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Nonlinear Perturbation Theory of the Incompressible Richtmyer-Meshkov Instability
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A single-mode nonlinear high-order perturbation theory is developed to describe the Richtmyer-
Meshkov instability of an impulsively accelerated interface between an incompressible fluid and
a constant supporting pressure. The nonlinear modification of Richtmyer’s formula is presented
and compared to experimental data with strong radiatively driven shocks. The theory allows a
straightforward extension to more general cases of Richtmyer-Meshkov and Rayleigh-Taylor instabilities
(multimode, more interfaces, three-dimensional flow, etc.). [S0031-9007(96)00038-5]

PACS numbers: 47.20.Ma, 47.40.Nm
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The Richtmyer-Meshkov (RM) instability develop
when a plane shock wave interacts with a corruga
contact interface between two different fluids [1,2]. Lik
the Rayleigh-Taylor (RT) instability, the RM instabilit
is important in a wide range of applications, from astr
physics to inertial confinement fusion. Both numeric
[3] and analytical [4–6] methods developed in rece
years are available to calculate the linear growth rate
the RM instability.

The nonlinear theory of the RM instability, as di
tinct from numerical studies, is being developed und
the simplifying assumption of incompressibility. Stil
its main results are based on simplified models of
compressible flow (see Ref. [7] and references there
Exact perturbation theory has been advanced mostly
the RT instability. Ingraham [8] proposed a method f
calculating arbitrarily high orders of the perturbation s
ries, and actually carried out the solution to second or
in the perturbation parametere. Perturbation theory was
later developed to third order in a 3D problem [9]. F
the incompressible RM instability, only two conflictin
estimates of the second-order term have been publis
so far: In Ref. [10], this term is predicted to be iden
cally zero, whereas in Refs. [11] and [12] a nonzero te
is obtained.

Note that the real power of perturbation theory is n
revealed as long as we are limited to a few high-or
terms because the convergence of the perturbation s
in the expansion parametere is unclear. To ascertain th
convergence, the expansion must include a large num
of terms. So far, the calculation of higher-order terms h
been perceived as a serious problem, whose comple
escalates with increased order.

The goal of this work is to attract attention to th
following remarkable fact. With symbolic computatio
software, the calculation of the higher-order terms is
longer a serious problem. Terms of all orders are rea
generated by a simple procedure based on Ingraha
work [8]. The maximum order is limited only by th
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available computing power. Although in the prese
Letter we treat the most simple case of the RM instabil
with Atwood numberA  1, all the above is true not
only for arbitrary Atwood number but for a very larg
number of nonlinear instability problems, including a
the relevant RT problems—interface, finite fluid laye
combination of fluid layers, single or multimode, with o
without surface tension, 2D or 3D.

The problem studied here is formulated as follows (f
details, see Refs. [1,7,8]). An incompressible fluid su
ported by constant pressure occupies the upper half sp
bounded by the interfacey  hsx, td. Initially, the fluid is
at rest, and the interface has a cosine shape,hsx, t , 0d 
h0 coskx. The motion is excited by a gravity acceleratio
pulsegstd  Udstd. Our units of length and time arek21

andskUd21, respectively. We normalize the interface di
placement toh0, introducingjsx, td  hsx, tdyh0, and the
velocity potential toh0U. The perturbation parameter i
defined ase  kh0. The flow is described by Bernoulli’s
equation

jdstd 1
≠f

≠t
1

1
2

es=fd2  0 (1)

and by the kinematic condition

≠j

≠t


≠f

≠y
2 e

≠f

≠x
≠j

≠x
. (2)

Equations (1) and (2) should be satisfied at the interfa
y  ejsx, td. The velocity potentialfsx, y, td is a har-
monic function:=2f  0.

For t . 0, the acceleration term in Eq. (1) is zero. T
relate the strength of the impulsive force to the subsequ
fluid motion, we integrate Eq. (1) fromt  20 to t 
10 (below, t  0 always meanst  10) and obtain the
initial conditions

cosx 1 fsx, e cosx, 0d  0, jsx, 0d  cosx . (3)
© 1996 The American Physical Society
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We seek a solution of Eqs. (1) and (2) with the init
conditions (3) as formal power series ine:

jsx, td 
X̀
j0

ejjjsx, td, fsx, y, td 
X̀
j0

ejfjsx, y, td .

(4)
The method of solution will be described separate

but the idea is simple: Make the computer follo
Ingraham’s procedure [8]. Here are some of the resul
io
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j0sx, td  st 1 1d cosx (5)

(this is the well-known linear Richtmyer’s formula),

j1sx, td  2
1
2

t2 cos2x

(this term is the same as given in Refs. [11] and [12], a
not as given in Ref. [10]),
j2sx, td 

µ
3
8

t3 2
3
8

t2

∂
cos3x 2

µ
5

24
t3 1

1
8

t2 1
1
4

t

∂
cosx ,

j3sx, td 

µ
2

1
3

t4 1
2
3

t3 2
1
4

t2

∂
cos4x 1

µ
1
3

t4 1
1
2

t2 1
1

12
t

∂
cos2x, . . . (6)

jnsx, td 

∑
s21dn sn 1 1dn21

2nn !
tn11 1 Ostnd

∏
cosfsn 1 1dxg 1 · · · .
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The analytic formula (6) has been obtained by inspect
not derived rigorously. Still, since its validity has bee
checked for the first 20 orders, there is a good chance
it is true for higher orders also.

Calculation of the higher-order terms is only a sta
ing point of the perturbation theory analysis. Its ma
issues are convergence and analytic continuation. Be
we address these issues only fort  0 ande ! 0, which
physically corresponds to nonlinear modification of Ric
myer’s formula and to the study of evolution of initiall
small perturbations, respectively.

In Ingraham’s RT case [8], att  0 the fluid remains at
rest, and convergence of his perturbation series is triv
Here, att  0 the fluid has already been set into motio
by the acceleration pulse. The growth ratesG  ≠jy≠t
at t  0 predicted by the linear Richtmyer’s formula (5
for the bubblesx  0d and the spikesx  pd are 61
or, in dimensional form,6kUh0. Nonlinear theory adds
higher-order corrections to this formula:

Gbst  0, ed  1 2
1
4

e2 1
1

12
e3 1

19
192

e4

2
21

320
e5 2

461
11520

e6 1
347

8064
e7 1 · · · ,

(7)

Gsst  0, ed  2Gbst  0, 2ed . (8)

The radius of convergence of the series (7) is found
be close tojej  1, hence the series generates an anal
function of e in the vicinity of e  0. As demonstrated
by Eq. (8), the growth rates for both cases are given
the same analytic function of complexe, which has at
least one singularity on the circle of convergence. If
singularities are not located on the real axis, then
function could be continued analytically along it to high
values ofjej . 1. The conventional technique for doin
this is the use of Padé approximation [12–14].

Figure 1 shows the nonlinear modification of Rich
myer’s formula. The growth rates obtained for the bubb
n,

at

-

w,

-
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,

the spike, and the average value,Gav  sGb 2 Gsdy2,
which is typically measured in the experiments, are no
malized with respect to the results of the linear theor
Here, three Padé approximants to the series (7),P10

10 , P12
12 ,

and P16
16 (the corresponding orders of approximation a

21 to 33), are shown versus positivee. Partial sums of the
series (7) follow the same curves up toe  1, and then
rapidly diverge. Poles of the Padé approximants indica
the singularities limiting the radius of convergence: The
are located ate  6i and are probably branch points
Other poles are located in the Ree , 0 half plane, which
explains slower convergence of the Padé approximants
the spike growth rate.

The points are from RM experiments [15] with stron
radiatively driven shocks on the Nova laser at Lawren
Livermore National Laboratory. The shock is initiate

FIG. 1. Nonlinear modification of Richtmyer’s formula for
instantaneously gained growth rateG vs e. Dotted, dashed,
and solid lines are Padé approximantsP10

10 , P12
12 , and P16

16 ,
respectively. Points are the measured average growth r
normalized with respect to the rates given by compressi
linear theory.
3113
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in a beryllium (Be) ablator (1.7 gycm3) and is trans-
mitted into a foam tamper (0.12 gycm3). A sinusoidal
perturbationh0 sinkx is imposed at the Beyfoam inter-
face with4 # h0 # 14 mm and30 # 2pyk # 150 mm.
The RM growth rate (averaged over bubbles and spik
is measured with face-on and side-on radiography us
x-ray dopants in the foam. Since the experiments h
A  20.87 and high compressionsMach . 10d, we nor-
malize the measured growth rates to those calculated w
the analytical linear theory [6], which is valid only whe
kh0 ø 1 (the nonlinear correction factorGav yGlin is al-
most independent of the Atwood number). The circ
-
ar
o
is
e

e

he
th
s
w
e
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and boxes correspond to 30 and 15 Mbar shock dr
pressures, respectively. As can be seen, the points a
within the experimental scatter with the calculated nonl
ear correction averaged for the bubbles and spikes.

Substituting the coefficientsjjsx, td into the expansion
(4) for j, we note that the result could be regarded a
as a Taylor series in time. To make it meaningful, w
normalize the time variable. The linear growth rate
proportional to the initial amplitudeh0, that is, toe, hence
the time interval needed to reach the nonlinear regime
of the order of1ye. Introducingt  et, we obtain the
series sought for. In particular,
hbst, ed  t 2
1
2

t2 1
1
6

t3 2
7

120
t5 1

1
12

t6 2
341
5040

t7 1
37

1680
t8 1 · · ·

1 e

µ
1 2

1
2

t2 1
2
3

t3 2
3
8

t4 2 · · ·

∂
1 e2

µ
2

1
4

t 1
1
4

t2 1
3
8

t3 2
47
48

t4 1 · · ·

∂
1 · · · , (9)
by
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hsst, ed  hbs2t, 2ed , (10)

for the bubble and the spike, respectively.
Passing to the limite ! 0, t ! `, finite t, and retain-

ing only the zero-order terms ine, we can describe evo
lution of an initially small perturbation to the nonline
stage. Figure 2 shows the bubble-spike structure ev
ing at the interface. (For eachx, the time dependence
calculated as theP10

10 Padé approximant of the zero-ord
series.) The spike becomes noticeably sharper than
bubble, as the structure is traced up tokh  0.5 and 1
(with h in conventional units) for the bubble and spik
respectively. Why not longer?

The reason for it is illustrated in Fig. 3, where t
growth rates for the bubble and the spike given by
Padé approximantsP8

8 , P9
9, andP10

10 are presented versu
t. For the bubble, convergence is good, and the gro
rate decreases monotonically, in qualitative agreem
with Refs. [7,16,17]. Since in this limithsstd  hbs2td

FIG. 2. Displacement of the interface in units ofk21 for
t  0.07, 0.14, . . . , 0.7.
lv-

r
the

,

e

th
nt

[see Eq. (10)], the functionhsstd must be singular; e.g., if
hbstd behaves as ln(t) for larget, thenhsstd should have
a logarithmic singularity at finitet. Indeed, for the spike,
Fig. 3 demonstrates that convergence is not improved
increasing the order of Padé approximation fort slightly
over 0.7, which is clear signature of a singularity.

Performing partial summation of the leading term
given by Eq. (6) or of other partial sums which could b
identified analytically, we generate analytic functions o
t whose radii of convergence, all equal to2ye  0.736
(in good agreement with Fig. 3), are determined by
cut along the negative real axis from2` to 22ye.
Not surprisingly, this resembles the analytic solution fo
the free-surface single-mode RT instability presented
Ref. [18], where an infinitely long spike is produced a
finite time. In both cases, we have the bubble-spi
symmetry t $ 2t. This similarity indicates that the

FIG. 3. Growth rateG vs time: Dotted, dashed, and solid
lines are time derivatives of Padé approximantsP8

8 , P9
9 , and

P10
10 , respectively.
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spike singularity in our case should also be logarithm
[18], which, in turn, supports the conclusion of Ref. [7
that the bubble growth at large time is logarithmic also.

What is the physical meaning of this solution after th
spike singularity has been formed? Could we use it
describe the bubble or the vicinity of the spike? Ho
would this type of singular behavior be modified in th
case of arbitrary Atwood number, where mushrooming
expected? Could the branching of an analytic function
complext adequately describe the multivalued solution
the mushrooming stage? These are some of the quest
to be answered by the perturbation theory analysis. T
answers are beyond the scope of the present Letter.
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