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We discuss a new mechanism of drop coarsening due to coalescence only, which describes
stages of phase separation in fluids. Depending on the volume fraction of the minority phas
identify two different regimes of growth, where the drops are interconnected and their charact
size grows linearly with time, and where the spherical drops are disconnected and the growth f
(time)1/3. The transition between the two regimes is sharp and occurs at a well defined volume fr
of order 30%. [S0031-9007(96)00006-3]

PACS numbers: 64.60.–i, 47.55.Dz, 83.70.Hq
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In this Letter we concentrate on the kinetics of the la
stages of the phase separation. This subject has rece
considerable attention recently [1–4]. Most of the expe
ments on growth kinetics have been performed near
critical point of binary liquid mixtures (or simple fluids
because there the critical slowing down allows the p
nomenon to be observed during a reasonable time. A
a thermal quench from the one-phase region to the t
phase region of the phase diagram (Fig. 1), the dom
of the new phases nucleate and grow. It turns out
two alternative regimes of coarsening are possible. T
first can be observed when the volume fractionf of the
minority phase is lower than some threshold [5], a
the domains of the characteristic sizeR grow according
to the lawR ~ t1y3 (t is the time elapsed after the quenc
as spherical drops. The second regime manifests it
when the quench is performed at high volume fracti
the coarsening law isR ~ t1, and the domains grow as
complicated interconnected structure. Recent experim
[2] show that when0.1 , f , 0.3 thet1y3 growth can be
explained by a mechanism of Brownian drop motion a
coalescence rather than the Lifshitz-Slyozov mechan
[6] which holds forf ! 0 and which we will not discuss
here. We are interested in the late stages of growth w
phase boundaries are already well developed and the
centrations of the phases are very close to the equilibr
values at given temperatureT as defined by the coexis
tence curve (Fig. 1). Then the drops grow just beca
the system tends to minimize the total surface separa
the phases (i.e., due to coalescence) andf no longer de-
pends on time.

Brownian coalescence.—The Brownian mechanism
was considered first by Smoluchowski [7] for coagulati
of colloids and was then applied to phase separation
Binder and Stauffer [8] and Siggia [9]. According to th
mechanism, the rate of collisions per unit volume due
the Brownian motion of spherical drops in the liquid
shear viscosityh is

NB ­ 16pDRn2fsfd , (1)
where n is an average number of drops per volume,R
is the average radius of the drops, andD is the diffusion
coefficient of the drops of the same viscosity
0031-9007y96y76(17)y3144(4)$10.00
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D ­ kBTy5phR . (2)

The factorf represents the correction which takes in
account the hydrodynamic interaction between the dro
It depends on the ratio of the viscosities of the liqu
inside and outside the drops and the average dista
between the drops and, therefore, on the volume fract
f. This correction has been calculated in the dilute lim
sf ! 0d by Zhang and Davis [10]. In the proximity o
the critical point we can assume the viscosities of t
phases are equal and

fs0d ­ 0.56 . (3)

According to the model, the drops coalesce immediat
after the collision. Coalescence is the only reason for
decrease of the total number of the drops with the rate

dnydt ­ 2NB . (4)

FIG. 1. Coexistence curve for a model two-phase syst
(density-matched cyclohexane-methanol) from Ref. [1]. T
dotted curve is the calculated boundary (see text) betw
the t1y3 and t1 growth regions which corresponds tof ­
0.26. The triangles are the experimental data from Ref. [
The curves corresponding tof ­ 0.15 (random percolation
limit) and f ­ 0.35 (the value which gives the best fi
to the experimental data from Ref. [1]) are also presen
for comparison. The volume fraction of the minority phas
at the point sc, T d can be calculated asf ­ 1y2 2 jc 2
ccjysc2 2 c1d, wherecc (­ 0.707 for this case) is the critical
concentration.
© 1996 The American Physical Society
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With the relation

f ­
4
3 pR3n ­ const, (5)

Eq. (4) yields aR ~ t1y3 law. The further improvements
(see [11] and references therein) of this model influe
mainly the numerical factor in (1) which is not importa
for the present considerations.

Hydrodynamic approaches.—The origin of theR ~ t1

growth law, observed at high volume fraction where d
mains are interconnected, is much less clear. By mean
a dimensional analysis, Siggia [9] has shown that hyd
dynamics is needed to explain the kinetics. It assumed
growth to be ruled by the Taylor instability of the long tub
of fluid, which breaks into separate drops, and associa
the growth rate with the rate of the evolution of the u
stable fluctuations. This idea has been developed by
Miguel, Grant, and Gunton in [12]. However, it was n
clear how this process was related to the growth.

Another approach has been considered by Kawa
and Ohta [3] who used a model of coupled equations
hydrodynamics and diffusion. It was assumed that
growth is controlled by diffusion, and the hydrodynam
correction to this process was calculated. However,
translational movement of the drops due to the press
gradient was not taken into account. The motion of
liquid was supposed to be induced by the concentra
gradient only. At the same time, it is well known that th
concentration variation does not enter the equations of
drodynamics of the liquid mixture in a first approximatio
[13]. Moreover, it is evident that at high volume fractio
the coalescence process induced by the translational
tion of the drops becomes very important.

Recently, several groups [14–18] performed large sc
direct numerical simulations by using different approach
to solve coupled equations of diffusion and hydrodyna
ics. Some recovered the linear growth law [15,17], wh
others were not able to reach the late stages of separ
and measured the transient values of the growth expo
(between 1/3 and 1). In spite of these efforts, the phy
cal mechanism for the linear growth has not been cl
fied. To our knowledge, the simulations never show
two asymptotical laws depending on the volume fractio
The exponent is either larger than 1/3 when accoun
for hydrodynamics or 1/3 for pure diffusion. Thus th
precise threshold inf separating thet1 and t1y3 regimes
is not predicted either by any theory or by simulation.

Simulation of coalescence.—We show here that at1

growth can originate from a coalescence mechanism wh
limiting process between two coalescences is not Brown
diffusion but rather flows induced by previous coalescen
We use the concept of “coalescence-induced coalesce
as introduced by Tanaka [4] who, however, thought that
duction by the hydrodynamic flow was not relevant, havi
stated that coalescence takes place after the decay o
flow. We consider here a coalescence process betw
two drops and study numerically the generated flow a
its influence on the third neighboring drop. The ful
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deterministic hydrodynamic problem within the creepin
flow approximation (which is well justified near the crit
cal point [9]) was solved. The free boundary conditio
were applied on all drop interfaces whose motion is driv
by surface tension. At each time step the velocity of ea
mesh point on the interface contours was computed us
a boundary integral approach [19]. When the new po
tions of the interfaces were calculated, the procedure
continued iteratively. The details of the solution will b
presented elsewhere [20]. We begin the simulation wh
coalescence starts between two drops of sizeR (Fig. 2),
i.e., when the drops of the minority phase approach
within a distance of coalescencec which corresponds to
the interface thickness of the drop [9]. We choose for
simulationR ­ 10c. We then place another drop at th
distanced0 from the composite drop (defined as the a
gregate of two coalescing drops) and envelope these
drops by a spherical shell to mimic the surrounding p
tern of tightly packed drops. Thus the distance betwe
the drops and the shell has been chosen to bed0 also. The
surface tensions is supposed to be the same for all th
interfaces. Unfortunately, due to the prohibitively lon
computing times, we could not simulate the process of
alescence of twosphericaldrops. Instead, we had to us
a configuration with cylindrical symmetry with respect
the axisX 0 2 X (see Fig. 2) which is expected to reta
the main features associated with the spherical shape
the beginning of the simulation the composite drop loo
more like a torus. The spherical shell approximation c
be justified by the fact that the main effect of the assem
of surrounding drops (as well as of the spherical shell)
to confine the motion of the neighboring drops—see [2

FIG. 2. The positions of the drop surfaces at the beginn
(dotted line) and at the end (solid line) of the simulation.c is
the coalescence distance,d0 is the initial distance between th
drops, andX 0 2 X is the axis of cylindrical symmetry.
3145
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for an advanced discussion. A setup with only three dro
without either a shell or surrounding drops would not pe
mit coalescence to occur even for the smallest interd
distances. Though we cannot control quantitatively t
approximation, it is the simplest one which captures
main features of the process.

A first important result from the simulation is that th
flow generated by the first coalescence is able to gene
a second coalescencebetween the composite drop and th
neighboring drop (Fig. 2). This means that the lubricati
interaction with the surrounding drops (with the shell
our model) make the composite and the neighboring dr
attract (note that the second coalescencedoes nottake
place between this neighboring drop and the shell). T
leads to the formation of a new elongated droplet. Wh
the drops are close enough to each other the compo
drop will have no time to relax to a spherical sha
since a new coalescence takes place before relaxa
An interconnected pattern naturally follows. In contra
when the drops are far from each othersd0yR ¿ 1d, the
second coalescence will never take place. The drop
take a spherical shape and the liquid motion stops. I
also clear that ifd0yR , lG , which we call “geometric
coalescence limit,” coalescence necessarily occurs du
geometrical constraint. We findlG ø 0.484 [20,21].

The second important result is that the coalesce
also takes place forlG , d0yR , lH , where lH is a
value which we call “hydrodynamic coalescence limit
It is defined as a reduced initial distance where the ti
between two coalescencesstcd becomes infinite. Since
there is only one length scalesRd in the problem,tc can
be written in the scaled form

tc ­ ahRys , (6)

wherea is a reduced coalescence time which depends
d0yR only (Fig. 3).

The quantityd0yR is related to the volume fraction o
the drops (minority phase)f:

f ­ bf1 1 d0y2Rg23. (7)

The constantb depends on the space arrangement of
drops. The hydrodynamic interaction between them
always repulsive due to the lubrication force. Thus th
tend to be as far from each other as possible. Moreo
experiment shows a liquidlike order for the drop position
Such a correlation explains why the drops do not perco
[1] when the volume fractionf reaches therandom
percolation limitsf ø 0.15d.

Since no quantitative information is available to dete
mineb, we calculate its upper and lower bounds. Ideal
we can assume that the drops are arranged into a r
lar lattice, with the vertices as far from each other
possible. This is the face centered cubic lattice, wh
b ­ py3

p
2 ø 0.74 and which corresponds to the full

ordered structure. We can also consider as a lower bo
the random close packing arrangement for spheres of
dius R 1 d0y2. This corresponds to the absence of
short-range order [22] and impliesb ø 0.64. We note
3146
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FIG. 3. The simulation data on the dependence of the redu
coalescence timea on d0yR. The vertical lines show the
geometric and hydrodynamic coalescence limits.

that the value ofb is not very sensitive to the particula
space arrangement. In the following, we adopt the m
dian valueb ­ 0.69.

Generalization of the hydrodynamic model.—Now we
can generalize the above hydrodynamic mechanism fo
arbitrary shape of the drops. The self-similarity of th
growth implies the following relation for the characterist
sizes of the drops betweenith andsi 1 1dth coalescences:
Rsi11d ­ bRsid, whereb is a universal shape factor, whic
depends onf only. We can also rewrite Eq. (6) fo
the time between the coalescences in the formt

sid
c ­

asfdhRsidys, whereasfd is also the universal function
The last expression conforms to the scaling assumpt
which implies the independence oft

sid
c on the second length

scalec . Then, aftern coalescences,

R ­ bnRs0d, t ­
n21X
i­0

tsid
c ,

and

R ­ Rs0d 1 fsb 2 1dyag ssyhdt , (8)

where Rs0d is the initial size of the drop. Noting tha
b ­ 21y3 for the spheres andb * 1 for the long tubes,
we can takeb , 1.1 for the estimate. Sincea , 10 for
f ­ 0.5, as it follows from Fig. 3 and Eq. (7), we obtai
R , 0.01syh, which compares well with the experimen
[23], which gives 0.03 for the numerical factor.

Competition between two mechanisms.—Now using
Eq. (7) we can relatelH to a volume fractionfH. It is
clear that the described hydrodynamic mechanism wo
only whenf . fH, while the Brownian coalescence take
place in the whole range off. Below we shall consider the
regime for whichf . fH in order to obtain the position
of the boundary betweent1y3 andt1 regions on the phase
diagram.
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Taking into account the competition between the tw
mechanisms, we consider the relation

dnydt ­ 2sNB 1 NHd , (9)
instead of (4), whereNH is the rate of the coalescences d
to the hydrodynamics which can be calculated by us
Eq. (8) and the relation betweenn andR [Eq. (5)]. The
latter, however, depends on the shape of the drop.
assume that in the early stages the drops are spherica
we use Eq. (5). It should be noted that Eq. (9), rewritt
for the scaled wave number, coincides exactly with t
semiempirical equation suggested by Furukawa [24].

The Brownian mechanism dominates whenNB . NH .
In the vicinity of the critical point one can use the two
scale-factor universality [25] expressions ­ kBTygj2,
wherej is the correlation length in the two-phase regio
andg ø 0.39 is a universal constant. Then we reduce t
last inequality to

R2yj2 , Gsfd , (10)
where

Gsfd ­ Cffsfdasfd and C ­ gy5psb 2 1d .
We do not know much about the functionfs0d which has
been discussed in Eq. (1). However, it is unphysical
assume that it exhibits singularities or a steep behav
We shall use the constant value (3) in the followin
We recall that all our considerations are valid only wh
the drop interfaces have already formed (late stages
growth), which means that the initial radius of a dro
cannot be less than the interface thickness, i.e.,ø4j [26].
It follows readily from the inequality (10) that growth
would obey the lawR ~ t1y3 when

Gsfd . 16 . (11)
Now we aim to estimate the functionGsfd by using for
asfd the calculated function in Fig. 3 along with Eq. (7
It turns out that the functionGsfd fits the power law

Gsfd ~ sf 2 fHd2d (12)
for f . fH well wherefH ø 0.26, d ø 0.33, and the
divergency comes fromasfd. From (12), it is easy to de-
duce that (11) is valid when0 , f 2 fH & 1026. In
practice, this means that for allf . fH, only the hydro-
dynamic mechanism will determine the growth from th
very beginning of the drop coarsening. Alternatively, f
f , fH, the drops will grow according to the Brown
ian mechanism only. This explains the sharp transit
in the kineticsst1 ! t1y3d which is controlled by the vol-
ume fraction of the minority phase as observed in [1] a
[2]. The curve which corresponds to the threshold va
f ­ 0.26 is plotted in Fig. 1. It shows a reasonable agre
ment with the experimental data in spite of our very pa
ticular choice of the form and arrangement of the drops

It should be mentioned that our model can be appl
to any system where the growth is due to the coalesce
of liquid drops inside another fluid (phase separatio
coagulation, etc.).

One of the authors (V. N.) would like to thank th
collaborators of SPEC Saclay for their kind hospitali
g

e
nd

n
e

o
r.
.

of

n

d
e
-
-

d
ce
,

and Ministère de l’Enseignement Supérieur et de
Recherche of France for financial support.

*On leave from Bogolyubov Institute for Theoretica
Physics, National Ukrainian Academy of Science
252143, Kiev, Ukraine. Electronic address
vnikol@amoco.saclay.cea.fr

[1] Y. Jayalakshmi, B. Khalil, and D. Beysens, Phys. Re
Lett. 69, 3088 (1992).

[2] F. Perrot, P. Guenoun, T. Baumberger, D. Beyse
Y. Garrabos, and B. Le Neindre, Phys. Rev. Lett.73, 688
(1994).

[3] K. Kawasaki and T. Ohta, Physica (Amsterdam)118A,
175 (1983); T. Koga, K. Kawasaki, M. Takenaka, an
T. Hashimoto, Physica (Amsterdam)198A, 473 (1993).

[4] H. Tanaka, Phys. Rev. Lett.72, 1702 (1994).
[5] J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase

Transitions and Critical Phenomena,edited by C. Domb
and J. L. Lebowitz (Academic Press, New York, 1983
Vol. 8, p. 267.

[6] I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solid
19, 35 (1961).

[7] M. von Smoluchowski, Z. Phys. Chem.92, 129 (1917).
[8] K. Binder and D. Stauffer, Phys. Rev. Lett.33, 1006

(1974).
[9] E. D. Siggia, Phys. Rev. A20, 595 (1979).

[10] X. Zhang and R. H. Davis, J. Fluid Mech.230, 479 (1991).
[11] H. Hayakawa, Physica (Amsterdam)175A, 383 (1991).
[12] M. San Miguel, M. Grant, and J. D. Gunton, Phys. Rev.

31, 1001 (1985).
[13] L. D. Landau and E. M. Lifshitz,Fluid Mechanics(Perga-

mon, London, 1959).
[14] S. Puri and B. Dünweg, Phys. Rev. A45, R6977 (1992).
[15] F. J. Alexander, S. Chen, and D. W. Grunau, Phys. Rev

48, 634 (1993).
[16] O. T. Valls and J. E. Farrell, Phys. Rev. E47, R36 (1993).
[17] A. Shinozaki and Y. Oono, Phys. Rev. E48, 2622 (1993).
[18] C. Appert, J. F. Olson, D. H. Rothman, and S. Zales

“Spinodal Decomposition in a Three-Dimensional, Two
Phase, Hydrodynamic Lattice Gas” (to be published).

[19] C. Pozrikidis,Boundary Integral and Singularity Method
for Linearized Viscous Flow(Cambridge University, Cam-
bridge, England, 1991).

[20] V. S. Nikolayev and D. Beysens, “Coalescence-Induc
Coalescence by Hydrodynamic Flow” (to be published).

[21] The shell diameterDs at the initial moment can be defined
according to Fig. 2 as a function ofR, c, andd0. If there
is no coalescence, the toruslike composite drop eventu
becomes a sphere with a diameterDc deduced from
its initial volume, the latter being conserved during th
evolution. ThelG value is determined by the condition
Ds ­ Dc 1 2R 1 3c which means that two drops o
final spherical shape must fit inside the spherical sh
with the gaps of thicknessc.

[22] J. H. Berryman, Phys. Rev. A27, 1053 (1983).
[23] P. Guenoun, R. Gastaud, F. Perrot, and D. Beysens, P

Rev. A 38, 4876 (1987).
[24] H. Furukawa, Adv. Phys.34, 703 (1985).
[25] M. R. Moldover, Phys. Rev. A31, 1022 (1985).
[26] D. Beysens and M. Robert, J. Chem. Phys.87, 3056

(1987);93, 6911 (1990).
3147


