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Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms
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A widely applicable “nearsightedness” principle is first discussed as the physical basis for the
existence of computational methods scaling linearly with the number of atoms. This principle applies to
the one particle density matrixnsr, r 0d but not to individual eigenfunctions. A variational principle for
nsr , r 0d is derived in which, by the use of a penalty functionalPfnsr , r 0dg, the (difficult) idempotency
of nsr , r 0d need not be assured in advance but is automatically achieved. The method applies to both
insulators and metals.

PACS numbers: 71.15.Mb
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An aspect which gives current versions of density fun
tion theory (DFT) great practical importance is that f
systems ofN atoms, withN ¿ 1, the computational ef-
fort scales asN2 to N3, while traditional configuration
interactions methods in practice scale with much hig
powers ofNs, N7d and, indeed, asymptotically expone
tially as ,eaN . The latter methods are currently limite
to N # 5 10, while DFT methods have recently bee
able to deal withN , 100 200.

In the last several years there has been a great de
interest in developing so-calledOsNd methods for DFT,
i.e., methods which scale linearly withN [1–6]. They
promise to allow calculations, within the next few yea
of systems consisting of 103 to 105 atoms.

The present paper makes a contribution to this eff
Unlike some other recent work, it does not depe
on the existence of well-localized generalized Wann
functions, which exist only in large-gap insulators.
applies to both insulators and metals.

I first discuss a widely applicable physical princip
which explains whyOsNd methods can exist. I cal
this principle thenearsightednessof equilibrium systems
consisting ofmanyquantum mechanical particles movin
in an external potentialysrd. For systems without long
range electric fields it can loosely be expressed as follo
Let Fsr1, r2, . . . , rnd be a static property depending onn

coordinatesr1, . . . , rn, all within a restricted volumev
of linear dimension,l, a typical de Broglie wavelength
occurring in the ground state wave function or finiteT
ensemble. [The densitynsrd and pair-correlation function
gsr , r 0d are examples.] Denote byr the center of mass
r ; n21

Pn
1 rm. Then, at fixed chemical potentialm, a

change of the external potentialDysr 0d, no matter how
large, has a small effect onF, provided only thatDysr 0d
is limited to adistant region, in the sense that for allr 0,
jr 0 2 rj ¿ l. ThusF does not “see”Dysr 0d if r 0 is far.

A few remarks about this principle: (1) The principle
generally a consequence of wave-mechanical destruc
interference. It requires the presence ofmanyparticles,
which need not be interacting. (2) It is not universa
valid. Among exceptions are systems of noninteract
3D bosons below the critical point, when the lowest on
168 0031-9007y96y76(17)y3168(4)$10.00
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particle wave function has a macroscopic occupancy, a
systems with translationally invariant long range orde
like a Wigner crystal in a torus. (3) The principle is tac
itly assumed in much of chemistry and materials scien
(4) When there are long range electric fields, as in ion
crystals, they must be self-consistently added to the ex
nal potential but do not otherwise affect nearsightedne
(A more complete account of nearsightedness will be p
lished elsewhere.)

I will now show how nearsightedness implies th
possibility ofOsNd methods. Take a system enclosed in
large volumeV. Cover this volume byoverlappingcubes
of volume v0 ­ smld3 where m is, say 100, in such a
way that every volumev s,l3d lies inside of, and far
from the boundary of, at least one of the covering cub
Clearly the required number of cubes is~sVyv0d ~ N.
Because of nearsightedness, I can now “cut away” all
one v0 and enclose the latter in a hard wall boundar
to calculateFsr1, . . . , rnd. Since the number of covering
cubes isOsNd, this may be regarded as an existen
theorem for the possibility of calculating allFsr1, . . . , rnd,
for “compact” sets of coordinates, with a computing effo
linear inN .

Widely used cluster methods and the divide-an
conquer scheme [1] are quite close in spirit to the abo
considerations. But there are otherOsNd methods which
do not divide the physical spaceV occupied by the
system into smaller compartments,v. These methods
can be categorized as either generalized Wannier func
(GWF) methods [2–5] or one-particle density matr
(DM) methods [6]. This paper is in the second categor

In the Kohn-Sham (KS) self-consistent equations [
there occurs the following sequence:Ω

2
"2

2m
=2 1 ysrd

æ
wjsrd ­ ejwjsrd, j ­ 1, . . . N ,

(1)

nsrd ­
NX
1

jwjsrdj2, (2)

E ­
NX
1

ej . (3)
© 1996 The American Physical Society
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Here N is the number of electrons,ysrd is the effective
one-body potential,wj and ej are the KS orthonorma
single particle wave functions,ej are the KS eigenvalues
nsrd is the particle density, andE is the total single
particle energy. The solution of (1) is the most time
consuming step behaving asOsN2d 2 OsN3d. We can
characterize the sequence (1)–(3) by the scheme

ysrd ! hwjsrd, ejj !

(
nsrd, E

√
;

NX
1

ej

!)
. (4)

Now it is well known that to calculatensrd andE we do
not need theindividual wj , ej but only the one-particle
density matrix

nsr , r 0d ;
NX

j­1

wp
j srdwjsr 0d . (5)

We see by inspection that

nsrd ­ nsr , rd (6)

and

E ­ Efng ;
1

2m

Z
f=r =r 0nsr , r 0djr 0­r 1 ysrdnsrdg dr .

(7)
We shall develop a variational method which allows t
direct calculation ofnsr , r 0d without the time-consuming
calculation of the individualwj and ej ; i.e., we shall
replace the scheme (4) by

ysrd ! hnsr , r 0dj ! nsrd, E . (40)

The DM nsr , r 0d is short ranged injr 2 r 0j and also
nearsighted in the sense that, for fixed chemical poten
m, it depends only on the values of the potential “near”r
andr 0. This fact is responsible for theOsNd character of
the method.

From Eq. (5) we note at once the properties ofnsr , r 0d

H Hermitian : nsr 0, rd ­ nsr , r 0d , (8)

N normalized:
Z

nsr , rd dr ­
Z

nsrd dr ­ N , (9)

I idempotent: n2sr, r 0d ­ nsr , r 0d . (10)

Here, and in what follows, expressions liken2sr , r 0d are
matrix products,

n2sr , r 0d ;
Z

nsr , rdnsr, r 0d dr . (11)

In what follows we find it more appropriate an
convenient to replace the DM of Eq. (5) correspondi
to fixedN by

nsr , r 0d ­
X

ej#m

wp
j srdwjsr 0d , (12)

where m is the chemical potential. Thus, we replac
l

conditionN , Eq. (9), above by

C chemical potential: ej # m . (13)

The connection betweenN and m is eN # m , eN11.
If N is specified rather thanm, the calculation must be
repeated for several values ofm to determine which value
yieldsN .

Any trial matrix ñsr , r 0d satisfying conditionH above
can be diagonalized and written as

ñsr , r 0d ­
X̀
j­1

l̃jw̃p
j srdw̃jsr 0d , (14)

where thel̃j are the real eigenvalues ofñ. To satisfy also
the idempotency condition,I, Eq. (10), requires

l̃2
j ­ l̃j , i.e., l̃j ­ 0 or 1 , (15)

for all l̃j. In principle (15) can be assured by diagona
izing ñ and then replacing alllj by either 1 or 0. But
this is unacceptably time consumingfOsN2d 2 OsN3dg.
Below we shall derive a variational method, which wi
automatically lead to the satisfaction of conditionsI and
C above, without explicitly imposing them on the tria
functionsñsr , r 0d.

We restrict ourselves throughout to Hermitian tri
functions,ñsr , r 0d. We then form the functional

Qmafñsr , r 0dg ; Efng 2 mNfng 1 aPfñg , (16)

where n ; ñ2, a non-negative matrix with eigenvalue
l̃2 $ 0; the functionalE is defined in Eq. (7), where

Nfng ;
Z

nsrd dr , (17)

Pfñg ;

"Z
ñ2s1 2 ñd2

É
r 0­r

dr

#1y2

; (18)

m is a real parameter (which plays the role of the chemi
potential) anda is a positive number which will be
discussed below. In terms of the eigenvaluesl̃j of ñ,

Pfñg ­

"X̀
1

l̃2
j s1 2 l̃jd2

#1y2

, (180)

which shows thatP vanishes only if every term in
(18′) vanishes, i.e., only if alll̃j are either 0 or 1;
otherwise, it is a positivepenalty functionalfor violating
the idempotency condition.

For orientation consider temporarily only idempotentñ,
with Pfñg ­ 0. Then

Qm,afñg ­ Qmfñg ­ Efng 2 mNfng ­
X

l̃2
j sẽj 2 md ,

(19)
where all l̃j are either 0 or 1. Clearly, for a given se
ẽj , the minimum is attained wheñlj ­ 1 or 0 for ẽj #

or . m, respectively. Now a well-known generalizatio
of the Rayleigh-Ritz variational principle states that ifw̃j
3169
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s j ­ 1, . . . , Nd areN orthogonal functions, with̃ej being
the expectation values of the Hamiltonian, andwj, ej are
the exact eigenfunctions and eigenvalues, then

NX
1

ẽj $

NX
1

ej . (20)

From this it follows straightforwardly that

min
w̃j ,l̃j ­1 or 1

X̀
1

l̃jsẽj 2 md ­
NsmdX

1

sej 2 md , (21)

where Nsmd was defined following Eq. (13). Thus th
first two terms in (16) favor occupying states wi
energies̃ej or ej belowm.

We return to the full “penalized” energy functiona
Qm,afñg of Eq. (16). We shall establish that, ifa exceeds
a criticalac,

Qm,afñg $ Efng 2 mNfng ­
X

ej#m

sej 2 md ; (22)

that equality holds only for the correctñ ­ n; and that
idempotency is automatically achieved in the minimiz
tion process.

We shall analyzeQ in terms of the eigenvalues an
eigenfunctions of̃n,

Qm,afñg ­ Ẽmshw̃j , l̃jjd 1 aPshl̃j jd , (23)

where

Emshw̃j , l̃jjd ;
X

l̃2
j sẽj 2 md , (24)

Pshl̃jjd ­

"X̀
1

l̃2
j s1 2 l̃jd2

#1y2

. (25)

Now consider the minimization process in two stag
Define firs the conditional minimum, for whichPfñg ­
P0,

EmsP0d ­ min
Pfñg­P0

Emfñg

­ min
l̃j ,w̃j ;Pshl̃jjd­P0

∑X
l̃2

j sẽj 2 md
∏

. (26)

We shall first show several properties of the minimizi
w̃j andl̃j, for givenP0 s$ 0d.

1. l̃j is a nonincreasing function of̃ej . (If false, one
could interchange a pair of offending̃lj, lowerE without
changingP0.)

2. The minimizing w̃j are the correct eigenfunction
wj . (This follows from the generalization of the Rayleig
Ritz principle that for a nonincreasing sethljj,

P
lj ẽj $P

ljej [8].)
3. For allj with ẽj , m, l̃j $ 1. [If false, replace an

offendingl̃j s, 1d by the unique valuej . 1, satisfying
j2s1 2 jd2 ­ l̃

2
j s1 2 ljd2, which would lowerE with-

out changingP0.]
4. For all j with ẽj . m, l̃j ­ 0. (If false, replace

an offendingl̃j by zero and increasẽl1 to the unique
3170
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value z . l̃1, such thatP0 is not changed, whileE is
decreased.)

5. If, for somej, ẽj 2 m ­ 0, then l̃j can be chosen
arbitrarily as either 0 or 1. [If̃lj were unequal to 0 or 1,
replace it by 0 or 1 and increasel̃1 to l

0
1 s. l̃1d reducing

P0, while E is unchanged.]
6. EsP0d is a decreasing function ofP0. (Let hl̃0

jj
correspond toP0. If P00 . P0, increasel̃

0
1 to yield P00.

The resultingE is lower.)
7. Calculation ofhl̃jj for given hẽjj, m, andP0. This

requires minimization of the energy
P

l̃
2
j sẽj 2 md with

respect tol̃j, subject to the condition
P

l̃
2
j s1 2 l̃jd2 ­

P02. Traditional use of a Lagrange parameter yields,
using 3–5 above,

l̃j ­

8><>:
1
4 h3 1 f1 1 gsm 2 ẽjdg1y2j, ej , m ,
0 or 1 ej ­ m ,
0 ej . m ,

(27)

where g s. 0d must be and can be uniquely chosen
yield P0.

8. General behavior ofE sP0d. It follows from 7 by
elementary calculations thatE sP0d is a differentiable
function ofP0 with the following behavior:

All P0 : dE sP0dydP0 , 0 , (28)

P0 ! 0 : E sP0d ­ E s0d

2 2P0

" X
ej#m

sej 2 md2

#1y2

, (29)

P0 ! ` : E sP0d ! 2P0

" X
ej#m

sej 2 md2

#1y2

. (30)

Having established properties ofEsP0d, we can now
easily derive the variational principle (22) for th
functional

Qm,afñg ­ min
P0

Ω
min

Pfñg­P0
Qm,afñg

æ
­ min

P0
fE sP0d 1 aP0g .

(31)
Now let

ac ­ max
P0

Ç
dE sP0d

dP0

Ç
;

then for anya . ac, dfE sP0d 1 aP0gydP0 . 0 for all
P0 so that

min
ñ

Qm,afñg ­ E s0d ­
X

ej#m

sej 2 md (32)

(see Fig. 1). Thus, for givenm and a . ac, minimiza-
tion of Qm,afñg, without the imposing of the idempotenc
constraint in advance,leads automatically to the correc
ñsr , r 0d, density, and energy.

Of course ac must be at least equal to
jsdE ydP0dP0­0j ­ 2f

P
ej#msej 2 md2g1y2 which is of

the order of the spectral width of the occupied leve
times Nsmd1y2 (see Fig. 1). We surmise that, at lea
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FIG. 1. The minimum energy,E sP0d, for given idempotency
violation P0; the idempotency penalty functionaP0, with a .
ac; and the penalized energy,E sP0d 1 aP0, whose minimum
occurs forP0 ­ 0 and is the correct energyEsmd.

in most cases,ac will be equal to this value but canno
yet rule out that it could be larger. Since theej are not
known in advance, one must guessac. If the guess was
too low, the minimum ofQ with respect toñ will occur
for a positiveP0. If this happensa must be increased.
However, too large ana, by overemphasizingPfñg, will
slow convergence.

We are currently doing an exploratory calculation
a Gaussian basis, using conventional conjugate grad
minimization with respect to the expansion coefficients
ñsr , r0d. For many-atom systems of unknown structu
the Car-Parrinello method [9] applied to these coefficien
appears to be appropriate. The high powers ofñ needed
are troublesome but, we hope, not prohibitive.
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