg andp in the x andy directions, respectively. applying the ac voltage and measuring the conductivity of
Ghe cells. The voltage amplitude ranged up to 40 V at a
frequencyQ /27 from 10 to 200 Hz. Planar alignment
was obtained with a rubbed polyimide film which was spin
. coated onto the transparent electrodes of indium-tin oxide.
A‘T(t)’ and fof the ampl_|tudes of the Io_west—order mOdeThe 152 was doped with 2% by weight molecular iodine
in the Galerkin expansion of the F((());Jrler mode .of the [23]. Usually,d was28 =+ 2 um, uniform to=0.5 m.
andy components ofi, n{” (1), andny"(r), respectively. ~ The frequency dependence of the measured conductivities
The critical SM modeA,(7) is a linear combination of \yas consistent with predictions of the WEM [24].
nO(t) andn!” (1), and near threshold, the three ODE’s can We measured the critical voltag¥,, the angle ®
be further reduced systematically (restricting to the lineabetween the wave vector and the undisturlbiecnd the
part) to a2 X 2 normal form forA,(r) andA,(¢) given by  Hopf frequencyw as a function of). The e resolution
Aa- — A, (R)A, — ~2Ro_éeff)(a.LTd)71An, was 0.001. For each, w was determined_from a time
series of small9d X 94 about2.57, apart) images, and
a larger(46d X 46d) image was used to measufe For
each single image we computed the spatial power spectrum
(1) S(k), and for each time series we computsk, w).

of three ordinary differential equations (ODE’s) in (slow)
time with real coefficients for the amplitude of the local
deviation of the conductivity from its equilibrium value,

A, =

RG’L< C

2
) A A

(eff)
Oa Td
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For S(k), there were two pairs of peaks corresponding tdFig. 2(a)] is related primarily to experimental uncertain-
coexisting zig and zag rolls (states with angland7 —  ties in the very small measured conductivity. For most of
0, respectively). ForS(k, w), there were four pairs of the data, experiment and theory agree to within 5% of
peaks corresponding to right- and left-traveling zig and zagince the SM prediction i® = 0 [not shown on the scale
rolls. We average® = tan !(p/q) of the two modes, used in Figs. 2(a) or 2(b)], we regard this as quantitative
where the componentsandp of k were determined from support for the WEM.
the first moment of the relevant peakstk). We used the The WEM captures a number of features of the
averagew of the four degenerate traveling rolls computedexperiment which are independent of the uncertainties
from an average of the relevant peaksSik, w). in the material parameters. Both in the model and in
We determinedV. using the total power under the the experiment, th&) dependence ofv is determined
relevant pairs of peaks ifik) andS(k, w). The transition mostly bye,. Fore, < 0 (T < 60 °C) w increases with
is forward, i.e., nonhysteretic and continuous [12], and(), and fore, = 0 (T = 60 °C) it is essentially constant
S(k) and S(k, w) yielded the same results féf.. Both  [see Figs. 2(a) and 2(b)]. In addition, the model predicts

® and w were determined as a function ef and the 4, « ¢, '"/?4=3. The correct dependence on temperature
va_llue obtained by extrapolating o= 0 was compared ;, Figs. 2(a) and 2(b) reflects thell/z scaling ¢,
with theory.. . varies by factor of 5 over the temperature rarffe=
A meaningful test of the WEM requires knowl- , _ ¢\ °C). Figure 2(c) compares results from a 2é&
edge. of the following SM parameters: the_ _threece” with those from a 57.m cell, both at 50C. We find
elastic ~ constants (Kii, K»,K33), Six  viscosities he expected scaling with for high values of). In the
(a1, @y, @3, ay, as, ag), o1, o, €., €, and d. WEM, the decrease ab to zero for the thicker cell occurs
In addition, two new parameterguiul and A,(R.) whena becomes of ordei, and depends on the value
are needed. The requirement that the WEM recovers thef 7... Further work is needed to test the theory in this
correct SM prediction folV, and ® sets an upper limit regime, since an extremely fine tuning . is required
on A,(R.) from I/\(,(RC)IT(?M < 1. The SM parameters to match the experiment.
were all determined [25] from literature values, indepen- The evidence presented here strongly supports the con-
dent measurements, and by fitting our results¥prand  clusion that the WEM has captured the main mechanism
0O for all six temperatures. Typical examples of the fitsof the Hopf bifurcation in EHC which was missing in the
are shown in Fig. 1. SM. In both the models, the charge density (which is
Both 5™ and27 /@ areO(1 9), s0|A, (R < 1
implies [A,(R.)/®]* < 1. Therefore,w =~ @ and is
computed using Eg. (2) with only one adjustable pa-

rameter,4/u u1 [25], for each temperature. The in-
creased discrepancy (up to 15%) at the lower temperatures

o (sec™)

Ve (V)
o (sec!)

O (degrees)
wc2d® x10'8

Q’tq

FIG. 2. Hopf frequencyw as a function ofQQ7,. The SM
FIG. 1. Critical rms voltage amplitud®., and angle® of predictionw = 0 is well below the bottom of (a) and (b). The
the wave vector with respect #, as a function of the dimen- abrupt change of slope in the theoretical curves of (a) and (b)
sionless applied frequendyr,. Herer, = ee /o.. (@) V. corresponds to the Lifshitz point. (&) = 30 °C (circles), 35C

for T = 30 °C (circles, solid line) and 4%C (diamonds, dashed (squares), and 4@ (triangles). (b)T = 45°C (diamonds),
line). The symbols (lines) are the experimental (theoretical) re50°C (triangles), and 6aC (circles). Lines correspond to the
sult. TheQ7, — 0 limit is used to determine the temperature WEM. (c) @ '/?d* as a function of} 7, for 4 = 28 um and
dependence of, /o, [25]. (b) ® for T = 45°C. Thetem- o, =85X 1072 Q 'm™! (triangles) and ford = 57 um
perature dependence 6 is relatively weak. ando, = 1.1 X 1078 Q~'m™! (circles), both a" = 50 °C.
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proportional toA, for 7,/7, < 1) drives the instability
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