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Nonlinear Perturbation Theory of the Incompressible Richtmyer-Meshkov Instability
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A single-mode nonlinear high-order perturbation theory is developed to describe the Richtmyer-
Meshkov instability of an impulsively accelerated interface between an incompressible fluid and
a constant supporting pressure. The nonlinear modification of Richtmyer's formula is presented
and compared to experimental data with strong radiatively driven shocks. The theory allows a
straightforward extension to more general cases of Richtmyer-Meshkov and Rayleigh-Taylor instabilities
(multimode, more interfaces, three-dimensional flow, etc.). [S0031-9007(96)00038-5]

PACS numbers: 47.20.Ma, 47.40.Nm

The Richtmyer-Meshkov (RM) instability develops available computing power. Although in the present
when a plane shock wave interacts with a corrugated etter we treat the most simple case of the RM instability
contact interface between two different fluids [1,2]. Like with Atwood numberA = 1, all the above is true not
the Rayleigh-Taylor (RT) instability, the RM instability only for arbitrary Atwood number but for a very large
is important in a wide range of applications, from astro-number of nonlinear instability problems, including all
physics to inertial confinement fusion. Both numericalthe relevant RT problems—interface, finite fluid layer,
[3] and analytical [4—6] methods developed in recentcombination of fluid layers, single or multimode, with or
years are available to calculate the linear growth rate oWithout surface tension, 2D or 3D.
the RM instability. The problem studied here is formulated as follows (for

The nonlinear theory of the RM instability, as dis- details, see Refs. [1,7,8]). An incompressible fluid sup-
tinct from numerical studies, is being developed undeiported by constant pressure occupies the upper half space
the simplifying assumption of incompressibility. Still, bounded by the interfage = 7 (x, ). Initially, the fluid is
its main results are based on simplified models of in-at rest, and the interface has a cosine shagpe,r < 0) =
compressible flow (see Ref. [7] and references therein)y, coskx. The motion is excited by a gravity acceleration
Exact perturbation theory has been advanced mostly fqoulseg(r) = U&S(¢). Our units of length and time afe !
the RT instability. Ingraham [8] proposed a method forand(kU) !, respectively. We normalize the interface dis-
calculating arbitrarily high orders of the perturbation se-placementtay, introducingé(x, ) = n(x, )/ 59, and the
ries, and actually carried out the solution to second ordevelocity potential tonoU. The perturbation parameter is
in the perturbation parameter Perturbation theory was defined ag = k7. The flow is described by Bernoulli's
later developed to third order in a 3D problem [9]. Forequation
the incompressible RM instability, only two conflicting

estimates of the second-order term have been published ¢ 1 2 _
so far: In Ref. [10], this term is predicted to be identi- £8(0) + ot * 2 (V) 0 (1)
cally zero, whereas in Refs. [11] and [12] a nonzero term
is obtained. and by the kinematic condition

Note that the real power of perturbation theory is not
revealed as long as we are limited to a few high-order € _ 9d _ € 9 9¢ )
terms because the convergence of the perturbation series ot ay dx dx

in the expansion parameteris unclear. To ascertain the

convergence, the expansion must include a large numbé&uations (1) and (2) should be satisfied at the interface,

of terms. So far, the calculation of higher-order terms hay = e&(x, 7). The velocity potentiak)(x,y, ) is a har-

been perceived as a serious problem, whose complexityionic function:V2¢ = 0.

escalates with increased order. For ¢ > 0, the acceleration term in Eq. (1) is zero. To
The goal of this work is to attract attention to the relate the strength of the impulsive force to the subsequent

following remarkable fact. With symbolic computation fluid motion, we integrate Eqg. (1) from= -0 to tr =

software, the calculation of the higher-order terms is not+0 (below, = 0 always means = +0) and obtain the

longer a serious problem. Terms of all orders are readilynitial conditions

generated by a simple procedure based on Ingraham’s

work [8]. The maximum order is limited only by the cosc + ¢(x, e cost,0) = 0, £(x,0) =cosc. (3)
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We seek a solution of Egs. (1) and (2) with the initial Eolx, 1) = (¢t + 1)cose (5)
conditions (3) as formal power seriesdn

f(x’ t) = Z Ejfj(-x7t)7 d)(x»y»t) = Z 6'i¢j(x»Y»t)- 1
=0 j=0 @) E(x, 1) = - 1* coLx

(this is the well-known linear Richtmyer’s formula),

The method of solution will be described separately,
but the idea is simple: Make the computer follow (this term is the same as given in Refs. [11] and [12], and
Ingraham’s procedure [8]. Here are some of the resultf: not as given in Ref. [10]),

=(=7r — = =+ =¥+ —
&Erx,t) <8 t A t~ ) cos3x 24t 3 t 2 t|cost,
1, 2, 12> <14 1, 1)
=(——¢t"+ =t — — stx + ="+ — ¢+ — Dx, ... 6
&(x, 1) <3t 3t 4t costx 3t 2t 12tco X, (6)

L (n+ 1)t

20 "+ 0(¢")i|COS[(n + Dx] + -

£u) = [ (-1

The analytic formula (6) has been obtained by inspectibnl;he spike, and the average valug,, = (I', — T')/2,
not derived rigorously. Still, since its validity has beenwhich is typically measured in the experiments, are nor-
checked for the first 20 orders, there is a good chance thatalized with respect to the results of the linear theory.
it is true for higher orders also. Here, three Padé approximants to the seriesEif), P13,
Calculation of the higher-order terms is only a start-and Pi¢ (the corresponding orders of approximation are
ing point of the perturbation theory analysis. Its main21 to 33), are shown versus positige Partial sums of the
issues are convergence and analytic continuation. Belovgeries (7) follow the same curves up ¢éo= 1, and then
we address these issues only for= 0 ande — 0, which  rapidly diverge. Poles of the Padé approximants indicate
physically corresponds to nonlinear modification of Richt-the singularities limiting the radius of convergence: They
myer’s formula and to the study of evolution of initially are located at = =i and are probably branch points.
small perturbations, respectively. Other poles are located in the Ke< 0 half plane, which
In Ingraham’s RT case [8], at= 0 the fluid remains at explains slower convergence of the Padé approximants for
rest, and convergence of his perturbation series is triviathe spike growth rate.
Here, atr = 0 the fluid has already been set into motion The points are from RM experiments [15] with strong
by the acceleration pulse. The growth rafes= 9£/0¢ radiatively driven shocks on the Nova laser at Lawrence
atr = 0 predicted by the linear Richtmyer’s formula (5) Livermore National Laboratory. The shock is initiated
for the bubble(x = 0) and the spike(x = =) are *1
or, in dimensional form;xkU 7. Nonlinear theory adds

higher-order corrections to this formula: 1.2 @ S
1 1 19 i T
[t=0€e=1—-—€+—¢€ + — ¢
g €) e P T L.
21 461 6+347 74
L € € e
320 11520 8064 0.
7) 5
= 0.
Is(t = 0,e) = =t = 0, —¢). 8 ~
0.
The radius of convergence of the series (7) is found to
be close tde| = 1, hence the series generates an analytic 0.
function of € in the vicinity of e = 0. As demonstrated i
by Eq. (8), the growth rates for both cases are given by 0.0 N T | P
the same analytic function of complex which has at 0 1 2 3 4

least one singularity on the circle of convergence. If the e
singularities are not located on the real axis, then this _ - _

values of|e| > 1. The conventional technique for doing instantaneously gained growth ralevs e. Dotted, dashed,

e X e and solid lines are Padé approximantsy, Pi3, and Pi¢,
this is the use of Pade approximation [12—14]. respectively. Points are the measured average growth rates

Figure 1 shows the nonlinear modification of Richt-normalized with respect to the rates given by compressible
myer’s formula. The growth rates obtained for the bubblelinear theory.
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in a beryllium (Be) ablator (1.7 &m% and is trans- and boxes correspond to 30 and 15 Mbar shock drive
mitted into a foam tamper (0.12/gm®. A sinusoidal pressures, respectively. As can be seen, the points agree
perturbationn, sinkx is imposed at the Bdoam inter-  within the experimental scatter with the calculated nonlin-
face with4 = 7y = 14 um and30 < 27 /k = 150 um.  ear correction averaged for the bubbles and spikes.

The RM growth rate (averaged over bubbles and spikes) Substituting the coefficients;(x, r) into the expansion

is measured with face-on and side-on radiography usin¢4) for £, we note that the result could be regarded also
x-ray dopants in the foam. Since the experiments havas a Taylor series in time. To make it meaningful, we
A = —0.87 and high compressiofMach > 10), we nor- normalize the time variable. The linear growth rate is
malize the measured growth rates to those calculated withroportional to the initial amplitude,, that is, toe, hence

the analytical linear theory [6], which is valid only when the time interval needed to reach the nonlinear regime is
kmo < 1 (the nonlinear correction factdr,,/I'y, is al-  of the order ofl/e. Introducings = er, we obtain the
most independent of the Atwood number). The circl|esseries sought for. In particular,

1, 1 5 7 & 1 o 341 5 37
=r—-— =7+ -7 - —7 + —=7° - +
M) =T T T T T T 12T T 50407 T ies0”
+ 6(1 - %7'2 + %73 - %7'4 - ) + 62(—%7 + %72 + %7'3 - 1—274 + > + -+, (9)
ns(7,€) = np(—7,—¢€), (20) | [see Eg. (10)], the functiom,(7) must be singular; e.g., if
for the bubble and the spike, respectively. 1,(7) behaves as Im for larger, thenn,(7) should have

Passing to the limie — 0,7 — o, finite 7, and retain- & logarithmic singularity at finite. Indeed, for the spike,
ing only the zero-order terms ia, we can describe evo- Fig- 3 demonstrates that convergence is not improved by
lution of an initially small perturbation to the nonlinear increasing the order of Padé approximation foslightly
stage. Figure 2 shows the bubble-spike structure evoh@Ver 0.7, which is clear signature of a singularity.
ing at the interface. (For each the time dependence is _Performing partial summation of the leading terms
calculated as th@]) Padé approximant of the zero-order 9iven by Eq. (6) or of other partial sums which could be
series.) The spike becomes noticeably sharper than tfidentified anr?l_lytlcally, we generate analytic functions of
bubble, as the structure is traced upktg = 0.5 and 1 7 whose radii of convergence, all equal 2de = 0.736

(with 7 in conventional units) for the bubble and spike, (in good agreement with Fig. 3), are determined by a
respectively. Why not longer? cut along the negative real axis fromo to —2/e.

The reason for it is illustrated in Fig. 3, where the Not surprisingly, this resembles the analytic solution for
growth rates for the bubble and the spike given by thdhe free-surface sing_le-_mode RT inst_ability presented in
Padé approximantg?, P, and P{ are presented versus Re_f. [18], where an infinitely long spike is produced at
7. For the bubble, convergence is good, and the growtfinite time. In both cases, we have the bubble-spike
rate decreases monotonically, in qualitative agreemerfymMmetry 7 — —r. This similarity indicates that the
with Refs. [7,16,17]. Since in this limig,(7) = n,(—7)
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FIG. 3. Growth ratel’ vs time: Dotted, dashed, agnd solid
FIG. 2. Displacement of the interface in units 6f' for  lines are time derivatives of Padé approximaffs Py, and
7 =0.07,0.14,...,0.7. P19, respectively.
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