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Inversion of Quantum Jumps in Quantum Optical Systems under Continuous Observation
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We formulate conditions for invertibility of quantum jumps in systems that decay by emission of
quanta into a continuously monitored reservoir. We propose proof-of-principle experiments using
techniques from cavity quantum electrodynamics and ion trapping, and briefly discuss the relevance
of such methods for error correction in quantum computation. [S0031-9007(96)00057-9]
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Many current investigations of fundamental quantu
phenomena would benefit greatly from the implemen
tion of methods to stabilize quantum states against no
and dissipation [1]. For example, the realizability o
quantum computers [2] seems to depend critically on d
velopment of robust techniques for preserving the coh
ence of quantum memory elements. In this Letter we sh
describe a scheme forinversion of quantum jumpswhich,
under ideal experimental conditions, makes possible
complete preservation of quantum coherenceswithin a
subspace of initial statesfor specially constructed system
in quantum optics. In the context of quantum comp
tation, our scheme provides a means for dissipation-f
storage of quantum bits (qubits).

Decoherence and decay of a quantum optical syst
may be viewed as the result of weak coupling betwe
the system of interest and a reservoir of electromagne
field modes whose correlation time is much shorter th
the time scale set by system dynamics [1,3]. Und
the assumption of vanishing correlation time (Marko
approximation), one typically traces over reservoir stat
in the global equations of motion to derive a mast
equation that describes evolution of the reduced dens
operatorr̂ for the system alone. The master equation f
j ­ h1, . . . , dj decay channels iss" ­ 1d

d
dt

r̂ ­ 2 ifĤ , r̂g

1

dX
j­1

µ
ĉjr̂ĉ

y
j 2

1
2

ĉ
y
j ĉjr̂ 2 r̂

1
2

ĉ
y
j ĉj

∂
, (1)

where Ĥ is the system Hamiltonian andhĉjj are the
system operators that appear in the system-reser
coupling. Such a master equation will generally map pu
states of the system into statistical mixtures, reflecting t
decoherence which results from loss of information in
the unobserved reservoir modes.

Indeed, by tracing over the reservoir state to derive (
one implicitly and essentially assumes that no measu
ments are ever performed on the reservoir. Much rec
work in quantum optics has investigated thea posteri-
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ori dynamics obtained in contrasting situations where
j ­ h1, . . . , dj output channels are continuously monitore
by ideal photodetectors [4]. For a given count trajecto
j1, t1, . . . , jn, tn, the backaction corresponding to observ
tion of countjr at timetr leads to a collapse of the system
wave function(quantum jump)described by

c̃cstr 1 dtd ­ ĉjr c̃cstr d . (2)

Here ĉj denotes the systemjump operatorcorresponding

to counts in channelj, while Ĥeff ­ Ĥ 2 i
1
2

P
j ĉ

y
j ĉj is

an effective non-Hermitian Hamiltonian. Between coun
the system wave function obeys a Schrödinger equatio

c̃cstd ­ e2iĤeffst2tr dc̃cstrd . (3)

This quantum-jump picture of dissipative dynamic
underlies the recently developed “quantum trajectorie
method for Monte Carlo integration of quantum optic
master equations [5]. Starting from a known initial (pure
state, count trajectoriesj1, t1, . . . , jn, tn may be generated
by taking the probability density for a jump to occur a
time t to bekĉjccstdk2. Using thea posteriorievolution
rules described above, the system wave function at ti
t is then given by the normalized state vectorccstd ­
c̃cstdykc̃cstdk. For a physical system in which the coun
trajectories are not actually detected and recorded, one
average over Monte Carlo wave functions to recover
system density operator̂r ­ kjccl kccjl which obeys the
quantum master equation (1). However, for a laborato
setup whichactually incorporates complete and continu
ous photodetection, the individual trajectories anda poste-
riori dynamics may be interpreted (with some caution)
reflecting the “real” dynamicsof single quantum realiza-
tions. This principle motivates our scheme for the prese
vation of quantum coherence in dissipative systems—
discrete quantum jumps constitute the entire noncoher
component of Markovian dynamics, one can indeed ho
to suppress decoherence by performing appropriate op
tions to invert the operation̂cjr every time a count of
typejr is recorded. In general, however, a quantum jum
© 1996 The American Physical Society
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(2) will destroy superpositions so that information is irr
versibly lost. Hencêcj will not necessarily be invertible
on the entire system Hilbert spaceH .

Let us therefore formulate conditions under which
quantum jump (2) can be inverted for a system init
statec̃cstd which isknownto lie within a certainsubspace
Hs , H of the system Hilbert space. We are partic
larly interested in the case where a detected quan
jump c̃c [ Hs ! c̃ 0

c ­ ĉjc̃c [ H
s jd

s can be inverted
using feedback [6] described by a unitary time evoluti
operatorÛj, so thatc̃cstr 1 dtd ­ Ûjĉjr

c̃cstrd ~ c̃cstrd.
Thus, as a first condition (A), we require

ĉj ­ kjÛ21
j j

Hs!H
s jd

s
skj [ Cd ; (4)

together with the inverse relation̂c
y
j ­ kp

j ÛjjH s jd
s !Hs

,
i.e., for the mappingĉj: Hs ! H

s jd
s there exists a

unitary extension̂Uj to the whole Hilbert space [7] which
can be generated by an appropriate feedback Hamilton
The feedback is assumed to be instantaneous on
time scale of the system dynamics. Equation (4) impl
ĉ

y
j ĉj ­ jkj j

2'jHs!Hs . If we add the requirement (B) tha
the system Hamiltonian̂H leaves the subspace of intere
Hs invariant, the system dynamics between two quant
jumps is governed by

c̃cstd ­ e2iĤefftc̃

­ e
21y2

P
j
jkj j

2t
e2iĤtc̃ fc̃cstd [ Hsg

so that the damping terms factor out and thus do
distort the system dynamics between jumps. Furtherm
if each decay is detected and is followed by a feedba
Ûj to “undo” the effect of the quantum jump, w
have essentially eliminated the effects of decoherence
system states in the subspaceHs:

ccstd ­ e2iĤeffst2tndÛjn
ĉjn

· · · Ûj1 ĉj1 e
2iĤefft1cyk · · · k

­ e2iĤtc , (5)

wherek · · · k denotes normalization of the state.
For the derivation of Eq. (5) to be valid, it is essenti

that the system dynamics conform to the model of
quantum Markov process [1]. The underlying physic
assumption is a separation of time scales where
correlation timetc of the environment is much shorte
than all time scales characterizing the system evoluti
including, in particular, the system decay time [3]. Th
separation admits the treatment of system dynamics w
“coarse-grained” time resolution, and it is only on coar
timescaless¿tcd that the system wave function appea
to evolve according to a non-Hermitian Hamiltonian (
with stochastic, “instantaneous” quantum jumps [Eq. (2
Likewise, it is only on coarse time scales that coheren
can be preserved in the system according to Eq.
while the state of the environment will not (and nee
not) be restored at all in the present scheme. We w
to further stress that quantum optical systems areknown
to realize quantum Markovian models to an excelle
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approximation, so we fully expect our conclusions draw
from this assumption to be directly applicable torealistic
experimental systems.

Significantly, the type of jump-inversion procedure d
scribed above seems to be realizable with familiar exp
mental techniques in several systems of current interes
quantum optics. Our first example utilizes recent ide
from the field of cavity quantum electrodynamics (CQED
[8]. Consider the apparatus shown in Fig. 1, in whi
the output modes of two identical single-sided Fabry-Pé
resonators are mixed by a 50/50 beam splitter before
pinging upon photon-counting detectors. We assume
the high-reflector (HR) mirror of each resonator is perfe
and that the output couplers (OC) have no scattering or
sorption losses but have some small transmissivityt . 0.
The beam splitter is likewise assumed to be lossless,
we treat the photodetectors as having unit quantum e
ciency. Note that we are not invoking any sort of Ze
effect, so that the time resolution of the detectors is tak
as being very short compared to the cavity decay tim
but long compared to the optical time scale,1yv0 (v0

being the optical frequency of the resonator modes).
assume a separation of time scales in which all operati
described below can be performed in a time much less t
the cavity decay times, which we assume to be equal.

Let â andb̂ be the annihilation operators for the optic
modes of cavitiesa and b, respectively. The maste
equation for the resonator modes may be written

r̂ ­ 2isĤeffr̂ 2 r̂Ĥ
y
effd 1 Gsâr̂ây 1 b̂r̂b̂yd , (6)

with Ĥeff ­ sv0 2 i
1
2 Gd sâyâ 1 b̂yb̂d the effective

Hamiltonian. We identifyâ and b̂ as the jump operators

FIG. 1. Schematic of a cavity-QED gedanken experime
Components are labeled (see text) HR, high-reflector mirro
OC, output-coupler mirrors; BS, 50/50 beam splitter; and PC
photon-counting detectors.
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associated with the detection of dissipative events in c
ities a and b. In order to account for the mixed-outpu
measurement scheme of Fig. 1, we must make a b
transformation by defining

Â ­
1

p
2

sâ 1 b̂d, B̂ ­
1

p
2

sâ 2 b̂d , (7)

which we interpret as jump operators corresponding to
registration of photons by detectorsA andB. In terms of
the new jump operators, Eq. (6) becomes

r̂ ­ 2isĤeffr̂ 2 r̂Ĥ
y
effd 1 GsÂr̂Ây 1 B̂r̂B̂yd , (8)

whereĤeff ­ sv0 2 i
1
2 Gd sÂyÂ 1 B̂yB̂d remains invari-

ant under the change of basis.
In this example we consider stabilization of the su

space spanned by the Fock statesj0lL ; j2a0bl and
j1lL ; j0a2bl, representing a logical zero and one, r
spectively. Let the initial state of the two-cavity syste
be given by

jcl ­ c0j2a0b l 1 c1j0a2bl ; c0j0lL 1 c1j1lL . (9)

We first note that states of this form are stationary un
the time evolution (3), sincej2a0bl andj0a2bl are degen-
erate eigenstates of̂Heff. Therefore the superposition (9
remains unchanged during periods of time in which
photons are detected. When photodetection events do
cur, the postjump statejccl will be either

Âjcl ­ c0j1a0bl 1 c1j0a1bl ,

B̂jcl ­ c0j1a0bl 2 c1j0a1bl .
(10)

As both coefficientssc0, c1d survive in either case, and
remain attached to orthogonal state vectors, the orig
state jcl may, in principle, be fully restored by the
application of the appropriate feedback operatorÛA or
ÛB. Note that one knows which of these to app
based upon which detector registered the photon.
inverse jump operators correspond to the doubling
the photon number in both resonatorss0 ! 0, 1 ! 2d,
with or without a phase change ofp in resonatorb.
Since we must employ only coherent processes for
o
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doubling operation, the states of resonatorsa and b
may be independently manipulated without compromisi
the entanglement between them. This allows us
consider the simplified task of “independently” doublin
the photon number in each resonator.

We now proceed to give an explicit example of
process to achieve this photon-number doubling. O
proposal employs adiabatic state-mapping techniques
scribed in [9], by which one can “swap” the state o
a resonator field with the internal Zeeman state of
atom. Consider an atom having an angular moment
J ! J 2 1 transition sJ . 1d with frequencyv0, pre-
pared in thejgmJ ­2Jl ground state as depicted in Fig. 2
If we wish to invert anÂ-type jump, the combined state
of the atom plus resonator fields will initially be

jCl ­ jg2J lÂjcl ­ jg2Jl sc0j1a0bl 1 c1j0a1bld . (11)

After performing adiabatic state mapping [assuming t
resonator mode hass1 polarization, see Fig. 2(a)],

jCl ! sc0jg2J11lj0bl 1 c1jg2Jlj1bldj0al . (12)

We can now effect the photon-number doubling f
resonatora by applying a Ramanp pulse to the atom,
with p- ands2-polarized lasers having frequencyv0 2

d. The detuningd should be chosen large enough
eliminate any possibility of populating the excited atom
state. After thep pulse, we have [Fig. 2(b)]

jCl ! sc0jg2J12lj0bl 1 c1jg2Jlj1bldj0al . (13)

Note that polarization selection rules prevent t
j 2 Jl atomic state from coupling to the specified R
man fields. With a final “reverse” application of th
state-mapping procedure [Fig. 2(c)], the total state of
system becomes

jCl ! jg2Jl sc0j2a0bl 1 c1j0a1bld . (14)

Thus the photon-number doubling has been accomplis
for the first resonator. An analogous procedure f
resonatorb completes the process, with the sequence
intermediate states given by
jg2Jl sc0j2a0bl 1 c1j0a1bld ! sc0jg2Jlj2al 1 c1jg2J11lj0aldj0bl ! sc0jg2J lj2al 1 c1jg2J12lj0aldj0bl

! jg2Jl sc0j2a0bl 1 c1j0a2bld ; jg2Jljcl . (15)
.
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e

As the atomic state factors out in the last step, the at
can safely be discarded after completing the restoratio

Note that this procedure can be adapted to the invers
of B̂-type jumps simply by changing the Ramanp pulse
to a 3p pulse during restoration of the state of resona
b. Also, the entire setup could be simplified by usin
two optical modes of opposite circular polarization in
single Fabry-Pérot cavity. The appropriate observat
basis would then be photon counting with discriminati
of the linear polarization of the leaking photons.
m

n

r

n

Our second example could be implemented usin
trapped ions [10]. Consider an ion having aJg ­

1
2 !

Je ­
3
2 optical transition, with the initial state

jcl ­ c0je23y2l 1 c1je3y2l ; c0j0lL 1 c1j1lL . (16)

The decay channels for this initial state are ordinar
spontaneous emission, withje23y2l ° jg21y2l producing
a s2-polarized photon andje3y2l ° jg1y2l producing a
s1-polarized photon. Although polarization-preserving
imaging of the entire dipole emission pattern would b
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FIG. 2. Level diagram of aJg ­ 3y2 ! Je ­ 1y2 Zee-
man atom used for photon-number doubling: (a) adiaba
state mapping via a Raman process according to Eq. (
(b) doubling (13), and (c) mapping the Zeeman superposit
back to cavity field (14) (s1-cavity modea, laserL).

experimentally difficult, let us imagine for the mome
that the decay photons can be detected with per
efficiency after the circular-polarization modes are mix
by a linearly polarizing beam splitter. The jump operato
for the system are then

x̂, ŷ ­
1

p
2

sjg21y2l ke23y2j 6 ijg1y2l ke3y2jd , (17)

where the operator̂x is associated with the detectio
of an x-polarized photon and̂y with the detection of a
y-polarized photon. The associated reset operations
be achieved by simplep pulsing on the6 1

2 ! 7
3
2 transi-

tions, as long as measures are taken to avoid the unwa
but degenerate transitions6 1

2 ! 7
1
2 . This degeneracy

could be lifted by selectively shifting theje61y2l states,
for example, by applyingp-polarized ac Stark fields on
a transition to an auxiliary atomic level withJe0 ­ 1y2.
In this scenario, the coherent restoration of superpo
tion (16) could be verified by Ramsey-interferomet
techniques. A proof-of-principle demonstration could
performed even with low photodetection efficiency by s
lecting the subensemble of events in which the decay p
ton is successfully detected [11].

The problem of storing and manipulating entangl
atomic and photon states has lately attracted consider
attention within the context of recent proposals for imp
menting quantum computation and quantum cryptograp
[2]. In a quantum computer,quantum registersare de-
fined as product states ofL (logical) qubits, and the gen
eral state is an entangle state of these product states.
note that state restoration by inversion of quantum jum
is also possible in such a composite system. If the s
systems (the individual qubits) are coupled to independ
ic
2),
n
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reservoirs, a detected decay of one of the qubits can be
stored by single bit operation. Finally, we remark that t
present scheme complements a recent proposal by S
[12] on quantum error correction via redundant codin
In contrast to the Shor proposal the present scheme
volves no overhead of stored and manipulated qubits, b
on the other hand, incorporates a specific quantum o
cal model for damping (which must be reliably known
apply to the system in question). Whereas Shor’s pro
col may be viewed as having quite general applicabili
our scheme benefits from its context of well-establish
models for dissipation in concrete physical systems.
addition, we have shown recently that the methods p
posed in the present paper can be extended to provid
error correction procedure for quantumgates[13].
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