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We use quantum Monte Carlo methods to determineT ­ 0 Green functions,Gs$r , vd, on lattices up
to 16 3 16 for the 2D Hubbard model atUyt ­ 4. For chemical potentialsm within the Hubbard gap
jmj , mc and at long distances$r, Gs$r , v ­ md , e2j$rjyjl with critical behaviorjl , jm 2 mcj

2n,
n ­ 0.26 6 0.05. This result stands in agreement with the assumption of hyperscaling with correlat
exponentn ­ 1y4 and dynamical exponentz ­ 4. In contrast, the generic band insulator as well
as the metal-insulator transition in the 1D Hubbard model are characterized byn ­ 1y2 and z ­ 2.
[S0031-9007(96)00052-X]

PACS numbers: 71.27.+a, 71.10.Fd, 71.30.+h
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At zero temperature a continuous metal-insulator tra
sition (MIT) driven by a change in chemical potentia
may be characterized by the compressibility,xc, or the
Drude weight,D. In the Mott insulating phase bothD
and xc vanish, while they remain finite in the metallic
phase [1,2]. In order to describe the MIT from the ins
lator side, we propose to consider the zero-temperat
Green functionGs$r , vd [3]. At long distances,j$rj, and
for values of the chemical potential,m, within the charge
gap, namely,jmj , mc, Gs$r , v ­ md , e2j$rjyjl . The
MIT may be characterized by the divergence ofjl as
the critical chemical potential,mc, is approached from
the insulating phase.jl may be interpreted as the lo
calization length involved in transferring a particle ove
a distance $r from the electronic system to the hea
bath lying at energym within the charge gap. In this
Letter, based on a recently developed numerically s
ble quantum Monte Carlo (QMC) algorithm to calculat
zero-temperature imaginary time Green functions [4], w
calculatejl for the two-dimensional (2D) repulsive Hub
bard model atUyt ­ 4. A great advantage of study-
ing the MIT by approaching it from the insulating phas
is that the QMC method does not suffer from th
negative sign problem, and hence proves to be a po
erful tool, especially for ground state properties. U
ing this approach for the first time to estimate critic
exponents of the MIT, we obtain the following accu
racy: mc ­ 0.67 6 0.015 in units of the hopping ma-
trix element andjl , jm 2 mcj2n with n ­ 0.26 6

0.05. This result corresponds to the first direct dete
mination of the exponentn and provides unambiguous
numerical evidence that the Mott transition in the 2
Hubbard model belongs to a novel universality clas
Under the assumption of hyperscaling, this universal
class is characterized by a correlation length expon
n ­ 1y4 and dynamical exponentz ­ 4 [2]. In contrast,
the generic band insulator in all dimensions, as well
the Mott transition in the 1D Hubbard model, satisfy th
hyperscaling assumption with exponentsn ­ 1y2 and
z ­ 2 [2,5–7].

The Hubbard model we consider reads
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Here, k$i, $jl denotes nearest neighbors.c
y
$i,s

sc$i,sd cre-
ates (annihilates) an electron withz component of spin
s on site $i and n$i,s ­ c

y
$i,s

c$is . In this notation, half-
band filling corresponds tom ­ 0. We start by con-
sidering the noninteracting case,Uyt ­ 0. In Fourier
space, the single-particle energies are given bye$k ­
22tfcoss $k $axd 1 coss $k $aydg, $ax , $ay being the lattice con-
stants. The length scale is set byj $axj ­ j $ayj ­ 1. At
zero temperature, an insulator-metal transition will occ
when m ! mc ­ 4t. For those chemical potentials, th
zero-temperature Green function [3] atv ­ m is given
by

Gs$r, v ­ md ­
2
N

X
$k

ei $k?$r

e$k 2 m
, (2)

where N denotes the number of sites of the squa
lattice and the factor2 corresponds to the summatio
over the spin degrees of freedom. Numerically, o
obtains Gs$r , v ­ md , e2j$rjyjl with critical behavior
jl , jm 2 mcj

21y2 [8]. As will be discussed below,
this example of a band insulator-metal transition satisfi
the hyperscaling assumption with exponentsn ­ 1y2 and
z ­ 2. At finite values of Uyt and half-band filling
the antiferromagnetic Hartree-Fock approximation equa
yieldsjl , jm 2 mcj21y2. However, this approximation
does not satisfy the hyperscaling assumption.

The physical interpretation ofjl is facilitated by con-
sidering the single impurity Hamiltonian (Fano-Anderso
model) [9,10]:

H ­
X

$k

ekc
y
$k
c$k 1 ebbyb 1

tbp
N

X
$k

≥
c

y
$k
b 1 byc$k

¥
.

(3)
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Here, by creates an electron in the impurity state
the origin and energyeb . The hybridization between
the localized state and the band electrons alters
energy of the impurity level to the valueEb ­ eb 1

st2
byNd

P
$kf1ysEb 2 e$kdg . We will assumeEb . e$k for

all $k. When all single particle states of the valence ba
are filled and the impurity single particle state empty, t
probability amplitude of transferring a band electron
site $r to the impurity state is

kC0jbyc$r jC0l
kC0jC0l

­ 2asEbd
tb

N

X
$k

ei $k ? $r

e$k 2 Eb
, (4)

where the normalization factor is given b
a21sEbd ­ 1 1 st2

byNd
P

$k 1ysEb 2 e$kd2. Compari-
son between Eqs. (4) and (2) shows that the spa
dependence of the two quantities is identical.jl may
thus be interpreted as the localization length involved
transferring a particle over a distance$r from the valence
band to the heat bath [see Eq. (2)], or to the impurity st
[see Eq. (4)]. This definition ofjl bears some similarity
to that applied in finite size scaling studies of Anders
localized states [11,12]. When the imaginary part of
Green function vanishes in the insulating phase,jl may
be used to study the MIT.

To obtain an estimate of the critical exponentn for
the Hubbard model, we require an accurate determina
of the critical chemical potential,mc, as well as of the
localization length,jl . Both quantities may be obtaine
from the knowledge of

Gss$r , td ­ Qstd
kC0jc$r ,sstdcy

$0,s
jC0l

kC0jC0l

2 Qs2td
kC0jc

y

2$r ,ss2tdc$0,s jC0l
kC0jC0l

, (5)

where c$r ,sstd ­ etH c$r ,se2tH . Here, jC0l denotes the
ground state of the half-filledsm ­ 0d Hubbard Hamil-
tonian (1). The above quantity may be efficiently ca
culated with QMC methods. Since we are at half-ba
filling, the sign problem does not occur, and we are a
to consider lattice sizes up to linear dimensionL ­ 16,
namely, N ­ 16 3 16 without any serious difficulties
The calculation of imaginary time Green function in th
zero-temperature auxiliary field QMC algorithm [13,1
was first reported by Deiszet al. [15]. However, their
approach does not incorporate a numerical stabiliza
scheme, and they are thus restricted to small valuest
(i.e., tt , 2.5). Based on ideas used for the stabilizati
of finite temperature QMC algorithms [16], the autho
have developed a numerically stable QMC algorithm
the calculation ofGss$r, td. The details of the algorithm
may be found in Ref. [4]. All our calculations were pe
formed with periodic boundary conditions.

From the knowledge ofGss$r, td on anN-site lattice,
we may obtain an estimate of the charge gap. We de
by jCN

n l the eigenvector of the HamiltonianH with
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eigenvalueEN
n in the N-particle Hilbert space. With this

notation,

Gs$r ­ 0, td ;
X
s

Gss$r ­ 0, td

­
1
N

X
n,$i,s

jkCN
0 jc$i,s jCN11

n lj2

3 expf2tsEN11
n 2 EN

0 dg (6)

for t . 0. Figure 1(a) plotsGs $r ­ 0, td for a 16 3 16
lattice at Uyt ­ 4. We may obtain a reliable estimate
of the charge gap for this lattice size by fittingGs$r ­
0, td by the form e2Dct with Dc ; EN11

0 2 EN
0 for

large values oft. Figure 1(b) showsDc as a function
of linear lattice size. The data points for lattice size
ranging from 4 3 4 to 16 3 16 fit very well a 1yL
form which we use to extrapolate to the thermodynam
limit to obtain Dcyt ­ 0.67 6 0.015. This result stands
in good agreement with the quoted result of Furukaw
and Imada [17]: Dcyt ­ 0.58 6 0.08. Since in the
notation of Eq. (1) the Hubbard model satisfies particl
hole symmetry atm ­ 0, the critical chemical potential is
nothing but the charge gapmc ; Dc.

For values of the chemical potential within the charg
gap, jmj , mc, the zero-temperature Green function
real and may be obtained through the relation

Gs $r, v ­ md ­ 2
Z `

2`
dtGs$r , tdetm. (7)

The Green functionGs$r , td is computed at half-band
filling, where the sign problem is not present an

FIG. 1. (a) lnGs$r ­ 0, td as a function oft for the half-filled
sm ­ 0d 2D Hubbard model atUyt ­ 4 on a16 3 16 lattice.
The solid line corresponds to a least square fit ofGs$r ­ 0, td
by the form exps2Dctd at large values of t. (b) Dc as a
function of linear lattice sizeL. The solid circle at1yL ­ 0
corresponds toDc as obtained in Ref. [17].
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the statistical uncertainty does not grow exponentia
with lattice size. However, since we are multiply
ing the QMC data by the factoretm, the statistical
uncertainty will grow exponentially with increasin
values of t for tm . 0. For each lattice sizeL, we
have considered the largest distance$r ­ sLy2, Ly2d.
For this distance,Gsss$r ­ sLy2, Ly2d, tddd is plotted in
Fig. 2. Because of particle-hole symmetry atm ­ 0,
Gsss$r ­ sLy2, Ly2d, tddd ­ 2Gsss$r ­ sLy2, Ly2d, 2tddd. For
the imaginary time integration [see Eq. (7)] and values
the chemical potentialjmj , 0.65t, a cutoff of tt ­ 10
proved to be sufficient for the determination of the Gre
function (see Fig. 2). Gsss$r ­ sLy2, Ly2d, v ­ mddd as a
function of lattice size is plotted in Fig. 3 for sever
values of m. For lattice sizes ranging fromL ­ 6 to
L ­ 16, an exponential decay may be seen within t
quoted statistical uncertainty. From these data, we ob
an estimate of the localization lengthjl. With the above
determined value ofmc, we plot jm 2 mcj versusjl (see
Fig. 4) on a log-log plot. For all considered chemic
potentials,jlya , 8

p
2 which corresponds to our larges

considered distancesL ­ 16d. The slopes in Fig. 4
correspond to values of the critical exponentn ­ 1y2
and n ­ 1y4. The QMC data are consistent wit
n ­ 1y4 and seem to rule out the possibilityn ­ 1y2.
A statistical analysis yieldsn ­ 0.26 6 0.05.

To confirm the validity of our approach, we consid
the Mott transition in the 1D Hubbard model atUyt ­ 4.
A similar QMC calculation as described above for th
2D case yields a value of the correlation length expon
consistent withn ­ 1y2 (see Fig. 5). We obtainmcyt ­
0.66 6 0.015, which is consistent with the exact result o
Lieb and Wu [18]:mcyt ­ 0.643. Chains of linear length
up toL ­ 24 were considered.

An interpretation of our results may be obtained
assuming a hyperscaling form for the singular part of t
free energy which leads to the scaling relations

jl , D2n , xc , D2nsz2dd, D , Dnsd1z22d,

(8)

FIG. 2. jGsss$r ­ sLy2, Ly2d, tdddj as a function of system size
and imaginary timet for the 2D Hubbard model.
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FIG. 3. lnjGsss$r ­ sLy2, Ly2d, v ­ mdddj as a function of dis-
tance and chemical potential for the 2D Hubbard mod
The solid lines correspond to a least square fit ofjGsss$r ­
sLy2, Ly2d, v ­ mdddj by the form exps2j$rjyjld for L . 4.

where D ­ jm 2 mcj, d is the dimensionality, andn
szd corresponds to the correlation length (dynamic
exponent [2]. Since the control parameterD corresponds
to the chemical potential, one obtains the addition
constraintnz ­ 1 as well asd , Dnsd1zd21, d being the
doping concentration. In this formulation, the gener
band insulator in all dimensions, as well as the Mo
transition in the 1D Hubbard model, are characterized
the exponentsn ­ 1y2 andz ­ 2 [2,5–7]. This stands in
agreement with our QMC result,jl , jm 2 mcj21y2, for
the 1D Hubbard model. In the 2D case we may comb
our result in the insulating phase,jl , jm 2 mcj

21y4,
with the compressibility data of Furukawa and Imada [1
in the metallic phase,xc , jm 2 mcj21y2, to see that the
above scaling relations are satisfied provided thatn ­
1y4 andz ­ 4. We note that our result for the 2D cas
has the following consequences. On one hand, it sho
that mean-field descriptions of the Mott transition in th
2D case (e.g., the Hartree-Fock approximation, mean-fi
approximations of slave bosons, etc.) are inadequate s

FIG. 4. Localization lengthjl versusjm 2 mcj for the 2D
Hubbard model. The solid lines correspond to two values
the correlation length exponentn ­ 1y4 and n ­ 1y2. The
solid circles correspond to the QMC data.
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FIG. 5. Same as Fig. 4 but for the 1D Hubbard model.

they yield jl , jm 2 mcj21y2. On the other hand, i
shows that the critical behavior of the Mott transition
the 1D and 2D Hubbard models differ since, in the 1
case, our result is consistent withjl , jm 2 mcj

21y2.
Both above points do not necessarily follow from t
compressibility data of Furukawa and Imada [17].

In conclusion, we have determined the correlation len
exponent from the knowledge ofjl in the insulating phase
of the 2D Hubbard model and obtainedn ­ 0.26 6 0.05.
We have shown that a similar calculation for the 1D Hu
bard model yields results consistent withn ­ 1y2. Our
results show that the Mott transition in the 2D Hubba
model belongs to a new universality class, consistent w
the assumption of hyperscaling and characterized by
exponentsn ­ 1y4 and z ­ 4. Several anomalous as
pects of the MIT are inferred when it is characteriz
by this new universality class [2]. Based on a sing
particle theory, the exponentsn ­ 1y4, z ­ 4 are con-
sistent with the interpretation of the Mott transition drive
by the divergence of the effective mass as opposed to
vanishing of the number of charge carriers. This sta
ment is supported by the compressibility in the meta
phase [17] as well as by the high frequency Hall coe
cient [19]. Another consequence of the exponentn ­ 1y4
is the behavior of the Drude weight in the vicinity of th
Mott transition: D , d2, d being the hole density. As
a byproduct, we have produced an accurate estimat
the charge gap for the 2D Hubbard model atUyt ­ 4:
Dcyt ­ 0.67 6 0.015. From the technical point of view
we have introduced an efficient method to obtain inform
tion on the nature of the MIT by approaching the tran
tion from the insulator side. The most important fact
that for models which show particle-hole symmetry, su
h
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h
e

-

he
-

-

of

-
-

as dimerized Hubbard models, the method presented
is not plagued by the sign problem, and large lattice si
may be considered.
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