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Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms
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A widely applicable “nearsightedness” principle is first discussed as the physical basis for the
existence of computational methods scaling linearly with the number of atoms. This principle applies to
the one particle density matrix(r, r') but not to individual eigenfunctions. A variational principle for
n(r,r') is derived in which, by the use of a penalty functio®dk(r, r')], the (difficult) idempotency
of n(r, r’") need not be assured in advance but is automatically achieved. The method applies to both
insulators and metals.

PACS numbers: 71.15.Mb

An aspect which gives current versions of density funcparticle wave function has a macroscopic occupancy, and
tion theory (DFT) great practical importance is that forsystems with translationally invariant long range order,
systems ofV atoms, withN > 1, the computational ef- like a Wigner crystal in a torus. (3) The principle is tac-
fort scales asv? to N3, while traditional configuration itly assumed in much of chemistry and materials science.
interactions methods in practice scale with much highe(4) When there are long range electric fields, as in ionic
powers ofN(~ N7) and, indeed, asymptotically exponen- crystals, they must be self-consistently added to the exter-
tially as ~e“V. The latter methods are currently limited nal potential but do not otherwise affect nearsightedness.
to N = 5-10, while DFT methods have recently been (A more complete account of nearsightedness will be pub-
able to deal withv ~ 100-200. lished elsewhere.)

In the last several years there has been a great deal ofl will nhow show how nearsightedness implies the
interest in developing so-calle@(N) methods for DFT, possibility of O(N) methods. Take a system enclosed in a
i.e., methods which scale linearly withi [L-6]. They large volume(). Cover this volume byverlappingcubes
promise to allow calculations, within the next few years,of volume o’ = (mA)? wherem is, say 100, in such a
of systems consisting of £@o 10° atoms. way that every volumean (~2%) lies inside of, and far

The present paper makes a contribution to this effortfrom the boundary of, at least one of the covering cubes.
Unlike some other recent work, it does not dependClearly the required number of cubesd$Q)/w’) = N.
on the existence of well-localized generalized WannieBecause of nearsightedness, | can now “cut away” all but
functions, which exist only in large-gap insulators. It one »’ and enclose the latter in a hard wall boundary,
applies to both insulators and metals. to calculateF(ry,...,r,). Since the number of covering

| first discuss a widely applicable physical principle cubes isO(N), this may be regarded as an existence
which explains whyO(N) methods can exist. | call theorem for the possibility of calculating all(ry, ..., r,),
this principle thenearsightednessf equilibrium systems for “compact” sets of coordinates, with a computing effort
consisting ofmanyquantum mechanical particles moving linear inN.
in an external potentiad(r). For systems without long Widely used cluster methods and the divide-and-
range electric fields it can loosely be expressed as followszonquer scheme [1] are quite close in spirit to the above
Let F(ry,r,...,r,) be a static property depending @n  considerations. But there are oth@(N) methods which
coordinatesry,..., r,, all within a restricted volumew  do not divide the physical spac® occupied by the
of linear dimension~ A, a typical de Broglie wavelength system into smaller compartments,, These methods
occurring in the ground state wave function or finfte can be categorized as either generalized Wannier function
ensemble. [The densiw/(r) and pair-correlation function (GWF) methods [2—5] or one-particle density matrix
g(r,r") are examples.] Denote bythe center of mass, (DM) methods [6]. This paper is in the second category.
7F=v137r, Then, at fixed chemical potential, a In the Kohn-Sham (KS) self-consistent equations [7]
change of the external potentidlv(r’), no matter how there occurs the following sequence:
large, has a small effect afi, provided only thatAv(r’) 52
is limited to adistantregion, in the sense that for all, {— 2—V2 + v(r)}soj(") = €jpi(r), j=1,...N,
|r' — 7| > A. ThusF does not “seeAv(r') if r' is far. m

A few remarks about this principle: (1) The principle is v (1)
generally a consequence of wave-mechanical destructive n(r) = Z loi(F)2, )
interference. It requires the presencengény particles, =/
which need not be interacting. (2) It is not universally N
valid. Among exceptions are systems of noninteracting E = Zfi- (3)
3D bosons below the critical point, when the lowest one- T
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Here N is the number of electrons;(r) is the effective  conditionN, Eq. (9), above by
one-body potentialy; and €; are the KS orthonormal
single particle wave functiong, are the KS eigenvalues,
n(r) is the particle density, and is the totalsingle = The connection betweeN and u is ey = u < ey+1.
particle energy. The solution of (1) is the most time- If N is specified rather thap, the calculation must be
consuming step behaving a(N?) — O(N?). We can repeated for several values pfto determine which value
characterize the sequence (1)—(3) by the scheme yields N.

N Any trial matrix 7i(r, r') satisfying conditiond above
v(r) = {e;(r), €} — {n(”)’E(E > fj)

C chemical potential  €; = u. (13)

(4) can be diagonalized and written as

! ~ n o < ~ % ~ !

Now it is well known that to calculate(r) and E we do alr.r) = ; i@ (r);(r), (14)
not need thendividual ¢;, €; but only the one-particle _ !
density matrix where thex; are the real eigenvalues #f To satisfy also

N the idempotency conditiod, Eq. (10), requires

n(r.r') = 3 @] (Ne;(r). (5) X=X, ie, ,,=0orl, (15)

j=1 J

We see by inspection that for all A;. In principle (15) can be assured by diagonal-
izing 7 and then replacing alk; by either 1 or 0. But
n(r) = n(r,r) ®)  this is unacceptably time consumifi@(N?) — O(N?)].

and Below we shall derive a variational method, which will

1 automatically lead to the satisfaction of conditiahand
E = E[n] = T f[V,V,,n(r,r’)|,,=, + v(r)n(r)]dr. C above, without explicitly imposing them on the trial
functionsii(r, r').

@) We restrict ourselves throughout to Hermitian trial
We shall develop a variational method which allows thefunctions,ii(r, r’). We then form the functional
direct calculation ofn(r, r') without the time-consuming ~ N = Ef7] — uNIwl + aPli 16
calculation of the individualp; and e;; i.e., we shall Qual(r.r)] [l _'u L7l _ ¢ _[n]’. (16)
replace the scheme (4) by ‘ wheren = ii?, a non-negative matrix with eigenvalues

, ) A% = 0; the functionalE is defined in Eq. (7), where
v(r) = {n(r,r')} — n(r),E. 4)

The DM n(r,r') is short ranged inlr — /| and also N[n] = ]ﬁ(r) dr, (17)
nearsighted in the sense that, for fixed chemical potential
u, it depends only on the values of the potential “near” 1/2
andr’. This fact is responsible for th@ (V) character of P[ii] = fﬁz(l — i) dr : (18)
the method. .

1 /
From Eq. (5) we note at once the properties:of, 1) w is a real parameter (which plays the role of the chemical

H Hermitian: n(r',r) = n(r,r'), (8) potential) anda is a positive number which will be
discussed below. In terms of the eigenvalue®f 7,
o0 1/2
N normalized: ]n(r,r)dr = ] n(r)ydr =N, (9) P[ii] = |:ZI:’\12'(1 - Aj)2i| ) (18)
which shows thatP vanishes only if every term in
I idempotent n?(r,r') = n(r,r'). (10)  (18) vanishes, i.e., only if allx; are either O or 1;

otherwise, it is a positivenalty functionafor violating
the idempotency condition.
For orientation consider temporarily only idempotént

n’(r,r') = ] n(r,P)n(, r') dr. (11) Wit P[i] = 0. Then

In what follows we find it more appropriate and Q, .[7i] = Quli] = E[n] — uN[n] = Z?\f(éj -,
convenient to replace the DM of Eq. (5) corresponding

Here, and in what follows, expressions liké(r, r’) are
matrix products,

to fixed N by (29)
, " , where all A; are either 0 or 1. Clearly, for a given set

n(r,r') = Z ¢ (Ne;(r), (12) &;, the minimum is attained when; = 1 or O for ; =
€r=p or > u, respectively. Now a well-known generalization

where u is the chemical potential. Thus, we replaceof the Rayleigh-Ritz variational principle states thatif
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(j=1,...,N) areN orthogonal functions, witlg; being
the expectation values of the Hamiltonian, apd €; are
the exact eigenfunctions and eigenvalues, then

N N
Z @j = Z 61' . (20)
1 1
From this it follows straightforwardly that
o N(p)
min A& — ) = F— ), 21
Byim] 0r1§ ](6] ) 21:(6] ) (21)

value ¢ > A;, such thatP’ is not changed, whileE is
decreased.)

5. If, for somej, & — u = 0, then}; can be chosen
arbitrarily as either 0 or 1. [IA; were unequal to O or 1,
replace it by 0 or 1 and increagdg to A} (> A;) reducing
P', while E is unchanged.]

6. E(P') is a decreasing function of’. (Let {A}}
correspond taP’. If P > P/, increaseA] to yield P”.
The resultingE is lower.)

7. Calculation of{A;} for given{g;}, u, andP’. This

where N(u) was defined following Eg. (13). Thus the requires minimization of the energy A;(&; — u) with
first two terms in (16) favor occupying states with regpect tol;, subject to the conditio A3 (1 — 1,)? =

energies; or €; below u.

P2, Traditional use of a Lagrange parameter yields, on

We return to the full “penalized” energy functional \;s5ing 3-5 above,

Qu.«li] of Eq. (16). We shall establish that,df exceeds
a critical a,

Qualii]l = E[@] — uN[Al = D (ej — p);

Ei=u

that equality holds only for the corre@ = n; and that

(22)

idempotency is automatically achieved in the minimiza-

tion process.

We shall analyzeQ in terms of the eigenvalues and ¢,nction of P/

eigenfunctions ofi,

Qualit] = E,(@;. 1) + aP{A}}), (23)
where
(@1, ) =D V& — ), (24)
%o 1/2
PEA) = {Z A1 - xj)Z} . (25)
1

i B+ -] 6 <u,
Ai=40o0r1 € =pn, (27)
0 Ej > M,

where y (> 0) must be and can be uniquely chosen to
yield P’.

8. General behavior offE (P’). It follows from 7 by
elementary calculations thaE (P’) is a differentiable
with the following behavior:

Al P':  dE(P)/dP’ <0, (28)
P'—0: FE(P)=E(©)
1/2
—w{Z&fwMJ,(w)
o= 172
P—w: EP)— —P’|: D> (e - M)2] . (30)
€=pn

Having established properties @f(P’), we can now

Now consider the minimization process in two stageseasily derive the variational principle (22) for the

Define firs the conditional minimum, for whicR[#] =
P/,

E,(P)= min E,[#i]

Plil=pP’
[ShE-w] e

= min
A;,@;:PAAD)=P

We shall first show several properties of the minimizing

@; and};, for givenP’ (= 0).
1. A; is a nonincreasing function &;. (If false, one
could interchange a pair of offending, lower £ without

changingP’.)

2. The minimizing @; are the correct eigenfunctions
¢;. (This follows from the generalization of the Rayleigh-

Ritz principle that for a nonincreasing et;}, > A& =
> Aje; [8]) )

3. Forallj with &; < u, A; = 1. [If false, replace an
offending; (< 1) by the unique valug > 1, satisfying
£2(1 — £)? = X3(1 — A;)%, which would lowerE with-
out changingP’.]

4. For all j with & > u, A; = 0. (If false, replace
an offending}; by zero and increasg; to the unique
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functional
Qual] = minf min 0,..[7]] = MINEP) + aP']
(31)
Now let
o, = maX’ df(Pl) )
¢ P’ dp’ |’

then for anya > a., d[E(P') + aP']/dP’ > 0 for all
P’ so that

minQ,.o[a] = E(0) = > (¢j — p)
€=
(see Fig. 1). Thus, for givep and @ > a,., minimiza-
tion of Q, .[7], without the imposing of the idempotency
constraint in advanceleads automatically to the correct
ii(r, r'), density, and energy.

Of course @, must be at least equal to
IdE /dP)pi—ol = 2[c <u(e; — w)*]/* which is of
the order of the spectral width of the occupied levels
times N(u)'/? (see Fig. 1). We surmise that, at least

(32)
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FIG. 1. The minimum energyE (P’), for given idempotency
violation P’; the idempotency penalty functiamP’, with « >

a.; and the penalized energ¥ (P’) + aP’, whose minimum
occurs forP’ = 0 and is the correct energy(u).

in most casesg,. will be equal to this value but cannot
yet rule out that it could be larger. Since thgare not
known in advance, one must guass. If the guess was
too low, the minimum ofQ with respect tai will occur

for a positive P’. If this happense must be increased.
However, too large am, by overemphasizin@[7], will
slow convergence.

We are currently doing an exploratory calculation in
a Gaussian basis, using conventional conjugate gradient
minimization with respect to the expansion coefficients of
ii(r,r"). For many-atom systems of unknown structure
the Car-Parrinello method [9] applied to these coefficients
appears to be appropriate. The high powerg ofeeded
are troublesome but, we hope, not prohibitive.
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