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Gap Anisotropy in the Layered High Temperature Superconductors
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We present a new strategy for constructing semiphenomenological models which deal with the
electronic structure of the normal and superconducting states on equal footing. We demonstrate that it
can reproduce all the striking features of the high-resolution photoemission experiments on the layered
high T.. superconductors.

PACS numbers: 74.20.—z, 74.25.—q

Recently, high-resolution photoemission experimentapproximation for the pairing potential functional would
have been providing fairly convincing evidence that theimply knowing the mechanism of pairing. Instead of as-
gap in the excitation spectrum of the layered hih  suming a specific model we adopt a semiphenomenologi-
superconductors is strongly anisotropic [1,2]. While thiscal approach. Namely, in the general functional relation
may be decisive information, the interpretation of thebetweenA(r,r’) and y(r,r’),
data is elusive due to the lack of credible models which
deal with the normal and superconducting states on equal
footing [3,4]. In this Letter we present a new strategy A(r,r’) = f d3r1fd3ri/\(r,r’;rl,r{))((rl,r{), 1)
for constructing such models aiiltustrate their use and
power by interpreting complex features of experimental
data. we parametrize the kernalr,r’;r;,r) (which, asA, in

To make progress we combine the eight-band modeh complete theory would be additionally a functional of
advocated by Anderseet al. [5] for describing the elec- both n and y, and would be determined by the pairing
tronic structure of these materials, near the Fermi energynechanism) by a set of adjustable parameters (orbital and
in the normal state and the semiphenomenological densitsite dependent coupling constants) to be chosen so that a
functional approach to superconductivity of Suvasinirealistic7, would be obtained, and the anisotropy of the
et al.[6]. The former is an effective, nearest neighbor,observed gap could be reproduced.
tight-binding model Hamiltonian for a Cu-O bilayer, and To combine this phenomenology of superconductivity
it features four o orbitals: ¢7(Cud,>—,2), ¢32(Cus),  with the description of the normal state by the eight-band
3(0 2p,), ¢3(0O3p,), and four =  orbitals: model [5], we expand (r,r') andA(r,r’) in terms of the
¢5(02p.), ¢6(03p;), ¢7(Cud,y), ¢3(Cud,y), forthe orbitals of the model
bottom(s = 0) and top(s = 1) layers of bilayer material.

It is the result of a down-folding procedure based on first- o .
principles local density approximation (LDA) calculations X (r, ') = > Z D el —R)xpw(i, el —R;),

[5], and it gives an accurate account of all the interesting L popt st ) /
bands near the Fermi level [5]. In particular, it describesA(r,r’) = Z Z Z @, (r — i)Ai;fM/(i,j)gofL,(r’ -Rj),
the bifurcated saddle point which is often regarded as i e ss

essential for the occurrence of superconductivity [3—5].
For a physical interpretation of the model it is worthwhile
to add that the Cus orbital contains some Gy, , and
apex oxygerp, characters. The description of pairing [6]
is based on the density functional theory (DFT) which, un
der a very general condition, describes superconductivit
by a self-consistent Kohn-Sham Bogoliubov—de Genne
equation with normal potentiad(r;[n, y]) and pairing
potential A(r,r';[n, y]) which are functionals of the

where go;’s are the orbitals mentioned earlieR,;’s are
the positions of the atomg, j are the site indices, and
u, u' the basis function indices. Clearly, which atom
‘contributes which orbltal at WhICh site is governed by
the coef‘hmentsXﬂﬂ(z j) and A}’ w(i,j), and Eq. (1)
Becomes

charge densﬁyn(r) and the pairing amplitudey (r, r’), )\” 51,81 kDy'" 51 k.l

which is the proper order parameter of the problem [7]. A (l = KT ! o) gty (0 SR DX 0 D)

In this Letter we considesingletpairing only. R @)
For the normal potentiab(r;[#, xy]) we shall take the

usual LDA functional ofn(r). Clearly, to make a similar where
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SOV I ) =f d3r[ d3r’f d’r f d’r]
X @5, (r =Ry (' = R)Ar,r'srp, 1)@l (r) — R, (r] = R)).
| ! ! !
The central point of our approach is that we shall regard )‘;S;j-l:,] u s jik 1) = Xt )8 oy S
Lo o NTTANTA ) , ,
the matrix elementa’” '""! (i, j; k,1) as adjustable pa- X 84,8515 8140,

rameters describing'an ‘effective electron-electron attrac-

tion of unknown origin. The power of the method lies in

being able to attribute the rich variety of consequencesyhich reduces (2) toneterm, and base our theory on the
predictions for various experiments, of the theory to in-fundamental self-consistency condition,

teractions between electrons at specific sites and in spe-

cific orbitals. Our hope is that guided by the data from , , ,

such searching probes as high-resolution photoemission A, ) = X DX (i ) -

experiments [1,2] we shall be able to identify the sites and

orbitals relevant to superconductivity, and hence provid . . .
new bases for speculations about the nature of pairing. | ora e%nodm sys;tsm itis useful EQ,'OOk for solutions such
what follows weillustrate the power of this approach by that A0, /), Ay (i, j), and x, (i, j) depend only
analyzing the gap anisotropy reported in [1] and [2], an(pn the dlfferenceSR,- - Rj, and hence Only their lattice

s,s'

identifying the site and orbital dependence of the electronFourier transformﬁ‘;;‘f;,(k), Ay (K), and)(;’f,;,(k) enter

electron attraction with specific features of the data. the theory. Under this assumption, the eight-band model
The calculations are much simpler if we make theBogoliubov—de Gennes equation, at a particldgpoint
necessary but reasonable approximation, in the Brillouin zone, reads as follows:
|
i i ((6,; - ILLe)E,U,,,LL,BS,SI + t,f/:,s,u,’(k) Ai/:iu,’(k) )(”lﬁ,,u,’,s’) _ Ek (M’i,g,s)
5,85 5,8’ - N2 5
wn'=1 s'=0 A;,Liu’(k) _(6; - /-Le)(s,u,,u’Sx,S’ + t;fu’(k) vllz,,u,’,s’ U]I(/’M’s

|
where the site energies;, and the hopping integrals on condensation [6]. This is why we do not use the BCS

t,./(k) are those of the eight-band model [5] for the Cu-formula E, (k) = \/(ek,,, — 1) + A2(k) to define the
O bilayer. gap.

For each solution labeled by band indexof Eq. (3), Another general point of interest is that, unlike the
we construct the two-component Bloch wave solution oftextbook examples of single-band theories, in the present
the Bogoliubov—-de Gennes equation in the usual way; multiband case the pairing interaction is not the gap but is

B Ukps \ s . related to it in a complicated fashion. This is due to the

Vi (r) = Z VY s ¢,(r = Ri)explik - R;), matrix character of the pairing potentia,,’, (k), and

b o is of significance when we discuss their symmetry clas-
and calculate the density(r) and the pairing amplitude sification [8]. Evidently, we should distinguish between
x(r,r') using the standard relations [see Eqg. (4) in [6]l.intraorbital and interorbital pairing potentials corre-
We then recalculate the pairing potenti&l%‘fw(i,j) and sponding, respgctively, to the diagonal and off-diagonal
repeat the process, determining the chemical poteptial elements ofA};’, (k). While in the case of the former,
at each stage, until a prescribed level of convergencg;fﬂ,(k“) for uw = w/, is usually a good approximation
is reached. All the calculations we shall discuss in thewo the gap, and itk dependence is governed by the
remainder of this Letter have been performed in this wayinteraction. In the case of the latter, namgly+# u/, sur-
making a variety of choices for the phenomenologicalprising|y, thek dependence of the hybridizatiofjf,;,(k)
particle-particle interaction parametev‘sg‘fw(i,j). plays a dominant role in determining the variation of the

The quasiparticle energiés, (k) come in pairsk, (k)  gap, A,(kr,), over the Fermi surface. This is readily
and E, (k), above and below the chemical potential,  seen by noting the presence of terms such as, £,gk),
respectively. We define the superconducting gap in the,,(k), 7,4(k) in the determinant of the eigenvalue
quasiparticle spectrum as the minimum energy separatigoroblem in Eq. (3). Unexpectedly, as discussed below,
2A,(kpy) = ES (kry) — E, (kry), Where kr, is the also diagonal pairing potential o for u whose
wave vector for which such a minimum occurs. Noteorbital character does not occur in any of the bands at
that kr; defines a surface in the superconducting statethe Fermi level can give rise to a superconducting gap
but this need not be the same as the Fermi surface in theith a complex k dependence involving off-diagonal
normal state due to the change in the chemical potentidlopping integrals. In what follows, these observations
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will be central to our description of the gap anisotropy
as seen by the high-resolution photoemission ex-
periments [1,2].

We have applied the methodology described above to
study the quasiparticle spectra for the Cu-O bilayer of
YBa,Cw;O; (YBCO) [5] for a variety of site- and orbital-
diagonal and off-diagonal couplings both within and be-
tween the Cu-O layers. Although an exhaustive study of
all possibilities was not feasible, we have investigated a
large number of cases fairly systematically. Our results
may be summarized as follows. (a) For site- and orbital-
diagonal interactions we found a more or less isotropic
gap, except fony, which gave rise to an anisotropic gap
with a cusp and zero value along ttwe, 77) direction. Al-
though the Correspondingéﬁ = 7.0 eV is too large to FIG. 1. The calculated superconducting gap along the even
be seriously considered, this result demonstrates drameﬁl[‘“%r C“Orvg)l and ocid\SoButgr Cgr"e) sheets ?; thetFe{?&?rface
ically that in the multiband model the symmetry of the iﬁrréduléible qlljigc?rrar(n)t. Th% :ﬁ]d; gggsezegnin”:;%its?ok and
gap need not be the same as the symmetry of the paifhe |ength of each of them is. ’
ing interaction or the order parameter. By contrast, in the
conventional one-band model such a gap would imply an
order parameter of-wave symmetry, but here it is asso- to  relatively smalld-p interaction. The former is a
ciated with an isotropic pairing potentidl,; and thek  syrprising consequence of the interplay between khe
dependence involving a product of the off-diagonal hopependence coming from the lattice Fourier transform of
ping integralsy , (k)1 s (k)Ay51s p (K)1p g (k). (D) OF sin- sz 7y )53 10y “and another induced by hybridization
gle site, but orbital off-diagonal interactions, only, gave bétwéer;s and d,bands viar,, and , 4 hopping. The
an anisotropic gap. This was also of the above mentioneflyier prings in the lattice Fourier transforay’; (k) which
d-wave symmetry. (c) Generally, intersite interactions infaatyres sitk,a/2) for the o orbitals, instead of ck, a)
the Cu-O plane led to anisotropic gaps. Usually these Werg, the case ofA%(k), and coék,a/2) for 7 orbitals.
also ofd-wave symmetry of the above kind, except in the |54 noteworthy’is the fact that each of the and =
case ofAy}, which resulted in an anisotropic gap with a

minimum, as opposed to a cusp, (&, 7). In the case

W

of the one-band model the latter circumstance would cor- 2 30— ' ' ‘ '
respond to the extendeswave order parameter. (d) In- 3 0°
terlayer couplings had §imilar ef)‘ects to that of the on-site >0 1
interactions, and only;> andAy resulted in anisotropic Ew
gaps. (e) No single interaction gave a minimum at an in- 15 i"g' E
termediate point on the Fermi surface betwé&nr) and 0
(v, 7). (f) Examining the case where we assumed more A’;
than one coupling constant to be nonzero, we discovereds % 25
that the intersite in-plane-d interactionAy; andd-p in- g o L _\E:fg 1
teraction ofA’3, A1y, AT'S, AT’s combination produced the § o

5

anisotropic gaps over the odd and even sheets of the Ferm e
surface displayed in Fig. 1. To illustrate the power of our
approach, in our calculation we have adjusted the two inde-
pendent interaction parameterg{ = 2.7 eV andAy3 =

Ala = Als = Als = 0.45 eV) so that the transition tem-
perature agreed with experiments on YBCO, and the mini-
ma in the gap were located at the points on the Fermi

surface as was first reported by Dieg al. [1] (Fig. 2).
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Although the characteristic “hump” in their original inter-
. . o -0.5 0 0.5 1 1.5 2
pretation of the data has recently been withdrawn, it is il- Fermi surface length
luminating to elaborate on the way the above result comes . )
about. FIG. 2. The calculated superconducting gap as a function of

This k d d A (K) i i binati the Fermi surface length for the even sheet of the Fermi
IS ependence of\, (k) is a linear combination surface of Cu-O bilayer of YB#&€w0; corresponding to the

of an extendeds-wave pairing favored by the intersite 'y jrreducible quadrant. The axis is in units ofk. In the
s-d interaction and a cdk,a) cogk,b) contribution due inset we show the results of Direg al. [1] for Bi,Sr,CaCuOs.
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d-p coupling constants separately produces minima away Given our site and orbital specific, but otherwise
from (7r, w) with slight changes in the position of the phenomenological, proposal for the pairing interaction
minima and the maximum amplitudes(® =) and(7,7) we now wish to comment on the somewhat different
directions. Clearly, for/\fjf,,(k) = (0 the hump would conclusions of Fehrenbachet al. [4] whose aspirations
disappear. By contrast, in the case of the experimentare rather similar to ours. While it is not easy to draw
suggesting that the gap is zero along (ke 77) direction  comparisons between their one-band model and our much
[2] with a cusp, our calculations strongly favor @¢Cud  more elaborate description of the electronic structure near
nearest neighbor interaction in the Cu-O plane with a&he Fermi energy, it is interesting to note that they identify
conveniently smalh;; (k) = 0.67 eV. the pairing interaction between next-nearest-neighbor sites
It is reassuring to observe that these results probas the principal cause of the gap anisotropy shown
the essential features of the eight-band model [5]. Thén Fig. 2. Thus, our suggestion may be viewed as a
hybridization of Op. with Cud,--,- is responsible for the discovery of an alternative mechanism of gap anisotropy,
bifurcated saddle point. It* rather thark? dispersionin involving a richer variety of orbitals. The significant
one of the directions enhances the phase space effects anlifference notwithstanding, it may also be worthwhile to
therefore, the size of the gap for a given set of couplinghote that the strength of their interaction in units of the
constants. hopping integrals which characterize the band structure in
Of course, according to our strategy, having chosen ¢ée normal state is rather similar to oAy, /7,, ~ 1. This
specific set of interaction constants which reprodutes is a very strong interaction which, if real, should have
and the required gap anisotropy is only the beginninga number of important implications. For instance, it is
Given the set, we can calculate without further adjustableinlikely to be compatible with the mechanism of pairing
parameters the full solution of the Bogoliubov—de Gennesvith harmonic phonons.
equation depicted in Eq. (3) and, therefore, a rich variety Summarizing, the principal result of this Letter is
of observables such as the Knight shifts, spin lattice relaxthe illustration of how the interpretation of sufficiently
ation rates, etc. [6]. A quantity of such general interest icomplex experimental data can lead to an identification of
the quasiparticle density of stat8$E) = >, S(E — E;).  the orbital and site dependence of the pairing interaction.
Our calculated quasiparticle density of states correspondn particular, the three possible scenarios of hump, cusp,
ing to the gap in Fig. 1 is shown in Fig. 3. Interestingly,and minimum along the(sr, 7r) direction could each
the maximum gap of 20 meV &ir, 0) marks the position be interpreted as arising from a very specific nearest
of a well defined pseudogap, below which there is only aneighbor pairing interactiom’y (2.7 eV) combined with
very shallow tail. Obviously, using this figure and our cal- A;;’, (0.45 eV) imply a hump,A;; (0.67 eV) gives a gap
culatedT, of 91 K we could deduce a BCS ratdd\ /kzT that is zero along thér, 7) direction with a cusp, and,

anywhere between 3.4 and 5.1. finally, Ay (2.3 eV) results in a gap which is zero and a
minimum along th€#, 7) direction.
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