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New Hydrodynamic Mechanism for Drop Coarsening

Vadim S. Nikolayev,* Daniel Beysens, and Patrick Guenoun

Service de Physique de I'Etat Condensé, CE Saclay, F-91191 Gif-sur-Yvette Cedex, France
(Received 9 March 1995

We discuss a new mechanism of drop coarsening due to coalescence only, which describes the late
stages of phase separation in fluids. Depending on the volume fraction of the minority phase, we
identify two different regimes of growth, where the drops are interconnected and their characteristic
size grows linearly with time, and where the spherical drops are disconnected and the growth follows
(time)Y3. The transition between the two regimes is sharp and occurs at a well defined volume fraction
of order 30%. [S0031-9007(96)00006-3]

PACS numbers: 64.60.—i, 47.55.Dz, 83.70.Hq

In this Letter we concentrate on the kinetics of the late D = kgT/57qR. 2

stages of the phase separation. This subject has receivefle factor f represents the correction which takes into
considerable attention recently [1-4]. Most of the experi-account the hydrodynamic interaction between the drops.
ments on growth kinetics have been performed near thg gepends on the ratio of the viscosities of the liquid
critical point of binary liquid mixtures (or simple fluids) jnside and outside the drops and the average distance
because there the critical slowing down allows the phepetween the drops and, therefore, on the volume fraction
nomenon to be observed during a reasonable time. Aftef,  This correction has been calculated in the dilute limit
a thermal quench from the one-phase region to the WOtg — 0) by Zhang and Davis [10]. In the proximity of

phase region of the phase diagram (Fig. 1), the domainge critical point we can assume the viscosities of the
of the new phases nucleate and grow. It turns out th%hases are equal and

two alternative regimes of coarsening are possible. The £(0) = 0.56 3)
first can be observed when the volume fractiprof the _ o _ :
minority phase is lower than some threshold [5], andACCOfdlng to the mOdel, the drOpS coalesce |mm6d|ate|y
the domains of the characteristic SiRegrOW according after the collision. Coalescence is the Only reason for the
to the lawR o ¢!/3 (¢ is the time elapsed after the quench)decrease of the total number of the drops with the rate

as spherical drops. The second regime manifests itself dn/dt = —Np. 4)
when the quench is performed at high volume fraction,

the coarsening law i® « ¢!, and the domains grow as a —T
complicated interconnected structure. Recent experiments

[2] show that wherd.1 < ¢ < 0.3 thet!/? growth can be or 7GR T
l ]

A

[

explained by a mechanism of Brownian drop motion and Vi
coalescence rather than the Lifshitz-Slyozov mechanism ~ - f
[6] which holds for¢p — 0 and which we will not discuss X
here. We are interested in the late stages of growth when '7°-0-02
phase boundaries are already well developed and the con¥+ ;
centrations of the phases are very close to the equilibrium - pe " t byt .
values at given temperatuf® as defined by the coexis- Discon- f | Inter- 1 i Discon
tence curve (Fig. 1). Then the drops grow just because -0.04| A
the system tends to minimize the total surface separating
the phases (i.e., due to coalescence) @nao longer de-
pends on time.
Brownian coalescence-The Brownian mechanism Concentration

was considered first by Smoluchowski [7] for coagulationFIG. 1. Coexistence curve for a model two-phase system
of colloids and was then applied to phase separation bfdensity-matched cyclohexane-methanol) from Ref. [1]. The

Binder and Stauffer [8] and Siggia [9]. According to this dotted curve is the calculated boundary (see text) between
he /3 and ¢! growth regions which corresponds 0 =

mechanlsm, the r"?‘te of CO”'S'QnS per uan vqum.e c!ue tc{).%. The triangles are the experimental data from Ref. [1].
the Brownian motion of spherical drops in the liquid of The curves corresponding té = 0.15 (random percolation

shear viscosityy is limit) and ¢ = 0.35 (the value which gives the best fit
Np = 167TDRn2f(¢), (1) to the experimental data from Ref. [1]) are also presented

h . b fd lurie for comparison. The volume fraction of the minority phase
wheren IS an average number of drops per Volume, g ihe point (c,T) can be calculated agh = 1/2 — |c —

is the average radius of the drops, ands the diffusion ¢ |/(c~ — ¢*), wherec, (= 0.707 for this case) is the critical
coefficient of the drops of the same viscosity concentration.
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With the relation deterministic hydrodynamic problem within the creeping
43 flow approximation (which is well justified near the criti-
¢ =3 mR*n = const ) cal point [9]) was solved. The free boundary conditions
Eq. (4) yields aR o« ¢'/3 law. The further improvements were applied on all drop interfaces whose motion is driven
(see [11] and references therein) of this model influencéy surface tension. At each time step the velocity of each
mainly the numerical factor in (1) which is not important mesh point on the interface contours was computed using
for the present considerations. a boundary integral approach [19]. When the new posi-
Hydrodynamic approaches-The origin of theR « ¢!  tions of the interfaces were calculated, the procedure was
growth law, observed at high volume fraction where do-continued iteratively. The details of the solution will be
mains are interconnected, is much less clear. By means pfesented elsewhere [20]. We begin the simulation when
a dimensional analysis, Siggia [9] has shown that hydroeoalescence starts between two drops of &izg-ig. 2),
dynamics is needed to explain the kinetics. It assumed thiee., when the drops of the minority phase approach to
growth to be ruled by the Taylor instability of the long tube within a distance of coalescengewhich corresponds to
of fluid, which breaks into separate drops, and associateithe interface thickness of the drop [9]. We choose for the
the growth rate with the rate of the evolution of the un-simulationR = 10). We then place another drop at the
stable fluctuations. This idea has been developed by Satistanced, from the composite drop (defined as the ag-
Miguel, Grant, and Gunton in [12]. However, it was not gregate of two coalescing drops) and envelope these two
clear how this process was related to the growth. drops by a spherical shell to mimic the surrounding pat-
Another approach has been considered by Kawasakérn of tightly packed drops. Thus the distance between
and Ohta [3] who used a model of coupled equations othe drops and the shell has been chosen tél#so. The
hydrodynamics and diffusion. It was assumed that thesurface tensiorr is supposed to be the same for all the
growth is controlled by diffusion, and the hydrodynamic interfaces. Unfortunately, due to the prohibitively long
correction to this process was calculated. However, theomputing times, we could not simulate the process of co-
translational movement of the drops due to the pressuralescence of twaephericaldrops. Instead, we had to use
gradient was not taken into account. The motion of thea configuration with cylindrical symmetry with respect to
liquid was supposed to be induced by the concentratiothe axisX’ — X (see Fig. 2) which is expected to retain
gradient only. At the same time, it is well known that the the main features associated with the spherical shape. In
concentration variation does not enter the equations of hythe beginning of the simulation the composite drop looks
drodynamics of the liquid mixture in a first approximation more like a torus. The spherical shell approximation can
[13]. Moreover, it is evident that at high volume fraction be justified by the fact that the main effect of the assembly
the coalescence process induced by the translational mof surrounding drops (as well as of the spherical shell) is

tion of the drops becomes very important. to confine the motion of the neighboring drops—see [20]
Recently, several groups [14—18] performed large scale
direct numerical simulations by using different approaches X'

to solve coupled equations of diffusion and hydrodynam- |
ics. Some recovered the linear growth law [15,17], while
others were not able to reach the late stages of separation
and measured the transient values of the growth exponent
(between 1/3 and 1). In spite of these efforts, the physi-
cal mechanism for the linear growth has not been clari-
fied. To our knowledge, the simulations never showed d & /™ d
two asymptotical laws depending on the volume fraction: S ™
The exponent is either larger than 1/3 when accounting g k13
for hydrodynamics or 1/3 for pure diffusion. Thus the /Y WL N
precise threshold iy separating the' and:'/? regimes | B RO !
is not predicted either by any theory or by simulation. v Sl
Simulation of coalescence-We show here that a! i :
growth can originate from a coalescence mechanism whose - R\#
limiting process between two coalescences is not Brownian e\ A
diffusion but rather flows induced by previous coalescence. = —ITT=F
We use the concept of “coalescence-induced coalescence” o .
as introduced by Tanaka [4] who, however, thought that in- ‘ Coalescence
duction by the hydrodynamic flow was not relevant, having position
stated that coalescence takes place after the decay of tP.ﬁ; 5 The positions of the drop surfaces at the beginnin
flow. 'We consider here a coalescence process betwe totted line) algd at the end (solid I?ne) of the simulatioqagis ?

_tWO_ drops and study nl_Jmeric_aIIy th_e generated flow anghe coalescence distancg, is the initial distance between the
its influence on the third neighboring drop. The fully drops, andx’ — X is the axis of cylindrical symmetry.
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for an advanced discussion. A setup with only three drops 60 - ' ' ' - LI
without either a shell or surrounding drops would not per-
mit coalescence to occur even for the smallest interdrop
distances. Though we cannot control quantitatively this
approximation, it is the simplest one which captures the
main features of the process. s} .
A first important result from the simulation is that the
flow generated by the first coalescence is able to generate
a second coalescentetween the composite drop and the ©w
neighboring drop (Fig. 2). This means that the lubrication
interaction with the surrounding drops (with the shell in o
our model) make the composite and the neighboring drops
attract (note that the second coalescedoes nottake I o
place between this neighboring drop and the shell). This 10 b g o °
leads to the formation of a new elongated droplet. When l Ly
the drops are close enough to each other the composite | \ ~_
drop will have no time to relax to a spherical shape T oz o3 oz o5 o8 o7 os
since a new coalescence takes place before relaxation. d /R
An interconnected pattern naturally follows. In contrast, 0
when the drops are far from each otfiels/R > 1), the  FiG. 3. The simulation data on the dependence of the reduced
second coalescence will never take place. The dropletsalescence timer on dy/R. The vertical lines show the
take a spherical shape and the liquid motion stops. It igeometric and hydrodynamic coalescence limits.

also clear that ifdy/R < I, which we call “geometric hat the value ob is not very sensitive to the particular

coalescence limit,” coalescence necessarily occurs due gbace arrangement. In the following, we adopt the me-
geometrical constraint. We fing = 0.484 [20,21]. dian valueb = 0.69. '

The second important result is that the coalescence
also takes place foig < dy/R < ly, where Iy is a
value which we call “hydrodynamic coalescence limit.”
It is defined as a reduced initial distance where the tim
between two coalescencés) becomes infinite. Since

Generalization of the hydrodynamic modelNow we

can generalize the above hydrodynamic mechanism for an
arbitrary shape of the drops. The self-similarity of the
Growth implies the following relation for the characteristic
sizes of the drops betweéth and(i + 1)th coalescences:

there _is on_Iy one length scal®) in the problemt. can R+ = BR(i)’Whereﬁ is a universal shape factor, which
be written in the scaled form depends ong only. We can also rewrite Eq. (6) for
te = anR/o, (6) the time between the coalescences in the fatth=
wherea is a reduced coalescence time which depends oa(¢)nR"" /o, wherea(¢) is also the universal function.
do/R only (Fig. 3). The last expression conforms to the scaling assumption
The quantitydo/R is related to the volume fraction of \hich implies the independence! on the second length
the drops (minority phase): scaley. Then, aftem coalescences,

¢ = b[1 + do/2R]>. (7)

The constanb depends on the space arrangement of the
drops. The hydrodynamic interaction between them i
always repulsive due to the lubrication force. Thus they ©
tend to be as far from each other as possible. Moreover, R=R" +[(B — 1/al(o/n)t, (8)
experiment shows a liquidlike order for the drop positionswhere R is the initial size of the drop. Noting that
Such a correlation explains why the drops do not percolat@ = 2!/3 for the spheres an@ = 1 for the long tubes,
[1] when the volume fractiong reaches therandom we can takeB ~ 1.1 for the estimate. Sinca ~ 10 for
percolation limit(¢ = 0.15). ¢ = 0.5, as it follows from Fig. 3 and Eq. (7), we obtain

Since no quantitative information is available to deter-R ~ 0.01¢ /%, which compares well with the experiment
mine b, we calculate its upper and lower bounds. Ideally,[23], which gives 0.03 for the numerical factor.
we can assume that the drops are arranged into a regu-Competition between two mechanismdNow using
lar lattice, with the vertices as far from each other asEq. (7) we can relatéy to a volume fractiongy. It is
possible. This is the face centered cubic lattice, wherelear that the described hydrodynamic mechanism works
b = /32 = 0.74 and which corresponds to the fully onlywhen¢ > ¢y, while the Brownian coalescence takes
ordered structure. We can also consider as a lower bourlace in the whole range ¢f. Below we shall consider the
the random close packing arrangement for spheres of raegime for which¢ > ¢ in order to obtain the position
dius R + do/2. This corresponds to the absence of aof the boundary betweerl/? and:' regions on the phase
short-range order [22] and implids = 0.64. We note diagram.
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