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Generalized Helimagnets between Two and Four Dimensions
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We study the phase transitions ofN-component generalized helimagnets. In the neighborhood of two
dimensions, aD ­ 2 1 e renormalization group study reveals a rich fixed point structure as well as a
nematiclike phase with partial spin ordering. In the physical caseN ­ 3, relevant to real magnets with
noncollinear ordering, we show that this implies anXY-like transition between the ordered phase and the
nematiclike phase. A non-Abelian mean-field calculation is shown to lead to the same picture but th
the principal chiral fixed point, which had been proposed earlier as the relevant fixed point forD ­ 3
helimagnets, plays no role due to the appearance of a first-order line. [S0031-9007(96)00024-5]

PACS numbers: 64.60.Ak, 03.70.+k, 05.70.Jk
e
g
s

n
is
s
o

em

e
hi
se

on
f
n

e

e
n
is
as

A
g
n

o
n
e
,9

int

ed
a

has
an
c-
hat
e
ing

s
e
rs
as

ens
f
l
l
ne

nt
d

y

ld
ch
se

h

Several physical systems display a peculiar critical b
havior associated with helical or noncollinear orderin
These include helimagnets, the dipole-locked phase of
perfluid helium as well as Josephson junction arrays i
transverse magnetic field [1]. A prototypical example
the stacked triangular lattice antiferromagnet (STA) who
low-temperature ordered phase breaks completely the r
tion symmetry group. When generalized toN-component
spins, the Landau-Ginzburg free energy for this syst
contains two quartic invariants:

H ­
1
2

fs= $w1d2 1 s= $w2d2g 1 rs $w2
1 1 $w2

2 d

1 us $w2
1 1 $w2

2 d2 1 yfs $w1 ? $w2d2 2 $w2
1 $w2

2 g . (1)

Whenu, y . 0, this free energy describes a second-ord
phase transition between a high-temperature phase w
is OsNd 3 Os2d symmetric and a low-temperature pha
with lower symmetryOsN 2 2d 3 Os2ddiag. This theory
has been studied in the neighborhood of four dimensi
by the standarde expansion [2,3]. The main point o
these studies is that when the number of compone
is large enough there is a fixed point withup, yp fi

0 that describes a critical behavior different from th
well-studied behavior of theN-vector model. In the
neighborhood of the upper critical dimension,D ­ 4,
there is a dividing lineNcsDd ­ 21.8 2 23.4e 1 Ose2d
in the (N, D) plane above which there is a second-ord
phase transition and below which there is a fluctuatio
induced first-order transition (no stable fixed point). Th
is similar to the case of the normal-superconducting ph
transition [4]. The fate of the lineNcsDd is not known
outside thee expansion. Numerical studies on the ST
lattice (thus in D ­ 3) have shown that the orderin
transition is second order with exponents that do not belo
to theOsNd Wilson-Fisher universality classes [5–7],n ­
0.585s9d, gyn ­ 2.011s14d [6]. These exponents are als
observed in the body-centered tetragonal antiferromag
[8], suggestive of a new universality class, usually call
chiral universality class [3]. It has been suggested [3,5
0031-9007y96y76(17)y3148(4)$10.00
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that these exponents are ruled by the nontrivial fixed po
which exists forN . NcsDd.

The study of these phenomena has also been perform
from the low-temperature expansion. A nonlinear sigm
model that captures the Goldstone modes of the theory
been constructed by Dombre and Read [10]. It involves
order parameter which is a rotation matrix instead of a ve
tor as in usual magnetic systems. This is due to the fact t
the rotation group is fully broken in the low-temperatur
phase of noncollinear magnets. The symmetry break
pattern isSOs3d 3 SOs2d ! SOs2ddiag where the inter-
nal SOs2d rotation acts upon the 1,2 indices of the field
of Eq. (1). We can parametrize the rotation matrix of th
nonlinear sigma model by three orthogonal unit vecto
$f1, $f2, $f3 and the Euclidean action can be then written

S ­
Z

dDx
1

2g1
fs= $f1d2 1 s= $f2d2g 1

1
2g2

s= $f3d2.

(2)

The STA corresponds to a bare value1yg2 ­ 0. The
renormalization group flow of the two couplingsg1, g2 has
been studied [11] in aD ­ 2 1 e expansion. It has been
noted that a remarkable symmetry enhancement happ
on the lineg1 ­ g2. In this case the global symmetry o
Eq. (2) is SOs3d 3 SOs3d broken down to the diagona
subgroupSOs3d. This is the so-called principal chira
model which is renormalizable and thus the peculiar li
g1 ­ g2 is stable under the RG flow. SinceSOs3d 3

SOs3d ; SOs4d, this line is described by the usualSOs4d
sigma model, at least within theD ­ 2 1 e expansion.
Since this fixed point is stable and has an expone
n ø 0.74 there is a clear conflict with numerical an
experimental findings inD ­ 3.

In this Letter we shed new light on this problem b
studying a new generalization toN components of this
sigma model as well as by a non-Abelian mean-fie
calculation. We show that the sigma model has a mu
richer structure than previously expected and we propo
a scenario in which the principal chiral fixed point wit
© 1996 The American Physical Society
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SOs4d symmetry plays no role inD ­ 3 due to the
appearance of a first-order transition.

In the two-dimensional case, the perturbative beta fu
tions [11,12] indicate a flow which is infrared unstab
away from the origing1 ­ g2 ­ 0 but the whole line
g2 ­ 0 is a line of unstable fixed points as can be re
from the renormalization group (RG) formulas. This fa
has a simple interpretation: Wheng2 ! 0 the vector $f3

becomes frozen and the remaining degrees of freedom
simply the rotations of the vectors$f1, $f2 in the plane or-
thogonal to$f3. Since $f1 and $f2 are themselves orthogo
nal, we are left with anXY model whose coupling isg1.
The corresponding beta function is zero in perturbation t
ory. However, it is important to note that inD ­ 2 this
XYmodel will undergo the Kosterlitz-Thouless (KT) tran
sition for a finite value of g1. This phenomenon is no
seen in perturbation theory and is not found in the p
turbative beta functions. We expect that the line of fix
pointsg2 ­ 0 will end at some critical value. Above thi
value, the flow will go to the high-temperature fixed poi
in the disordered phase of theXY model. This transition
is the unbinding transition of the vortices of theXYmodel.
If we unfreeze the vector$f3 by settingg2 fi 0, then topo-
logical defects survive because, as noted by Kawamura
Miyashita [13],P1sssSOs3dddd ­ Z2. All XYvortices with an
even winding number become topologically trivial whi
those with an odd winding number become all equivale
and nontrivial.

To complete the phase diagram in theg1-g2 plane, we
note that forg1 ­ ` the model (2) becomes theOs3d sigma
model which has no transition inD ­ 2: The coupling
g2 flows continuously to the high-temperature fixed poi
If we assume that there are no other fixed points, we
led to propose the phase diagram shown in Fig. 1. T

FIG. 1. Global renormalization group flow of theOs3d 3
Os2d sigma model in two dimensions. The perturbative lin
of fixed points on theg1 axis ends at a KT fixed point.
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means that for nonzero values of the couplings the mo
is always disordered and there is no phase transition
nonzero temperature as expected for a system with n
Abelian symmetry.

We note that the KT point on theg1 axis cannot be stud-
ied by extending the model simply toN components. The
low-temperature limit of the theory (1) is anOsNd 3 Os2d
sigma model [14] that has also two coupling constan
The corresponding phase diagram is topologically sim
to Fig. 1: The KT point remains at finite coupling unreac
able by perturbation theory.

To clarify the situation, we will study another genera
ization of theOs3d 3 Os2d model which involvesN or-
thogonal unit vectors withN components$f1, . . . , $fN and
the action is

S ­
Z

dDx
1

2g1
fs= $f1d2 1 · · · 1 s= $fN21d2g

1
1

2g2
s= $fNd2. (3)

The symmetry breaking pattern is nowSOsNd 3 SOsN 2

1d ! SOsN 2 1ddiag. This is a sigma model which is
defined on a space which is homogeneous but not m
mally symmetric. Wheng1 ­ g2, one is dealing with the
sigma model defined by the maximally symmetric spa
SOsNd 3 SOsNdySOsNddiag; this is the so-called princi-
pal chiral model. Wheng2 ! 0, it reduces to the prin-
cipal chiralSOsN 2 1d model, and wheng1 ! ` to the
OsNd vector model. In fact, this model has been studi
some time ago by Friedan [12] who has shown that it
renormalizable in two dimensions with only two couplin
constants. The corresponding RG flow inD ­ 2 1 e is
depicted in Fig. 2.

The principal chiral models are known to have a fix
point within the D ­ 2 1 e expansion: These are th
points CN and CN21 in Fig. 2. TheOsNd vector model
has also a fixed pointON which is at a distancee from the
upper left-hand corner of Fig. 2. The novelty is that w
find a fixed pointPN with nontrivial values of the couplings
g1, g2 which is not on the diagonalg1 ­ g2. This fixed
point has two directions of instability and thus there a
two phase transition lines: one that goes fromPN to ON

and one that goes fromPN to CN21. This implies that
there is an intermediate phase in addition to the hig
temperature paramagnetic phase and the low-tempera
ordered phase. In this new phase, the vector$fN is ordered
because it is in the low-temperature regime of theOsNd
model but the remainingN 2 1 vectors $f1, . . . , $fN21 are
still fluctuating in the subspace orthogonal to$fN. Because
of this partial ordering, we will refer to this phase a
“nematic.” The transition between the fully ordered pha
and the nematic phase is governed by the fixed po
CN21 and the transition between nematic and paramagn
phases by theOsNd fixed point. The fixed pointCN which
has the highest symmetry governs the critical behavio
3149
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FIG. 2. The RG flow and the corresponding phase diagr
of the OsNd 3 OsN 2 1d sigma model in the neighborhoo
of two dimensionsD ­ 2 1 e. There is a high-temperatur
paramagnetic phase, a fully ordered phase at low tempera
and an intermediate nematiclike phase where thefN vector
is ordered but the other vectors are disordered. The diag
g1 ­ g2 is the principal chiral model.

the direct transition between the paramagnetic phase
the fully ordered phase.

This phase diagram thus points to a possible explana
of what happens in theOsNd 3 Os2d sigma model above
two dimensions. Here the pointCN21 is replaced by an
Os2d point which is not seen in theD ­ 2 1 e expansion.
This point is located atg2 ­ 0 but g1 ­ Os1d and thus
the perturbativeflow of the couplingg1 is that of a low-
temperature phase. The Os3d point is seen in perturbation
theory [15]. The mixed fixed point will also be invisibl
in perturbation theory. In fact, in the flow equations
the generalized model, the limitN ! 3 leads togp

1 ! `

andgp
2 ­ Osed. WhenD ! 2 the fixed points that were

of ordere collapse to the origin but theOs2d fixed point
becomes the KT point at the end of a line of perturbat
fixed points. So the picture we have constructed le
naturally to a phase diagram as Fig. 1 for allOsNd 3 Os2d
models.

TheseD ­ 2 1 e expansion results clearly show tha
the phase diagrams of the these sigma models are m
more complex than previously thought [11]. Notably th
fixed pointPN is a prominent candidate to interact with th
principal chiral pointCN . To deepen our understanding
we now turn to a mean-field study of theOs3d 3 Os2d
sigma model on a hypercubic lattice. This lattice mode
regularized both in the ultraviolet and in the infrared lim
This is a sensible way to define the sigma model beyo
perturbation theory. Note that to construct a continuu
field theory one has to find a second-order phase transi
which is not guaranteeda priori. We introduce a field
$li conjugate to each vector$fi in the action (2). The
3150
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standard mean-field method then involves a non-Abel
integration over theOs3d matrix s $f1, $f2, $f3d. We start
from the Hamiltonian

H ­ 2
X
kx,yl

Ki
$fisxd ? $fis yd ; 2

X
Ki

$fi ? V 21 ? $fi ,

(4)

where the sum is over nearest-neighbor lattice sites,Vxy

is the connectivity matrix, and we take only two distin
couplings:K1 . 1yg1 for $f1, $f2 andK2 . 1yg2 for $f3.
We write the partition function as

Z ­
Z

d $li e2sTy4Kid $li?V 21? $li

Z
dm s $fide

P
i

$li? $fi . (5)

Here dm is the Haar measure onSOs3d and T is the
temperature. The mean-field theory is obtained by
saddle-point treatment of the integral over the auxilia
fields $li . We have searched spatially uniform solution
since the model (4) is ferromagnetic. There is a pha
where all the expectation valuesk $lil are zero, this is the
high-temperature fully disordered phase, and there is a
a phase where all thek $lil are nonzero, this is the fully
ordered phase that breaks the full rotational invarian
But we also find a phase wherek $l3l fi 0 but k $l1,2l ­
0, this is the nematic phase. The corresponding ph
diagram is sketched in Fig. 3.

The most remarkable feature is the appearance of a fi
order line that crosses the diagonalK1 ­ K2. Its existence
is simple to understand: The non-Abelian integral
Eq. (5) has no simple closed form but its expansion
powers of group invariants built from the matrixL ­
s $l1, $l2, $l3d is simple. Since we are dealing with th
rotation group, there is an odd invariant that appears
the mean-field potential: DetfLg. This cubic contribution
gives rise to the first-order transition (thick line in Fig. 3

FIG. 3. The non-Abelian mean-field phase diagram of t
Os3d 3 Os2d sigma model (sketchy).
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This line terminates at tricritical points and is continue
by second-order transition lines: In particular, forK2
small enough there is a second-order transition to the fu
ordered phase. In the limiting caseK2 ­ 0, it is not
necessary to introduce the auxiliary field$l3 in Eq. (5) and
a standard calculation leads immediately to the Land
theory in Eq. (1). When0 , K2 , K1, the field $l3 is
necessarily present but it remainsmassiveat the phase
transition: At the transition the fields$l1, $l2 get a nonzero
expectation value, but the detfLg term in the potential
acts as a magnetic field and immediately induces also
ordering of $l3.

The intermediate ordering transitions that occur in t
K2 . K1 region are second order close to the boundar
These lines still exist in the unphysical region below t
first-order line: They are then spinodal lines and th
converge right at the diagonal toward the chiral pointC3,
which is thus metastable. As a consequence, we note
the latticized principalOs3d chiral model does not lead to
continuous theory: There is no place where the correlat
length diverges. In fact there is numerical evidence fro
Monte Carlo studies [16,17] for a first-order transition
the model (4) atK1 ­ K2 in three dimensions in agreemen
with the mean-field prediction. These studies have a
obtained marginal evidence for the chiral universality cla
exponents of Refs. [5–7] by simulation of (4) for the valu
K2 ­ 0. This Hamiltonian is expected to be in the sam
universality class as the STA-type helimagnets. Fr
our findings it is, however, clear that the proximity of
tricritical point as seen in mean-field theory may lead
difficulties in the observation of the true critical behavio
Indeed the first-order line begins atK1yK2 ­ 8.5.

In conclusion, we have shown the existence of a
matic phase with partial spin ordering in the family o
sigma modelsSOsNd 3 SOsN 2 1d ! SOsN 2 1ddiag.
For N . 3, all relevant fixed points are captured by
D ­ 2 1 e expansion. In the physical case SOs3d 3

SOs2d there is anXY phase transition between the full
ordered phase and the nematic phase. We obtain a s
lar picture from mean-field theory with the appearance
a first-order line that continues the helimagnetic seco
order line between the paramagnetic and the fully orde
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phases, and isolates the principal chiral fixed pointC3 with
SOs3d 3 SOs3d symmetry in the metastability region. Th
simplest scenario is that this line appears at an unkno
critical dimensionDc above which theD ­ 2 1 e is re-
placed by the mean-field picture. In this respect we n
that the intersection of the spinodal lines on the diago
is suggestive of a collapse of the two fixed pointsPN and
CN . If this critical dimensionDc is between 2 and 3, ther
is a natural explanation to the fact that the chiral univ
sality class has exponents different from O(4).

We thank S. Miyashita and H. Kawamura for intere
ing discussions about these topics.
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