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Insulator-Metal Transition in the One- and Two-Dimensional Hubbard Models
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We use quantum Monte Carlo methods to deterndine 0 Green functionsG(7, w), on lattices up
to 16 X 16 for the 2D Hubbard model a7/ = 4. For chemical potentialg within the Hubbard gap
lul < w. and atlong distancesr, G(F,w = u) ~ e~ "4 with critical behavioré, ~ |u — pel™,
v = 0.26 = 0.05. This result stands in agreement with the assumption of hyperscaling with correlation
exponentr = 1/4 and dynamical exponeni = 4. In contrast, the generic band insulator as well
as the metal-insulator transition in the 1D Hubbard model are characterized=byt /2 and z = 2.
[S0031-9007(96)00052-X]

PACS numbers: 71.27.+a, 71.10.Fd, 71.30.+h

At zero temperature a continuous metal-insulator tran- H— uN=—1 Z c;(rc;’g
sition (MIT) driven by a change in chemical potential Qe
may be characterized by the compressibiliy, or the 4 UZ(n* _ 1)( X 1)
Drude weight,D. In the Mott insulating phase both =\t AT
1

and y. vanish, while they remain finite in the metallic

phase [1,2]. In order to describe the MIT from the insu- - U chgc;’g. (1)
lator side, we propose to consider the zero-temperature i

Green functionG(7, w) [3]. At long distances|#|, and - = . 4
for values of the chemical potentiak, within the charge Here, <l’J? Qenotes nearest ne|ghbor$.;’0 (¢ 0) cre-
gap, namely,|ul < pe, G(F,@ = u) ~ e P& The ates (apnlbllates) an eIeTctron Wlthco.mponer?t of spin
MIT may be characterized by the divergence &fas ¢ ©On Sitei andn;, = ¢; ¢j,. In this notation, half-
the critical chemical potentialy., is approached from band filling corresponds tq. = 0. We start by con-
the insulating phase.£, may be interpreted as the lo- Sidering the noninteracting case]/: = 0. In Fourier
calization length involved in transferring a particle oversPace, the single-particle energies are given epy=

a distance7 from the electronic system to the heat —2t[codka,) + codkay)], ax, a, being the lattice con-
bath lying at energyu within the charge gap. In this stants. The length scale is set | = |a,| = 1. At
Letter, based on a recently developed numerically stazero temperature, an insulator-metal transition will occur
ble quantum Monte Carlo (QMC) algorithm to calculatewhen u — u. = 4¢. For those chemical potentials, the
zero-temperature imaginary time Green functions [4], wezero-temperature Green function [3] @t= u is given
calculateé; for the two-dimensional (2D) repulsive Hub- by

bard model atU/r = 4. A great advantage of study- 2 ik
ing the MIT by approaching it from the insulating phase G(F,o = p) = N —, 2
is that the QMC method does not suffer from the A

negative sign problem, and hence proves to be a pow- .
erful tool, especially for ground state properties. Us—Where N denotes the number of sites of the square

ing this approach for the first time to estimate criticallaﬁICe and the facton corresponds fo the summation
. . over the spin degrees of freedom. Numerically, one
exponents of the MIT, we obtain the following accu-

: : ; obtains G(F,w = u) ~ e I7/é with critical behavior
racy: u. = 0.67 = 0.015 in units of the hopping ma- £~ | _( “],1/2“%8] As will be discussed bolow
trix element and¢; ~ |u — pe|™” with » = 0.26 = ] IR e ' ’

0.05. This result corresponds to the first direct deter_thls example of a band insulator-metal transition satisfies

mination of the exponent and provides unambiguous the hyperscaling assumption with exponents- 1/2 and

numerical evidence that the Mott transition in the 2Dch:azritifef;trofrlr?:en(\e/filtl:ulisart?;g{:to:kng hz‘;ﬁggo:]”gnga”
Hubbard model belongs to a novel universality class. . 9 bp quaily

— _ 71/2 . . .
Under the assumption of hyperscaling, this universality\é'géisfé i salt'itg fy t#eclhypérstgmegvggstgﬁpi%%mx'matlon

class is characterized by a correlation length exponen The physical interpretation of, is facilitated by con-

v=1/4 and dynamlcal exponent = 4 [2]'. In contrast, sidering the single impurity Hamiltonian (Fano-Anderson
the generic band insulator in all dimensions, as well as

the Mott transition in the 1D Hubbard model, satisfy themOdel) [9.10]:
hyperscaling assumption with exponenis= 1/2 and
z =2 [2,5-7].

The Hubbard model we consider reads

<c}:b + bfc,;>.

H = Zekcgc,; + EbbTb +
¢ 3)

l‘_b
o

3176 0031-900796/76(17)/3176(4)$10.00 © 1996 The American Physical Society



VOLUME 76, NUMBER 17 PHYSICAL REVIEW LETTERS 22 ARIL 1996

Here, b! creates an electron in the impurity state ateigenvalueEY in the N-particle Hilbert space. With this
the origin and energy,. The hybridization between notation,
the localized state and the band electrons alters the

energy of the impurity level to the valug, = €, + GF=0,7)= ZGU(; =0,7)

(ty/N) S;i[1/(E, — €)]. We will assumeE;, > ¢; for -

all k. When all single particle states of the valence band _ 1 Z R2AEEAAINE
are filled and the impurity single particle state empty, the N < 0 it T

n,i,o

probability amplitude of transferring a band electron at X exd—r(EN*! — EN)] (6)

site 7 to the impurity state is

(Wolbtei|Wy)

th ik - F for 7 > 0. Figure 1(a) plotsG(7 = 0,7) for a 16 X 16
= —a(E) D
(WolWo) N <

P (4)  Jlattice atU/t = 4. We may obtain a reliable estimate
of the charge gap for this lattice size by fittig(r =
0,7) by the form e 27 with A, = E) ™' — E} for
large values ofr. Figure 1(b) showsA. as a function
eﬁf linear lattice size. The data points for lattice sizes

where the normalization factor is given by
a Y (Ey) =1+ (;/N) Y;1/(Ey — €)®.  Compari-
son between Egs. (4) and (2) shows that the spati fanging from4 X 4 to 16 X 16 fit very well a 1/L

dependence of the two quantities is identicaj; may . .
thus be interpreted as the localization length involved i orm which we use to extrapolate to the thermodynamic

transferring a particle over a distanédrom the valence limit to obtain A/r = (.)'67  0.015. This result stands
band to the heat bath [see Eq. (2)], or to the impurity statd! good agreemgnt with the quoted resu_lt of Furukawa
[see EqQ. (4)]. This definition of; bears some similarity and .Imada [17]:Ac/r = 0.58 = 0.08. Sm_cg In th?
to that applied in finite size scaling studies of Anderso potation of Eq. (1) the HUbb"’.‘r.d model _sat|sf|es partl_cle-
localized states [11,12]. When the imaginary part of th ole symmetry ap. = 0, the critical chemical potential is

' - i i i nothing but the charge gap. = A..
Séeueslgutgcgt?:j; ?ﬁf&(ﬁ.m the insulating phagemay For values of the chemical potential within the charge

To obtain an estimate of the critical exponentfor 93P |lul < pc, the zero-temperature Green function is
the Hubbard model, we require an accurate determinatioffa! @nd may be obtained through the relation

of the critical chemical potentialy., as well as of the . o .
localization length&;. Both quantities may be obtained G(r.o =p) =~ f_w drG(r,T)e™. (7
from the knowledge of
<\If0|c;,(,(r)c(i)r [Wo) The Green functionG(7, 7) is computed at half-band
G,(F,7) = O(7) <\I’0|‘If0;r filling, where the sign problem is not present and
<‘1’0|Ci;,g(—7)66,0|‘1’0>
- 6(=7) (Wl W) - (9) InG(F=0,7) Tt
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
where c; (1) = e™c; ,e ™. Here, |¥,) denotes the TLo0 P T
ground state of the half-filledu = 0) Hubbard Hamil- -30
tonian (1). The above quantity may be efficiently cal- i
culated with QMC methods. Since we are at half-band 50
filling, the sign problem does not occur, and we are able 11

to consider lattice sizes up to linear dimensibr= 16,
namely, N = 16 X 16 without any serious difficulties.
The calculation of imaginary time Green function in the
zero-temperature auxiliary field QMC algorithm [13,14]
was first reported by Deiset al.[15]. However, their
approach does not incorporate a numerical stabilization 0.6 A/t = pe/t = 0.67£0.015
scheme, and they are thus restricted to small values of
(i.e., 7t ~ 2.5). Based on ideas used for the stabilization | ' | | | |
of finite temperature QMC algorithms [16], the authors 04 S0 0.05 0.10 0.15 0.20 0.25
have developed a numerically stable QMC algorithm for A/t 1L

the calculation ofG, (7, 7). The details of the algorithm
may be found in Ref. [4]. All our calculations were per- FIG. 1. (a) InG(7 = 0, 7) as a function ofr for the half-filled
formed with periodic boundary conditions. (u = 0) 2D Hubbard model at//r = 4 on al6 X 16 lattice.

J . . The solid line corresponds to a least square fiG§F = 0, 7)
From the knowledge o6, (7, 7) on anN-site lattice, by the form exp—A,7) at large values of 7. (b) A, as a

we may obtain an estimate of the charge gap. We denotgnction of linear lattice sizé.. The solid circle atl/L = 0
by |¥Y) the eigenvector of the Hamiltonia®@ with  corresponds ta. as obtained in Ref. [17].
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the statistical uncertainty does not grow exponentially U/t=4,{n) =1

with lattice size. However, since we are multiply- 0 "

ing the QMC data by the factoe™, the statistical . o |G(7 = (L/2,L/2),w = p)
uncertainty will grow exponentially with increasing i = 06
values of 7 for ru > 0. For each lattice sizd., we - /t——0.5
have considered the largest distanée= (L/2,L/2). 3 ﬁ/t;_@
For this distance,G(r = (L/2,L/2),7) is plotted in \ uft=—03
Fig. 2. Because of particle-hole symmetry at= 0, -l pft=-02
G(r=(L/2,L/2),7) = —G(F = (L/2,L/2),—7). For -5 W/t =—0.1
the imaginary time integration [see Eq. (7)] and values of " | | | | | |
the chemical potentidlu| < 0.65¢, a cutoff of 7 = 10 2 4 6 8 10 12 14
proved to be sufficient for the determination of the Green [(L/2,L/2)|

function (see Fig. 2).G(* = (L/2,L/2),w = u) as a

function of lattice size is plotted in Fig. 3 for several Q&e&an'g'%i;iéél/ zr;été ﬁ)t’igf TO#)tL:SZ%fuﬂﬁgggrgf gﬁ)—del
values of u. For latt!ce sizes ranging from :.6 .to The solid lines correspond to a least square fit|G{r =

L =16, an e_xponentlal _decay may be seen within th?(L/z,L/z),w — w)| by the form exp—|7|/¢&) for L > 4.
quoted statistical uncertainty. From these data, we obtain

an estimate of the localization lengéh. With the above

determined value ofi., we plot|u — u.| versusé, (see ) ) ) )

Fig. 4) on a log-log plot. For all considered chemicalWhere A = [u — uc|, d is the dimensionality, and-
potentials,&; /a < 8+/2 which corresponds to our largest (z) correspond; to the correlation length (dynamical)
considered distancéL = 16). The slopes in Fig. 4 €xponent[2]. Since the control paramefecorresponds
correspond to values of the critical exponent= 1/2  to the chemical potential, one obtains the additional
and » — 1/4. The QMC data are consistent with Constraintvz = 1 as well asd ~ A”@*9~1, 5 being the

v = 1/4 and seem to rule out the possibility = 1/2. doping concentration. In this formulation, the generic
A statistical analysis yields = 0.26 =+ 0.05. band insulator in all dimensions, as well as the Mott

the Mott transition in the 1D Hubbard model@y: — 4.  the exponents = 1/2andz = 2[2,5-7]. This stands in

A similar QMC calculation as described above for the@dreement with our QMC resulf; ~ |u — el 712, for _
2D case yields a value of the correlation length exponeri’€ 1D Hubbard model. In the 2D case we may combine
consistent withy — 1/2 (see Fig. 5). We obtaip./r — OUr result in the insulating phase; ~ |u — p|™'"*,
0.66 = 0.015, which is consistent with the exact result of With the compressibility data of Furukawa and Imada [17]

Lieb and Wu [18].e./t = 0.643. Chains of linear length in the metallic phasey. ~ [u — u.|™'/?, to see that the
up toL = 24 were considered. above scaling relations are satisfied provided that

An interpretation of our results may be obtained by!/4 andz = 4. We note that our result for the 2D case
assuming a hyperscaling form for the singular part of thé'@s the following consequences. On one hand, it shows

2D case (e.qg., the Hartree-Fock approximation, mean-field
E~AT", ye~ATVED p o AYETET) approximations of slave bosons, etc.) are inadequate since
8

Two-dimensional Hubbard model.

]
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FIG. 4. Localization length¢; versus|u — w.| for the 2D
Hubbard model. The solid lines correspond to two values of
FIG. 2. |G(r = (L/2,L/2),7)| as a function of system size the correlation length exponemt = 1/4 and v = 1/2. The
and imaginary timer for the 2D Hubbard model. solid circles correspond to the QMC data.
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One-dimensional Hubbard model. as dimerized Hubbard models, the method presented here
is not plagued by the sign problem, and large lattice sizes
may be considered.
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FIG. 5. Same as Fig. 4 but for the 1D Hubbard model.
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