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We study the phase transitionsfcomponent generalized helimagnets. In the neighborhood of two
dimensions, & = 2 + e renormalization group study reveals a rich fixed point structure as well as a
nematiclike phase with partial spin ordering. In the physical ¢ase 3, relevant to real magnets with
noncollinear ordering, we show that this impliesXavtlike transition between the ordered phase and the
nematiclike phase. A non-Abelian mean-field calculation is shown to lead to the same picture but then
the principal chiral fixed point, which had been proposed earlier as the relevant fixed point=foB
helimagnets, plays no role due to the appearance of a first-order line. [S0031-9007(96)00024-5]

PACS numbers: 64.60.Ak, 03.70.+k, 05.70.Jk

Several physical systems display a peculiar critical bethat these exponents are ruled by the nontrivial fixed point
havior associated with helical or noncollinear ordering.which exists forN > N.(D).
These include helimagnets, the dipole-locked phase of su- The study of these phenomena has also been performed
perfluid helium as well as Josephson junction arrays in &rom the low-temperature expansion. A nonlinear sigma
transverse magnetic field [1]. A prototypical example ismodel that captures the Goldstone modes of the theory has
the stacked triangular lattice antiferromagnet (STA) whosdeen constructed by Dombre and Read [10]. It involves an
low-temperature ordered phase breaks completely the rotarder parameter which is a rotation matrix instead of a vec-
tion symmetry group. When generalizedNecomponent  tor as in usual magnetic systems. This is due to the fact that
spins, the Landau-Ginzburg free energy for this systenthe rotation group is fully broken in the low-temperature
contains two quartic invariants: phase of noncollinear magnets. The symmetry breaking
pattern isSO(3) X SO(2) — SO(2)giag Where the inter-
1 5 \2 5 \2 ) nal SO(2) rotation acts upon the 1,2 indices of the fields
H= 2 (Vo™ + (Ve ] + r(e1 + 62) of Eg. (1). We can pararF;etrize the rotation matrix of the
=2 | 22\2 > 20 2222 nonlinear sigma model by three orthogonal unit vectors
Tu@r @)+ vllen @) ereal @ 3)1,3)2, 3)3 and the Euclidean action can be then written as
Whenu,v > 0, this free energy describes a second-order
phase transition between a high-temperature phase which¢ _ f dPx e [(V:ﬁ1)2 + (V:bz)z] n e (V<Z3)2.
is O(N) X 0O(2) symmetric and a low-temperature phase 2g 2¢>
with lower symmetryO(N — 2) X O(2)giag. This theory (2)
has been studied in the neighborhood of four dimensions
by the standard expansion [2,3]. The main point of The STA corresponds to a bare valiigg, = 0. The
these studies is that when the number of componentenormalization group flow of the two couplings, g, has
is large enough there is a fixed point witli,v* #  been studied [11] in ® = 2 + e expansion. It has been
0 that describes a critical behavior different from thenoted that a remarkable symmetry enhancement happens
well-studied behavior of theN-vector model. In the on the lineg; = g,. In this case the global symmetry of
neighborhood of the upper critical dimensiob, =4, Eq. (2) isSO(3) X SO(3) broken down to the diagonal
there is a dividing lineV.(D) = 21.8 — 23.4e + O(e?)  subgroupSO(3). This is the so-called principal chiral
in the (N, D) plane above which there is a second-ordemodel which is renormalizable and thus the peculiar line
phase transition and below which there is a fluctuationg, = g, is stable under the RG flow. Sinc®0(3) X
induced first-order transition (no stable fixed point). ThisSO(3) = SO(4), this line is described by the usus(4)
is similar to the case of the normal-superconducting phassigma model, at least within thB = 2 + € expansion.
transition [4]. The fate of the lin&/.(D) is not known Since this fixed point is stable and has an exponent
outside thee expansion. Numerical studies on the STAv = (0.74 there is a clear conflict with numerical and
lattice (thus inD = 3) have shown that the ordering experimental findings i = 3.
transition is second order with exponents that do not belong In this Letter we shed new light on this problem by
to theO(N) Wilson-Fisher universality classes [5—7],=  studying a new generalization td components of this
0.585(9), v/v = 2.011(14) [6]. These exponents are also sigma model as well as by a non-Abelian mean-field
observed in the body-centered tetragonal antiferromagnetlculation. We show that the sigma model has a much
[8], suggestive of a new universality class, usually calledicher structure than previously expected and we propose
chiral universality class [3]. It has been suggested [3,5,9h scenario in which the principal chiral fixed point with
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SO(4) symmetry plays no role inD =3 due to the means that for nonzero values of the couplings the model

appearance of a first-order transition. is always disordered and there is no phase transition at
In the two-dimensional case, the perturbative beta funchonzero temperature as expected for a system with non-

tions [11,12] indicate a flow which is infrared unstable Abelian symmetry.

away from the origing; = g» = 0 but the whole line We note that the KT point on thg axis cannot be stud-

g>» = 0 is a line of unstable fixed points as can be readed by extending the model simply 6 components. The

from the renormalization group (RG) formulas. This factlow-temperature limit of the theory (1) is &(N) X O(2)

has a simple interpretation: Whea — 0 the vector¢; ~ sigma model [14] that has also two coupling constants.

becomes frozen and the remaining degrees of freedom aildie corresponding phase diagram is topologically similar

simply the rotations of the vector?sl, (?,2 in the plane or- toFig. 1: The KT_point remains at finite coupling unreach-

thogonal togs. Sinced; andé, are themselves orthogo- aPle by perturbation theory.

nal, we are left with arKY model whose coupling ig;. . To clarify the situation, we will stu'dy :_;mother general-
The corresponding beta function is zero in perturbation thelzation of theO(3) X O(2) model which involvesv or-
ory. However, it is important to note that in = 2 this  thogonal unit vectors witiv componentsp,,..., ¢y and

XY model will undergo the Kosterlitz-Thouless (KT) tran- the action is
sition for afinite value of g;. This phenomenon is not o, 1 - R )
seen in perturbation theory and is not found in the per- S = ]d x 2—[(V¢1) + o+ (Vén-1)7]
turbative beta functions. We expect that the line of fixed &1
pointsg, = 0 will end at some critical value. Above this + 1 (V(?)N)2~ 3)
value, the flow will go to the high-temperature fixed point 2g>
in the disordered phase of th&/ model. This transition ; -
) S -~ : Th try break tt X -
is the unbinding transition of the vortices of tk& model. 1) isys/;rgz?\;e iy l)rja m%’—ﬁ; ;rnalss?gt?nﬁz(l\g()de?(xxc:h is
2 . lag-

If we unfreeze the vectaps by settingg, # 0, thentopo-  gefined on a space which is homogeneous but not maxi-
logical defects survive because, as noted by Kawamura ar}ﬁally symmetric. Wher; = g, one is dealing with the
Miyashita [13],I1,(SO(3)) = Z,. All XYvorticeswithan = gjama model defined by the maximally symmetric space
even winding number become topologically trivial while SO(N) X SO(N)/SO(N)giag; this is the so-called princi-
those with an odd winding number become all equivalenba| chiral model. Wherg, — 0, it reduces to the prin-
and nontrivial. _ _ cipal chiralSO(N — 1) model, and wherg; — = to the

To complete the phase diagram in theg, plane, we () vector model. In fact, this model has been studied
note that forg; = < the model (2)-becorr?es tE3) sigma some time ago by Friedan [12] who has shown that it is
model which has no transition i = 2: The coupling rengrmalizable in two dimensions with only two coupling

g2 flows continuously to the high-temperature fixed point..onstants. The corresponding RG flowZin= 2 + € is
If we assume that there are no other fixed points, we a'fepicted in Fig. 2.

led to propose the phase diagram shown in Fig. 1. This The principal chiral models are known to have a fixed

point within the D = 2 + € expansion: These are the

points Cy and Cy_; in Fig. 2. TheO(N) vector model
0(3) has also a fixed poir®y which is at a distance from the
upper left-hand corner of Fig. 2. The novelty is that we
find a fixed pointP with nontrivial values of the couplings
g1, g2 Which is not on the diagonal; = g,. This fixed
8, point has two directions of instability and thus there are
two phase transition lines: one that goes frém to Oy
and one that goes fromiy to Cy—;. This implies that
there is an intermediate phase in addition to the high-
KT temperature paramagnetic phase and the low-temperature
ordered phase. In this new phase, the vegigiis ordered
because it is in the low-temperature regime of o)

) J

g model but the remainingy — 1 vectorse;, ..., ¢y are
still fluctuating in the subspace orthogonalfg. Because
of this partial ordering, we will refer to this phase as
G “nematic.” The transition between the fully ordered phase

8, and the nematic phase is governed by the fixed point
FIG. 1. Global renormalization group flow of th®(3) x Cy—1 and the transition between nematic and paramagnetic

0(2) sigma model in two dimensions. The perturbative line Phases by th&(w) fixed point. The fixed poin€y which
of fixed points on the; axis ends at a KT fixed point. has the highest symmetry governs the critical behavior of
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On standard mean-field method then involves a non-Abelian
» integration over the(3) matrix (¢, 2, P3). We start
from the Hamiltonian
g, 1 nematic H= - Z Kidi(x) - ily) = _ZKiQZi Ve g,
para (x,y)
(4)
PN where the sum is over nearest-neighbor lattice sitgs,
CN-1 *—

is the connectivity matrix, and we take only two distinct

CN couplings:K; = 1/g; for 3)1, 3)2 andK, = 1/g, for 3)3.
K We write the partition function as

ordered zZ = f dA; e~ T/AK: v fd,U«((l'J )eZ hed, 5)
G Here du is the Haar measure oRO(3) and T is the
&, temperature. The mean-field theory is obtained by a

FIG. 2. The RG flow and the corresponding phase dmgran?addle point treatment of the integral over the auxiliary
of the QN) X O(N — 1) sigma model in the neighborhood fields A;. We have searched spatially uniform solutions
of two dimensionsD =2 + €. There is a high-temperature since the model (4) is ferromagnetic. There is a phase

paramagnetic phase, a fully ordered phase at low temperaturghere gl the expectation valués;) are zero, this is the
and an intermediate nematiclike phase where ¢he vector

is ordered but the other vectors are disordered. The diagong\'gh temperature fully dlsordered phase, and there is also

g1 = g is the principal chiral model. a phase where all the\ ) are nonzero, this is the fully
ordered phase that breaks the full rotational invariance.
But we also find a phase whef@;) # 0 but (A;,) =

the direct transition between the paramagnetic phase amy this is the nematic phase. The corresponding phase

the fully ordered phase. diagram is sketched in Fig. 3.

This phase diagram thus points to a possible explanation The most remarkable feature is the appearance of a first-
of what happens in th@(N) X O(2) sigma model above order line that crosses the diago&al = K,. Its existence
two dimensions. Here the poiidty—; is replaced by an is simple to understand: The non-Abelian integral in
O(2) point which is not seeninthb = 2 + € expansion. Eq. (5) has no simple closed form but its expansion in
This point is located ag, = 0 but g; = O(1) and thus  powers of group invariants built from the matrik =
the perturbativeflow of the couplingg; is that of a low- (X, A,, A3) is simple. Since we are dealing with the
temperature phase. The3)point is seen in perturbation rotation group, there is an odd invariant that appears in
theory [15]. The mixed fixed point will also be invisible the mean-field potential: Det]. This cubic contribution

in perturbation theory. In fact, in the flow equations of gives rise to the first-order transition (thick line in Fig. 3).
the generallzed model, the limN — 3 leads tog; —

andg, = O(e). WhenD — 2 the fixed points that were

of order e collapse to the origin but th®(2) fixed point Sl

becomes the KT point at the end of a line of perturbative s

fixed points. So the picture we have constructed leads

naturally to a phase diagram as Fig. 1 for@{lV) X O(2) % | nematic % fully disordered (para)

models. ~i = 5
TheseD = 2 + € expansion results clearly show that ) 5

the phase diagrams of the these sigma models are much
more complex than previously thought [11]. Notably the =) .

fixed pointPy is a prominent candidate to interact with the o} AT xﬂﬁ / h
principal chiral pointCy. To deepen our understanding, paint — _,-*,f C “
we now turn to a mean-field study of th@(3) X O(2) 4 L e
sigma model on a hypercubic lattice. This lattice model is ) Ifm"m -
regularized both in the ultraviolet and in the infrared limit: 1 m.:.uu_]‘
This is a sensible way to define the sigma model beyond fully prdeed. gum
perturbation theory. Note that to construct a continuum 0

field theory one has to find a second-order phase transition 0

WhICh is not guaranteee priori. We introduce a field g 3. The non-Abelian mean-field phase diagram of the
A conjugate to each vectaﬁ, in the action (2). The O(3) X O(2) sigma model (sketchy).

2nel and Icr

‘STP.

g,~-1/K, =]
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This line terminates at tricritical points and is continuedphases, and isolates the principal chiral fixed pGintvith

by second-order transition lines: In particular, fs  SO(3) X SQO(3) symmetry in the metastability region. The
small enough there is a second-order transition to the fullgimplest scenario is that this line appears at an unknown
ordered phase. In the limiting cade, = 0, it is not  critical dimensionD. above which theD = 2 + € is re-
necessary to introduce the auxiliary fielglin Eq. (5) and  placed by the mean-field picture. In this respect we note
a standard calculation leads immediately to the Landathat the intersection of the spinodal lines on the diagonal
theory in Eq. (1). Wherd < K, < K, the field A3 is  is suggestive of a collapse of the two fixed poiftfs and
necessar”y present but it remaingassiveat the phase Cy. Ifthis critical dimensionD. is between 2 and 3, there
transition: At the transition the fields;, A, get a nonzero s @ natural explanation to the fact that the chiral univer-
expectation value, but the didf] term in the potential Sality class has exponents different from O(4).

acts as a magnetic field and immediately induces also an We thank S. Miyashita and H. Kawamura for interest-
ordering ofAs. ing discussions about these topics.
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