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Gap Anisotropy in the Layered High Temperature Superconductors
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We present a new strategy for constructing semiphenomenological models which deal with the
electronic structure of the normal and superconducting states on equal footing. We demonstrate that i
can reproduce all the striking features of the high-resolution photoemission experiments on the layered
high Tc superconductors.

PACS numbers: 74.20.–z, 74.25.–q
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Recently, high-resolution photoemission experime
have been providing fairly convincing evidence that t
gap in the excitation spectrum of the layered highTc

superconductors is strongly anisotropic [1,2]. While th
may be decisive information, the interpretation of t
data is elusive due to the lack of credible models wh
deal with the normal and superconducting states on eq
footing [3,4]. In this Letter we present a new strate
for constructing such models andillustrate their use and
power by interpreting complex features of experimen
data.

To make progress we combine the eight-band mo
advocated by Andersenet al. [5] for describing the elec-
tronic structure of these materials, near the Fermi ene
in the normal state and the semiphenomenological den
functional approach to superconductivity of Suvas
et al. [6]. The former is an effective, nearest neighbo
tight-binding model Hamiltonian for a Cu-O bilayer, an
it features four s orbitals: w

s
1sCu dx22y2 d, w

s
2sCu sd,

w
s
3sO 2pxd, w

s
4sO 3pyd, and four p orbitals:

w
s
5sO 2pzd, w

s
6sO 3pzd, w

s
7sCu dzxd, w

s
8sCu dxyd, for the

bottomss  0d and topss  1d layers of bilayer material.
It is the result of a down-folding procedure based on fir
principles local density approximation (LDA) calculation
[5], and it gives an accurate account of all the interest
bands near the Fermi level [5]. In particular, it describ
the bifurcated saddle point which is often regarded
essential for the occurrence of superconductivity [3–
For a physical interpretation of the model it is worthwhi
to add that the Cus orbital contains some Cu3dx221

and
apex oxygenpz characters. The description of pairing [6
is based on the density functional theory (DFT) which, u
der a very general condition, describes superconducti
by a self-consistent Kohn-Sham Bogoliubov–de Genn
equation with normal potentialysr; fn, xgd and pairing
potential Dsr, r0; fn, xgd which are functionals of the
charge density,nsrd, and the pairing amplitude,xsr, r0d,
which is the proper order parameter of the problem [
In this Letter we considersingletpairing only.

For the normal potentialysr; fn, xgd we shall take the
usual LDA functional ofnsrd. Clearly, to make a similar
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approximation for the pairing potential functional woul
imply knowing the mechanism of pairing. Instead of a
suming a specific model we adopt a semiphenomenolo
cal approach. Namely, in the general functional relati
betweenDsr, r0d andxsr, r0d,

Dsr, r0d 
Z

d3r1

Z
d3r0

1lsr, r0; r1, r0
1dxsr1, r0

1d , (1)

we parametrize the kernellsr, r0; r1, r0
1d (which, asD, in

a complete theory would be additionally a functional o
both n and x, and would be determined by the pairin
mechanism) by a set of adjustable parameters (orbital
site dependent coupling constants) to be chosen so th
realistic Tc would be obtained, and the anisotropy of th
observed gap could be reproduced.

To combine this phenomenology of superconductivi
with the description of the normal state by the eight-ba
model [5], we expandxsr, r0d andDsr, r0d in terms of the
orbitals of the model

xsr, r0d 
X
i,j

X
m,m0

X
s,s0

ws
msr 2 Ridx

s,s0

m,m0si, jdws0

m0sr0 2 Rjd ,

Dsr, r0d 
X
i,j

X
m,m0

X
s,s0

ws
msr 2 RidD

s,s0

m,m0 si, jdws0

m0 sr0 2 Rjd ,

where ws
m’s are the orbitals mentioned earlier,Ri ’s are

the positions of the atoms,i, j are the site indices, and
m, m0 the basis function indices. Clearly, which atom
contributes which orbital at which site is governed b
the coefficientsx

s,s0

m,m0 si, jd and D
s,s0

m,m0 si, jd, and Eq. (1)
becomes

D
s,s0

m,m0si, jd 
X
k,l

X
m1,m0

1

X
s1,s0

1

l
s,s0;s1,s0

1

m,m0;m1,m0
1
si, j; k, ldxs1,s0

1

m1,m0
1
sk, ld ,

(2)

where
© 1996 The American Physical Society 307
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l
s,s0;s1,s0

1

m,m0;m1,m0
1
si, j; k, ld 

Z
d3r

Z
d3r0

Z
d3r1

Z
d3r0

1

3 ws
msr 2 Ridws0

m0sr0 2 Rjdlsr, r0; r1, r0
1dws1

m1
sr1 2 Rkdws0

1

m
0
1
sr0

1 2 Rld .
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The central point of our approach is that we shall rega

the matrix elementsl
s,s0;s1,s0

1

m,m0;m1,m0
1
si, j; k, ld as adjustable pa-

rameters describing an effective electron-electron attr
tion of unknown origin. The power of the method lies
being able to attribute the rich variety of consequenc
predictions for various experiments, of the theory to
teractions between electrons at specific sites and in s
cific orbitals. Our hope is that guided by the data fro
such searching probes as high-resolution photoemis
experiments [1,2] we shall be able to identify the sites a
orbitals relevant to superconductivity, and hence prov
new bases for speculations about the nature of pairing.
what follows weillustrate the power of this approach by
analyzing the gap anisotropy reported in [1] and [2], a
identifying the site and orbital dependence of the electr
electron attraction with specific features of the data.

The calculations are much simpler if we make t
necessary but reasonable approximation,
u-

o
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l
s,s0;s1,s0

1

m,m0;m1,m0
1
si, j; k, ld  l

s,s0

m,m0 si, jddm,m1dm0,m0
1

3 ds,s1ds0,s0
1
di,kdj,l ,

which reduces (2) tooneterm, and base our theory on th
fundamental self-consistency condition,

D
s,s0

m,m0si, jd  l
s,s0

m,m0si, jdxs,s0

m,m0si, jd .

For a periodic system it is useful to look for solutions su
that D

s,s0

m,m0 si, jd, l
s,s0

m,m0 si, jd, and x
s,s0

m,m0si, jd depend only
on the differencesRi 2 Rj , and hence only their lattice

Fourier transformsD
s,s0

m,m0skd, l
s,s0

m,m0skd, andx
s,s0

m,m0 skd enter
the theory. Under this assumption, the eight-band mo
Bogoliubov–de Gennes equation, at a particulark point
in the Brillouin zone, reads as follows:
8X
m01

1X
s00

√
ses

m 2 meddm,m0ds,s0 1 t
s,s0

m,m0 skd D
s,s0

m,m0skd

D
s,s0p
m,m0 skd 2ses

m 2 meddm,m0ds,s0 1 t
s,s0

m,m0skd

! √
un

k,m0,s0

y
n
k,m0 ,s0

!
 Ek,n

√
un

k,m,s

y
n
k,m,s

!
,
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where the site energieses
m and the hopping integrals

t
s,s0

m,m0skd are those of the eight-band model [5] for the C
O bilayer.

For each solution labeled by band indexn of Eq. (3),
we construct the two-component Bloch wave solution
the Bogoliubov–de Gennes equation in the usual way;

Ck,nsrd 
X

i,m,s

√
un

k,m,s

y
n
k,m,s

!
fs

msr 2 Rid expsik ? Rid ,

and calculate the densitynsrd and the pairing amplitude
xsr, r0d using the standard relations [see Eq. (4) in [6
We then recalculate the pairing potentialsD

s,s0

m,m0 si, jd and
repeat the process, determining the chemical potentialme

at each stage, until a prescribed level of converge
is reached. All the calculations we shall discuss in t
remainder of this Letter have been performed in this w
making a variety of choices for the phenomenologic
particle-particle interaction parametersl

s,s0

m,m0 si, jd.
The quasiparticle energiesEnskd come in pairs,E1

n skd
and E2

n skd, above and below the chemical potentialme,
respectively. We define the superconducting gap in
quasiparticle spectrum as the minimum energy separa
2DnskF,sd  E1

n skF,sd 2 E2
n skF,sd, where kF,s is the

wave vector for which such a minimum occurs. No
that kF,s defines a surface in the superconducting sta
but this need not be the same as the Fermi surface in
normal state due to the change in the chemical poten
f

e
e
,
l

e
n

,
he
al

on condensation [6]. This is why we do not use the BC

formula Enskd 
q

sek,n 2 med2 1 D
2
nskd to define the

gap.
Another general point of interest is that, unlike th

textbook examples of single-band theories, in the pres
multiband case the pairing interaction is not the gap but
related to it in a complicated fashion. This is due to th
matrix character of the pairing potential,D

s,s0

m,m0skd, and
is of significance when we discuss their symmetry cla
sification [8]. Evidently, we should distinguish betwee
intraorbital and interorbital pairing potentials corre
sponding, respectively, to the diagonal and off-diagon
elements ofD

s,s0

m,m0skd. While in the case of the former,
D

s,s0

m,m0skF,sd for m  m0, is usually a good approximation
to the gap, and itsk dependence is governed by th
interaction. In the case of the latter, namelym fi m0, sur-
prisingly, thek dependence of the hybridizationt

s,s0

m,m0skd
plays a dominant role in determining the variation of th
gap, DnskF,sd, over the Fermi surface. This is readily
seen by noting the presence of terms such as, e.g.,Ddsskd,
tspskd, tpdskd in the determinant of the eigenvalue
problem in Eq. (3). Unexpectedly, as discussed belo
also diagonal pairing potentials,Ds,s

m,m, for m whose
orbital character does not occur in any of the bands
the Fermi level can give rise to a superconducting g
with a complex k dependence involving off-diagona
hopping integrals. In what follows, these observation
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will be central to our description of the gap anisotrop
as seen by the high-resolution photoemission e
periments [1,2].

We have applied the methodology described above
study the quasiparticle spectra for the Cu-O bilayer
YBa2Cu3O7 sYBCOd [5] for a variety of site- and orbital-
diagonal and off-diagonal couplings both within and b
tween the Cu-O layers. Although an exhaustive study
all possibilities was not feasible, we have investigated
large number of cases fairly systematically. Our resu
may be summarized as follows. (a) For site- and orbit
diagonal interactions we found a more or less isotrop
gap, except forl

s,s
2,2, which gave rise to an anisotropic ga

with a cusp and zero value along thesp, pd direction. Al-
though the correspondingl

s,s
2,2  7.0 eV is too large to

be seriously considered, this result demonstrates dram
ically that in the multiband model the symmetry of th
gap need not be the same as the symmetry of the p
ing interaction or the order parameter. By contrast, in t
conventional one-band model such a gap would imply
order parameter ofd-wave symmetry, but here it is asso
ciated with an isotropic pairing potentialD

s,s
2,2 and thek

dependence involving a product of the off-diagonal ho
ping integralstd,pskdtp,sskdDs,s

2,2ts,pskdtp,dskd. (b) Of sin-
gle site, but orbital off-diagonal interactions, onlyl

s,s
2,1 gave

an anisotropic gap. This was also of the above mention
d-wave symmetry. (c) Generally, intersite interactions
the Cu-O plane led to anisotropic gaps. Usually these w
also ofd-wave symmetry of the above kind, except in th
case ofl

s,s
2,1, which resulted in an anisotropic gap with

minimum, as opposed to a cusp, atsp, pd. In the case
of the one-band model the latter circumstance would c
respond to the extendeds-wave order parameter. (d) In-
terlayer couplings had similar effects to that of the on-s
interactions, and onlyl

s,s0

2,2 andl
s,s0

2,1 resulted in anisotropic
gaps. (e) No single interaction gave a minimum at an
termediate point on the Fermi surface betweens0, pd and
sp , pd. (f) Examining the case where we assumed mo
than one coupling constant to be nonzero, we discove
that the intersite in-planes-d interactionl

s,s
2,1 and d-p in-

teraction ofl
s,s
1,3, l

s,s
1,4, l

s,s
1,5, l

s,s
1,6 combination produced the

anisotropic gaps over the odd and even sheets of the Fe
surface displayed in Fig. 1. To illustrate the power of o
approach, in our calculation we have adjusted the two ind
pendent interaction parameters (l

s,s
2,1  2.7 eV andl

s,s
1,3 

l
s,s
1,4  l

s,s
1,5  l

s,s
1,6  0.45 eV) so that the transition tem-

perature agreed with experiments on YBCO, and the mi
ma in the gap were located at the points on the Fer
surface as was first reported by Dinget al. [1] (Fig. 2).
Although the characteristic “hump” in their original inter
pretation of the data has recently been withdrawn, it is
luminating to elaborate on the way the above result com
about.

This k dependence ofDnskd is a linear combination
of an extendeds-wave pairing favored by the intersite
s-d interaction and a cosskxad cosskybd contribution due
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FIG. 1. The calculated superconducting gap along the e
(inner curve) and odd (outer curve) sheets of the Fermi surf
for Cu-O bilayer of YBa2Cu3O7 corresponding to theGX
irreducible quadrant. Thex and y axes are in units ofk, and
the length of each of them isp.

to a relatively smalld-p interaction. The former is a
surprising consequence of the interplay between thek
dependence coming from the lattice Fourier transform
l

s,s
2,1si, jd, l

s,s
2,1skd, and another induced by hybridizatio

betweens and d bands viats,p and tp,d hopping. The
latter brings in the lattice Fourier transforml

s,s
p,dskd which

features sinskxay2d for thes orbitals, instead of cosskxad
in the case ofl

s,s
s,dskd, and cosskxay2d for p orbitals.

Also noteworthy is the fact that each of thes and p

FIG. 2. The calculated superconducting gap as a function
the Fermi surface length for the even sheet of the Fer
surface of Cu-O bilayer of YBa2Cu3O7 corresponding to the
GX irreducible quadrant. Thex axis is in units ofk. In the
inset we show the results of Dinget al. [1] for Bi 2Sr2CaCu2O8.
309
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d-p coupling constants separately produces minima aw
from sp, pd with slight changes in the position of th
minima and the maximum amplitudes ins0, pd andsp , pd
directions. Clearly, forl

s,s
d,pskd  0 the hump would

disappear. By contrast, in the case of the experime
suggesting that the gap is zero along thesp , pd direction
[2] with a cusp, our calculations strongly favor Cud–Cud
nearest neighbor interaction in the Cu-O plane with
conveniently smalll

s,s
d,dskd  0.67 eV.

It is reassuring to observe that these results pr
the essential features of the eight-band model [5]. T
hybridization of Opz with Cudx22y2 is responsible for the
bifurcated saddle point. Itsk4 rather thank2 dispersion in
one of the directions enhances the phase space effects
therefore, the size of the gap for a given set of coupl
constants.

Of course, according to our strategy, having chose
specific set of interaction constants which reproducesTc

and the required gap anisotropy is only the beginni
Given the set, we can calculate without further adjusta
parameters the full solution of the Bogoliubov–de Genn
equation depicted in Eq. (3) and, therefore, a rich vari
of observables such as the Knight shifts, spin lattice rel
ation rates, etc. [6]. A quantity of such general interes
the quasiparticle density of statesNsEd 

P
k dsE 2 Ekd.

Our calculated quasiparticle density of states correspo
ing to the gap in Fig. 1 is shown in Fig. 3. Interesting
the maximum gap of 20 meV atsp , 0d marks the position
of a well defined pseudogap, below which there is onl
very shallow tail. Obviously, using this figure and our ca
culatedTc of 91 K we could deduce a BCS ratio2DykBT
anywhere between 3.4 and 5.1.

FIG. 3. The density of states forT  0 K.
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Given our site and orbital specific, but otherwis
phenomenological, proposal for the pairing interacti
we now wish to comment on the somewhat differe
conclusions of Fehrenbacheret al. [4] whose aspirations
are rather similar to ours. While it is not easy to dra
comparisons between their one-band model and our m
more elaborate description of the electronic structure n
the Fermi energy, it is interesting to note that they ident
the pairing interaction between next-nearest-neighbor s
as the principal cause of the gap anisotropy sho
in Fig. 2. Thus, our suggestion may be viewed as
discovery of an alternative mechanism of gap anisotro
involving a richer variety of orbitals. The significan
difference notwithstanding, it may also be worthwhile
note that the strength of their interaction in units of th
hopping integrals which characterize the band structure
the normal state is rather similar to ourlsdytsp , 1. This
is a very strong interaction which, if real, should hav
a number of important implications. For instance, it
unlikely to be compatible with the mechanism of pairin
with harmonic phonons.

Summarizing, the principal result of this Letter i
the illustration of how the interpretation of sufficientl
complex experimental data can lead to an identification
the orbital and site dependence of the pairing interacti
In particular, the three possible scenarios of hump, cu
and minimum along thesp , pd direction could each
be interpreted as arising from a very specific near
neighbor pairing interaction:l

s,s
s,d s2.7 eVd combined with

l
s,s
d,p s0.45 eVd imply a hump,l

s,s
d,d s0.67 eVd gives a gap

that is zero along thesp , pd direction with a cusp, and,
finally, l

s,s
s,d s2.3 eVd results in a gap which is zero and

minimum along thesp , pd direction.
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