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The 7 decay rate into hadrons of invariant mass smaller tfyap > Aqcp can be calculated in
QCD assuming global quark-hadron duality. It is shown that this assumption holss fo10.7 GeV2.
From measurements of the hadronic mass distribution, the running coupling candtantis extracted
in the range).7 GeV? < 5o < m2. At sy = m2, the result isa,(m2) = 0.329 + 0.030. The running
of a; is in good agreement with the QCD prediction.

PACS numbers: 12.38.Aw, 11.10.Hi, 12.38.Qk, 13.35.Dx

The scale dependence of coupling constants is onleas been performed in Ref. [7], using data ondte™ —
of the key features of renormalizable quantum fieldhadrons cross section.
theories. In QCD, the effective coupling constantQ?) The 7 decay rate into hadrons can be written in terms

is predicted to decrease with the momentum tran&fr  of momentsM,” of the absorptive part of current-current

a property referred to as asymptotic freedom [1]. Thiscorrelation functions of angular momentuni8,9]. The
prediction has been tested by comparing data obtaineguantity R, (s,) is given by

from experiments operating at different energies [2]; it

3
has also been studied in single high-energy experiments R.(s0) = ﬂmél)(m) — 2(S_O> M (s0)
at ep and pp colliders, where a large range 9> can 38w m? m2
be probed simultaneously [3]. Here we propose a test of 50 ! (1) 250 ., (0)
the scale dependence @f(Q?) in the low-energy region + ) M3 (s0) + ey My~ (s0)

0.7 GeV? < Q% < m2. Our method is based on integrals 2
of the invariant mass distribution in hadronicdecays. _ 2<S_0> M (s0)
It provides a unique opportunity to test one of the most ;
important pre_dictions of QCD in a single expgrimen_t and 2 ( so ©)
at low energies, where the effect of the runningagfis + 3\ m2 M; " (s0), 2)
most pronounced. 7

We shall consider the decay rate into hadrons of whereSgw = 1.0194 accounts for electroweak radiative

invariant mass squared smaller thap normalized to the corrections [10]. The moments can be written as contour

leptonic decay rate, integrals along a circle of radiug in the complex plane.
r + had < Since the only large mass scale in these integralg, ithe
R.(s0) = (7 = v + hadronssn < so) OPE provides an expansion in powersigfo,
I'r — vyev.)
1
[Xod dR(s) (1) MIEJ)(SO) = MIE )[as(SO)]pert6]=l
— g 8T
oo C o (Os)
J n
where dR,/ds is the inclusive hadronic spectrum. As + Zlcn [evs(50)] s 3

long assg > A2QCD, the quantityR, (sg) can be calculated

in QCD using the operator product expansion (OPE)'he leading term is given by perturbation theory alone.
[4,5]. Applying the OPE in the physical region assumesTerms suppressed by powers ofs, consist of per-
global quark-hadron duality, i.e., that decay rates admiturbative coefficients ) multiplying dimensionful

a QCD description after a “smearing” over a sufficiently parameters(0,,), such as quark masses or vacuum
wide energy interval has been performed [6], which incondensates [4]. This is how nonperturbative effects are
the present case is provided by the integration oveincorporated. There is no leading term for the moments
the range0 < s < 5. The question of how accurate with J = 0, which vanish in the chiral limit and are thus
this assumption is and for what values of it applies  proportional to powers of the light quark masses. For the
is a phenomenological one; it cannot be answered yahoments with/ = 1, the perturbative contribution is

from theoretical grounds. Below, we shall investigate % n

this question, comparing data with theoretical predictions M}El)[as(s())]pert =1+ Z d,(j‘)(m> . (4
based on the duality assumption. A similar test of duality n=1 77
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wherea,(sg) is defined in the minimal subtractiqtMS)  shall use this result in our analysis. The error due to the
renormalization schemedﬁk) =1, and the next three truncation of the perturbation series in (4) is of the or-

coefficients are given by [8,9] der of the last term included. It can also be estimated by
") summing a subset of corrections to all orders in pertur-
dy” = 163982 + T bation theory. Such a class of corrections is provided by
the renormalon chains [13], which are the terms of order
dgk) — —10.2839 + 11.3792 81 B4~ 'am, where By is the first coefficient of the8 func-
k+1 8(k + 1)*’ tion. For the case of the moments, the resummation of
®) 46.238 94.810 ) these terms has been discussed in Refs. [9,14]. Below,
di” = K4 = 155955 = - ==+ e we shall take fixed-order perturbation theory as the nomi-
nal scheme and use the resummation of renormalon chains
_68.344 to estimate the perturbative uncertainty.
(k +1)3° The nonperturbative corrections in the OPE are propor-

The coefficientk, appears in the perturbative expansiontional to the light quark masses or to vacuum condensates
of the Adler function and is not known exactly. An es- [4]. We quote the power corrections for the sum of the
timate using the principle of minimal sensitivity and the moments contributing t& . (so) in (2). The terms relevant
effective charge approach [11] giv&s = 27.5 [12]. We  to the numerical analysis are

2 3
1 m?(so) s s 1 (s 1672 — —
—RT(SO)lpower = - 6|Vus|2 sz |:1 + _02 - (_02> + _(m_()2> :| + [<mu¢u¢u> + |Vud|2<md¢’d¢’d>

3SEw 2 m?2 m?2 3\ m? mé
— 51273 pad )
+ |Vus|2<ms¢xl//s>] - P <léf¢> + .- 5 (6)
27 mQ

where m(s9p) is the running strange-quark mass, between the CLEO and ALEPH data. [As the ALEPH
<mq$q¢/q> are the quark condensates, apd()>  data are preliminary, this estimate may be taken with cau-
denotes the four-quark condensate. More detailed exion. However, since inclusive quantities suchRgs,)
pressions, which are used in our analysis, can be foundo only probe gross features of the hadronic mass distribu-
elsewhere [5,8,9]. At tree level, the powers bfsy,  tion, systematic errors play a minor role in our analysis.]
appearing in the OPE of the moments in (3) conspireThis is justified, since the dominant sources of system-
with the powers ofsy/m2, which multiply the moments atic errors are different in the two analyses. The result is
in (2), so that the nonperturbative correctionsRg(sg)  shown in Fig. 1. It is represented as a band, since the er-
are suppressed by powers bfm2. This is no longer rors in theR,(so) values are strongly correlated. The two
the case if radiative corrections to the coefficients of

the vacuum condensates are taken into account, but the
corresponding effects are very small. As a consequence,
the power corrections t®,(so) remain small down to

rather low values ofsg; using standard values of the
QCD parameters (which we take from Ref. [9]) we find
—(1.4 = 0.5)% for the right-hand side of (6) at = m?2, -
and —(1.5 = 0.5)% at so = 1 Ge\V2. This observation, &
together with the fact that the perturbative contributions gz
are known to high order, guarantees a good convergence ;
of the OPE down to low-energy scales. 1k FD .

To extract the quantity®,(sg), we use the spectra of - 4 \
the hadronic mass distribution reported by the CLEO and I g s
ALEPH collaborations [15,16] (see Fig. 1). To obtain T e e e S PR e
dR./ds, we multiply the normalized distributions by the 0 05 | 15 2 25 3 35
world averageR, = R,(m?) = 3.642 + 0.010 [17]. Not sp [GeV?]
shown is the contribution from — A~ v, withh™ = 7~ _
or K~, which has a branching ratio ¢11.77 = 0.14)% FIG. 1. The quantityR.(so) extracted from the data on the

. . hadronic mass distributiodR, /ds reported by the CLEO and
[18]. We integrate these spectra owgrcombine the re- ALEPH collaborations [15,16] (inset). The experimental result

sults weighted by their statistical errors, and add the syss represented as a band. The curves show the theoretical
tematic errors, which we estimate by taking the differencepredictions (see text).

i ALEPH (prelmizary)
b LB

3062



VOLUME 76, NUMBER 17 PHYSICAL REVIEW LETTERS 22 ARIL 1996

curves show theoretical calculations Bf(sg) based on From now on, we shall rely on this behavior and
the OPE approach outlined above. The solid line is obassume that fors, > 0.7 GeV? possible violations of
tained using fixed-order perturbation theory to ordér  duality can be neglected. We then turn to the main
The dashed line is obtained by adding to this a resummdecus of our study: a test, at low energies, of the QCD
tion of renormalon chains of order? and higher, using prediction (8) for the running of the coupling constant.
the results of Ref. [9]. The value af,(m?) has been r decays are an ideal place to study this phenomenon
adjusted so as to fit the data @ = m2. The central since the value ofx(sy) changes by a factor of 2 over
values obtained in the two schemes argm2) = 0.329  the region where duality holds, which is about the same
(fixed order) andy,(m?) = 0.309 (resummed). Their dif- change as in the region between 5 and 100 GeV. From
ference provides an estimate of the uncertainty due tthe quantityR,(sq) shown in Fig. 1, we extract,(so)
unknown higher-order corrections, which is more conseras a function ofsy by fitting to the data the theoretical
vative than that obtained by omitting the term of orderprediction obtained from (2) and (4)—(6). The result,
a? in the fixed-order calculation. Varying the values including experimental errors only, is represented by the
of the nonperturbative parameters within conservativelark band in Fig. 2. Theoretical uncertainties arise from
limits changesa,(m?2) by up to 2%. Adding linearly the truncation of the perturbation series and from the
the perturbative uncertainty-0.020), the nonperturbative uncertainty in the values of the nonperturbative parameters.
uncertainty (=0.006), and the experimental uncertainty As discussed above, they affect the overall scale oithe
(£0.004), we find values [by about (8—10)%], but have very little effect on
as(mi) = 0.329 + 0.030, the evolution of the coupling constant. The sum of the
2 (7)  experimental and theoretical errors is represented by the
as(mz) = 0.119 = 0.004. light band. The dashed curve shows the QCD predictions
For the sake of completeness, we have translated oyér o (s,) obtained at three-loop order, normalized to the
result into a value ofr, at the mass of th& boson. central value of the data a§ = m2. The observed scale
The assumption of global quark-hadron duality can bejependence of the running coupling constant is in good
tested by comparing the data for the quaniity(s)) at  agreement with the QCD prediction. The small oscillation
valuess, < m? with the theoretical prediction [8]. ‘Given of the experimental band around the theoretical curve,
ay(m3), the value ofa,(so) follows from the solution of \yhich could be due to some deviation from duality in the
the renormalization-group equation a; region, are not significant given the precision of the data.
2 dag(u?) = —a, (1) Blas(ud)] To quantify this agreement, we extract from the data
w du? as(w?)Blas(w)], the B function that describes according to (8) the running
of a,(sp). Definingx = a,(so)/47, we have

2 3
N aS S
o) =iz v o) a(E) 4 ©  ar detn g

where By = 9, B; = 64, and B, = 3863/6 are the first ag(so) dIns x
three coefficients of th@ function, evaluated fon; = 3 9)
light quark flavors. (The value o8, is specific to the

MS scheme.) Whereas the theoretical uncertainties are a 0.7
limiting factor in the determination of;(m2), they have =k
little influence on thesy dependence oR,(sg). For the
perturbative part of the calculation this is apparent from
the good agreement of the two curves in Fig. 1, which
refer to values ofx,(m?2) that differ by 9%. Varying the
values of the nonperturbative parameters has a negligible = 0
effect (~0.5% ats, = 1 GeV?) on the value oR (so) for

so < m2, since the only dependence onin (6) comes
from the quark-mass corrections, which are known with
higher accuracy than the vacuum condensates. Hence, the
so dependence oR(so) is predicted essentially without I e
free parameters, and the comparison between theory ) PR S PRPRY LA AN .- MRS
and experiment provides a direct test of quark-hadron 0.5 1 1.5 2 25 3 35
duality. We find good agreement over the entire range Sy [GeV?)

0.7 GeV? < 59 < m2, indicating that inr decays duality

holds as soon as the integral over the hadronic madgG: 2. Values ofa,(sy) extracted from the data oR.(so).

distributi includes th kK Th t The dark band represents the experimental errors, the light one
IStrioution Includes thep resonance peak. € ONSEline sum of the experimental and theoretical errors. The errors

of duality happens almost instantaneously, in accordancgre strongly correlated. The dashed line shows the three-loop
with general expectations. QCD prediction for the running coupling constant.

=,80+,81x+,82x2+~--.
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o(sg)
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We approximate the derivativéa,/d Insg by a ratio of  analysis is based on the OPE and the assumption of global
differences,Aa,/A Insg, for a set ofsy values chosen quark-hadron duality. We have tested this assumption and
such that the differenced«a,, are large enough to be find that it seems to hold if the decay rate is integrated
significant given the errors in the measurement. &&@s;)  over an energy interval large enough to include phe

in (9) we take the central value of each interval. Weresonance peak. Our analysis provides a test of QCD at
use the followingsy values: 0.75, 0.95, 1.35, 2.06, and scales comparable with the lowest ones attainable before
3.16 GeV?, corresponding to four intervals of increasing (0% = 2.5 Ge\? in deep-inelastic scattering), and with
width A Insg, but constanfAa; = 0.075. The results are higher precision than all other single measurements of the
shown in Fig. 3. The estimate of the errors includesrunning to date. We have extracted for the first time the
the theoretical uncertainties, the error due to the choic@ function from data and find that it is in good agreement
of finite intervals in a;, and the experimental errors, with the three-loop prediction of QCD.
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