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Inversion of Quantum Jumps in Quantum Optical Systems under Continuous Observation

H. Mabuchi
Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125

P. Zoller

Institut fir Theoretische Physik, Universitat Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
(Received 11 January 19p6

We formulate conditions for invertibility of quantum jumps in systems that decay by emission of
guanta into a continuously monitored reservoir. We propose proof-of-principle experiments using
techniques from cavity quantum electrodynamics and ion trapping, and briefly discuss the relevance
of such methods for error correction in quantum computation. [S0031-9007(96)00057-9]

PACS numbers: 42.50.Lc, 42.50.—p, 89.70.+c

Many current investigations of fundamental quantumori dynamics obtained in contrasting situations where all
phenomena would benefit greatly from the implementas = {1,..., d} output channels are continuously monitored
tion of methods to stabilize quantum states against noisky ideal photodetectors [4]. For a given count trajectory
and dissipation [1]. For example, the realizability of ji,#,...,j.,t,, the backaction corresponding to observa-
quantum computers [2] seems to depend critically on detion of count;, at time¢, leads to a collapse of the system
velopment of robust techniques for preserving the coherwave function(quantum jump¥escribed by
ence of quantum memory elements. In this Letter we shall _ _
describe a scheme famversion of quantum jumpshich, be(t, +dt) = ¢, b.(t,). (2)
under ideal experimental conditions, makes possible the ) )
complete preservation of quantum coherenagtiin a Here¢; denotes the systejump operatorcorresponding
subspace of initial statef®r specially constructed systems to counts in channel, while A.;; = H — i% > é}téj is
in quantum optics. In the context of quantum compu-an effective non-Hermitian Hamiltonian. Between counts,
tation, our scheme provides a means for dissipation-frethe system wave function obeys a Schrdédinger equation
storage of quantum bits (qubits). . " .

Decoherence and decay of a quantum optical system Je(t) = e M=) (1,). 3)
may be viewed as the result of weak coupling between . . ) o .
the system of interest and a reservoir of electromagnetic 1MS guantum-jump picture of dissipative dynamics
field modes whose correlation time is much shorter thanderlies the recently developed “quantum trajectories”

the time scale set by system dynamics [1,3]. Undefmethod for Monte Carlo in_tegration of quantum optical
the assumption of vanishing correlation time (MarkovmaSter equations [5]. Starting from a known initial (pure)

approximation), one typically traces over reservoir stateState, count trajectorieg, 71, .., j», » may be generated
in the global equations of motion to derive a master?Y taking the probatglllty density for a jump to occur at
equation that describes evolution of the reduced densit§Me 7 to belle;#.(1)lI". Using thea posteriorievolution

operatorp for the system alone. The master equation forUles described above, the system wave function at time
j =11,...,d} decay channels ig = 1) t is then given by the normalized state vectr(r) =
U Je()/ g ()ll. For a physical system in which the count

4 p = —ilH,p] trajectories are not actually detected and recorded, one can
dt average over Monte Carlo wave functions to recover a
SN TE R B system density operat@r = (|i.) (¢.|) which obeys the
+ _Z(CJPCJ TGP TPy Cj>’ 1) guantum master equation (1). However, for a laboratory
=1 setup whichactually incorporates complete and continu-
where A is the system Hamiltonian an{t;} are the ous photodetection, the individual trajectories arbste-
system operators that appear in the system-reservaiiori dynamics may be interpreted (with some caution) as
coupling. Such a master equation will generally map pureeflecting the “real” dynamicsf single quantum realiza-
states of the system into statistical mixtures, reflecting théons. This principle motivates our scheme for the preser-
decoherence which results from loss of information intovation of quantum coherence in dissipative systems—if
the unobserved reservoir modes. discrete quantum jumps constitute the entire noncoherent
Indeed, by tracing over the reservoir state to derive (1)component of Markovian dynamics, one can indeed hope
one implicitly and essentially assumes that no measurde suppress decoherence by performing appropriate opera-
ments are ever performed on the reservoir. Much recerttons to invert the operatio; every time a count of
work in quantum optics has investigated theposteri- typej, is recorded. In general, however, a quantum jump
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(2) will destroy superpositions so that information is irre- approximation, so we fully expect our conclusions drawn
versibly lost. Hence; will not necessarily be invertible from this assumption to be directly applicablerealistic
on the entire system Hilbert spadd . experimental systems.

Let us therefore formulate conditions under which a Significantly, the type of jump-inversion procedure de-
guantum jump (2) can be inverted for a system initialscribed above seems to be realizable with familiar experi-
statey.(r) which isknownto lie within a certairsubspace mental techniques in several systems of current interest in
H, C H of the system Hilbert space. We are particu-quantum optics. Our first example utilizes recent ideas
larly interested in the case where a detected quanturfitom the field of cavity quantum electrodynamics (CQED)

jump . € H, — . = & € 27 can be inverted [8]. Consider the apparatus shown in Fig. 1, in which
using feedback [6] described by a unitary time evolutionthe OUtpUt modes of two identical Single'Sided Fabry-PérOt
operator(;, so that. (1, + dt) = U;¢; .(t,) = §.(t,). ~ resonators are mixed by a 50/50 beam splitter before im-

ThUS, as a first condition (A)’ we require plnglng upon photon—Counting detectors. We assume that
the high-reflector (HR) mirror of each resonator is perfect,

po= k. (771 ; . . .
¢ = kU |3{\-~5{.f” (k; € C); (4) and that the output couplers (OC) have no scattering or ab-
together with the inverse reIatioﬁ}L = KUl 04,  SOTPEON losses but have some small transmissivity 0.
() o o ’ The beam splitter is likewise assumed to be lossless, and

i.e., for the mappinge;: H, — Hs"' there exists a
unitary extensiorU/; to the whole Hilbert space [7] which
can be generated by an appropriate feedback Hamiltonia
The feedback is assumed to be instantaneous on t
time scale of the system dynamics. Equation (4) implie

N

éje; = lkj*1l31—5¢. If we add the requirement (B) that
the system Hamiltonia#/ leaves the subspace of interest
H, invariant, the system dynamics between two quantu
jumps is governed by

we treat the photodetectors as having unit quantum effi-
giency. Note that we are not invoking any sort of Zeno
ect, so that the time resolution of the detectors is taken

S being very short compared to the cavity decay times

ut long compared to the optical time scald/wq (wo
being the optical frequency of the resonator modes). We
assume a separation of time scales in which all operations
"Yescribed below can be performed in a time much less than
5 e the cavity decay times, which we assume to be equal.

Je(t) = e Hertl s Let a andb be the annihilation operators for the optical
- . o .
— 172 Ikl te””‘a,// [0.(1) € 3] mode; of cavitiesa and b, respectively. T_he master
_ equation for the resonator modes may be written

so that the damping terms factor out and thus do not e At At L Aant
distort the system dynamics between jumps. Furthermore, P = —i(Hetp — pHere) + T(apa® + bpb'), (6)
ni each ‘fjeca){' is detected and is followed by'a feedbacb\,ith Hor = (wo — i%l“) (ata + bth) the effective
U; to “undo” the effect of the quantum jump, we e

J ) o Hamiltoni
have essentially eliminated the effects of decoherence on
system states in the subspatf:

Pe(t) = e MG 25 Uy e Mty /]|

= e My, (5) C—r
where|| - - - || denotes normalization of the state.

For the derivation of Eq. (5) to be valid, it is essential
that the system dynamics conform to the model of a
quantum Markov process [1]. The underlying physical
assumption is a separation of time scales where the
correlation timer,. of the environment is much shorter
than all time scales characterizing the system evolution,
including, in particular, the system decay time [3]. This
separation admits the treatment of system dynamics with
“coarse-grained” time resolution, and it is only on coarse
timescales>>r.) that the system wave function appears
to evolve according to a non-Hermitian Hamiltonian (3) A
with stochastic, “instantaneous” quantum jumps [Eq. (2)].
Likewise, it is only on coarse time scales that coherence
can be preserved in the system according to Eg. (5), B
while the state of the environment will not (and need IG. 1. Schematic of a cavity-QED gedanken experiment.

not) be restored at all in the pregent scheme. We wis omponents are labeled (see text) HR, high-reflector mirrors;
to furth_er stress that quantum optical systemslar@wn  oc, output-coupler mirrors; BS, 50/50 beam splitter; and PCD,
to realize quantum Markovian models to an excellentphoton-counting detectors.

an. We identifya andb as the jump operators

HR
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associated with the detection of dissipative events in cawdoubling operation, the states of resonatarsand b
ities a andb. In order to account for the mixed-output may be independently manipulated without compromising
measurement scheme of Fig. 1, we must make a basike entanglement between them. This allows us to

transformation by defining consider the simplified task of “independently” doubling
. 1 . A 1 . the photon number in each resonator.
A=—(a+b), B=—=(@—-0b), @) We now proceed to give an explicit example of a
V2 V2 process to achieve this photon-number doubling. Our

which we interpret as jump operators corresponding to theroposal employs adiabatic state-mapping techniques de-
registration of photons by detectoksandB. Interms of scribed in [9], by which one can “swap” the state of
the new jump operators, Eq. (6) becomes a resonator field with the internal Zeeman state of an
« A A .t A A PN atom. Consider an atom having an angular momentum
p = —ilfeip — pHar) + TAPAT + BpBY). ®) 577 T Yransition J>1) wit% frequegncywo, pre-
whereH.ir = (wo — i31) (ATA + BTB) remains invari- pared in thelg,,— ;) ground state as depicted in Fig. 2.
ant under the change of basis. If we wish to invert anA-type jump, the combined state
In this example we consider stabilization of the sub-of the atom plus resonator fields will initially be
space spanned by the Fock stat€y;, = |2,0,) and _ - _
IIF;L = |022b>, reprgsenting a Iogica?l$zero and>one, re- [¥) = lg-n)Ald) = g1 (colla0y) + c1l0a1p)). (11)
spectively. Let the initial state of the two-cavity system After performing adiabatic state mapping [assuming the
be given by resonator mode has. polarization, see Fig. 2(a)],

[) = c0l2405) + ¢11042p) = colO) + c1l)p.  (9) |W) — (colg—s+1)10p) + cilg—15))104) . (12)

We first note that states of this form are stationary undefve can now effect the photon-number doubling for
the time evolution (3), sinck,0,) and|0,2;) are degen-  resonatora by applying a Ramanr pulse to the atom,
erate eigenstates éf.r. Therefore the superposition (9) with 7- and o_-polarized lasers having frequenay, —
remains unchanged during periods of time in which nos. The detunings should be chosen large enough to
photons are detected. When photodetection events do Ogtiminate any possibility of populating the excited atomic

cur, the postjump states.) will be either state. After ther pulse, we have [Fig. 2(b)]
Alg) = collalp) + e1l0als). (10) W) = (colg-s+2)105) + cilg-PILDI0) . (13)
Blip) = colla0p) — c1l0415). Note that polarization selection rules prevent the
As both coefficients(co, ¢;) survive in either case, and | — J) atomic state from coupling to the specified Ra-

remain attached to orthogonal state vectors, the origindnan fields. With a final “reverse” application of the
state |/) may, in principle, be fully restored by the state-mapping procedure [Fig. 2(c)], the total state of the
application of the appropriate feedback operaloy or ~ system becomes

Up. Note that one knows which of these to apply .

based upon which detector registered the photon. The W) = lg-s) (col2a00) + €1l0a1s)) (14)
inverse jump operators correspond to the doubling offhus the photon-number doubling has been accomplished
the photon number in both resonatafs— 0,1 — 2), for the first resonator. An analogous procedure for
with or without a phase change af in resonatorb. resonatorb completes the process, with the sequence of
Since we must employ only coherent processes for |th'entermediate states given by

lg-1) (c0l2405) + c11041p)) = (colg-)12a) + cilg—s+110.)10) — (colg-1N24) + cilg—s+2)10a))105)
— [g—1) (c0l2,05) + ¢110,25)) = lg-DI). (15)

As the atomic state factors out in the last step, the atom Our second example could be implemented using

can safely be discarded after completing the restoration. trapped ions [10]. Consider an ion having/a= % —
Note that this procedure can be adapted to the inversios, = % optical transition, with the initial state

of B-type jumps simply by changing the Ramanpulse . _

to a 37 pulse during restoration of the state of resonator ) = cole-sy2) + cilespp) = colO)r + erll)e. (16)

b. Also, the entire setup could be simplified by usingThe decay channels for this initial state are ordinary

two optical modes of opposite circular polarization in aspontaneous emission, with_3,,) — |g—1,2) producing

single Fabry-Pérot cavity. The appropriate observatiora o _-polarized photon andes/») — |g1/2) producing a

basis would then be photon counting with discriminationo -polarized photon. Although polarization-preserving

of thelinear polarization of the leaking photons. imaging of the entire dipole emission pattern would be
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reservoirs, a detected decay of one of the qubits can be re-
stored by single bit operation. Finally, we remark that the
present scheme complements a recent proposal by Shor
[12] on quantum error correction via redundant coding.
In contrast to the Shor proposal the present scheme in-
volves no overhead of stored and manipulated qubits, but,
on the other hand, incorporates a specific quantum opti-
cal model for damping (which must be reliably known to
apply to the system in question). Whereas Shor’s proto-
col may be viewed as having quite general applicability,
our scheme benefits from its context of well-established
models for dissipation in concrete physical systems. In
addition, we have shown recently that the methods pro-
posed in the present paper can be extended to provide an
error correction procedure for quantugates[13].
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