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Test of the Running ofas in t Decays
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The t decay rate into hadrons of invariant mass smaller than
p

s0 ¿ LQCD can be calculated in
QCD assuming global quark-hadron duality. It is shown that this assumption holds fors0 . 0.7 GeV2.
From measurements of the hadronic mass distribution, the running coupling constantasss0d is extracted
in the range0.7 GeV2 , s0 , m2

t . At s0 ­ m2
t , the result isassm2

td ­ 0.329 6 0.030. The running
of as is in good agreement with the QCD prediction.

PACS numbers: 12.38.Aw, 11.10.Hi, 12.38.Qk, 13.35.Dx
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The scale dependence of coupling constants is
of the key features of renormalizable quantum fie
theories. In QCD, the effective coupling constantassQ2d
is predicted to decrease with the momentum transferQ2,
a property referred to as asymptotic freedom [1]. T
prediction has been tested by comparing data obta
from experiments operating at different energies [2];
has also been studied in single high-energy experim
at ep and pp colliders, where a large range inQ2 can
be probed simultaneously [3]. Here we propose a tes
the scale dependence ofassQ2d in the low-energy region
0.7 GeV2 , Q2 , m2

t . Our method is based on integra
of the invariant mass distribution in hadronict decays.
It provides a unique opportunity to test one of the m
important predictions of QCD in a single experiment a
at low energies, where the effect of the running ofas is
most pronounced.

We shall consider thet decay rate into hadrons o
invariant mass squared smaller thans0, normalized to the
leptonic decay rate,

Rtss0d ­
Gst ! nt 1 hadrons; shad , s0d

Gst ! ntened

­
Z s0

0
ds

dRtssd
ds

, (1)

where dRtyds is the inclusive hadronic spectrum. A
long ass0 ¿ L

2
QCD , the quantityRtss0d can be calculated

in QCD using the operator product expansion (OP
[4,5]. Applying the OPE in the physical region assum
global quark-hadron duality, i.e., that decay rates ad
a QCD description after a “smearing” over a sufficien
wide energy interval has been performed [6], which
the present case is provided by the integration o
the range0 , s , s0. The question of how accurat
this assumption is and for what values ofs0 it applies
is a phenomenological one; it cannot be answered
from theoretical grounds. Below, we shall investiga
this question, comparing data with theoretical predictio
based on the duality assumption. A similar test of dua
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has been performed in Ref. [7], using data on thee1e2 !
hadrons cross section.

The t decay rate into hadrons can be written in term
of momentsM

sJd
k of the absorptive part of current-curren

correlation functions of angular momentumJ [8,9]. The
quantityRtss0d is given by

1
3SEW

Rtss0d ­
2s0

m2
t

M
s1d
0 ss0d 2 2

√
s0

m2
t

!3

M
s1d
2 ss0d

1

√
s0

m2
t

!4

M
s1d
3 ss0d 1

2s0

m2
t

M
s0d
0 ss0d

2 2

√
s0

m2
t

!2

M
s0d
1 ss0d

1
2
3

√
s0

m2
t

!3

M
s0d
2 ss0d , (2)

whereSEW . 1.0194 accounts for electroweak radiativ
corrections [10]. The moments can be written as conto
integrals along a circle of radiuss0 in the complex plane.
Since the only large mass scale in these integrals iss0, the
OPE provides an expansion in powers of1ys0,

M
sJd
k ss0d ­ M

s1d
k fasss0dgpertdJ­1

1
X̀
n­1

csJd
n fasss0dg

kO2nl
sn

0
. (3)

The leading term is given by perturbation theory alon
Terms suppressed by powers of1ys0 consist of per-
turbative coefficients c

sJd
n multiplying dimensionful

parameterskO2nl, such as quark masses or vacuu
condensates [4]. This is how nonperturbative effects
incorporated. There is no leading term for the mome
with J ­ 0, which vanish in the chiral limit and are thu
proportional to powers of the light quark masses. For t
moments withJ ­ 1, the perturbative contribution is

M
s1d
k fasss0dgpert ­ 1 1

X̀
n­1

dskd
n

√
asss0d

p

!n

, (4)
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whereasss0d is defined in the minimal subtractions MS d
renormalization scheme,d

skd
1 ­ 1, and the next three

coefficients are given by [8,9]

d
skd
2 ­ 1.639 82 1

9
4sk 1 1d

,

d
skd
3 ­ 210.2839 1

11.3792
k 1 1

1
81

8sk 1 1d2
,

d
skd
4 ­ K4 2 155.955 2

46.238
k 1 1

1
94.810

sk 1 1d2

1
68.344

sk 1 1d3
.

(5)

The coefficientK4 appears in the perturbative expansio
of the Adler function and is not known exactly. An es
timate using the principle of minimal sensitivity and th
effective charge approach [11] givesK4 . 27.5 [12]. We
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shall use this result in our analysis. The error due to t
truncation of the perturbation series in (4) is of the o
der of the last term included. It can also be estimated
summing a subset of corrections to all orders in pertu
bation theory. Such a class of corrections is provided
the renormalon chains [13], which are the terms of ord
b

n21
0 an

s , whereb0 is the first coefficient of theb func-
tion. For the case of the moments, the resummation
these terms has been discussed in Refs. [9,14]. Belo
we shall take fixed-order perturbation theory as the nom
nal scheme and use the resummation of renormalon cha
to estimate the perturbative uncertainty.

The nonperturbative corrections in the OPE are propo
tional to the light quark masses or to vacuum condensa
[4]. We quote the power corrections for the sum of th
moments contributing toRtss0d in (2). The terms relevant
to the numerical analysis are
1
3SEW

Rtss0djpower ­ 2 6jVusj
2 m2

s ss0d
m2

t

241 1
s0

m2
t

2

√
s0

m2
t

!2

1
1
3

√
s0

m2
t

!3
35 1

16p2

m4
t

fkmucucul 1 jVudj2kmdcdcdl

1 jVusj
2kmscscslg 2

512p3

27
rask ccl2

m6
t

1 · · · , (6)
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where msss0d is the running strange-quark mas
kmqcqcql are the quark condensates, andrask ccl2

denotes the four-quark condensate. More detailed
pressions, which are used in our analysis, can be fo
elsewhere [5,8,9]. At tree level, the powers of1ys0

appearing in the OPE of the moments in (3) consp
with the powers ofs0ym2

t, which multiply the moments
in (2), so that the nonperturbative corrections toRtss0d
are suppressed by powers of1ym2

t. This is no longer
the case if radiative corrections to the coefficients
the vacuum condensates are taken into account, but
corresponding effects are very small. As a consequen
the power corrections toRtss0d remain small down to
rather low values ofs0; using standard values of th
QCD parameters (which we take from Ref. [9]) we fin
2s1.4 6 0.5d% for the right-hand side of (6) ats0 ­ m2

t ,
and 2s1.5 6 0.5d% at s0 ­ 1 GeV2. This observation,
together with the fact that the perturbative contributio
are known to high order, guarantees a good converge
of the OPE down to low-energy scales.

To extract the quantityRtss0d, we use the spectra o
the hadronic mass distribution reported by the CLEO a
ALEPH collaborations [15,16] (see Fig. 1). To obta
dRtyds, we multiply the normalized distributions by th
world averageRt ­ Rtsm2

td ­ 3.642 6 0.010 [17]. Not
shown is the contribution fromt ! h2nt with h2 ­ p2

or K2, which has a branching ratio ofs11.77 6 0.14d%
[18]. We integrate these spectra overs, combine the re-
sults weighted by their statistical errors, and add the s
tematic errors, which we estimate by taking the differen
,
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between the CLEO and ALEPH data. [As the ALEP
data are preliminary, this estimate may be taken with ca
tion. However, since inclusive quantities such asRtss0d
do only probe gross features of the hadronic mass distri
tion, systematic errors play a minor role in our analysis
This is justified, since the dominant sources of syste
atic errors are different in the two analyses. The result
shown in Fig. 1. It is represented as a band, since the
rors in theRtss0d values are strongly correlated. The tw

FIG. 1. The quantityRtss0d extracted from the data on the
hadronic mass distributiondRtyds reported by the CLEO and
ALEPH collaborations [15,16] (inset). The experimental resu
is represented as a band. The curves show the theore
predictions (see text).
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curves show theoretical calculations ofRtss0d based on
the OPE approach outlined above. The solid line is o
tained using fixed-order perturbation theory to ordera4

s .
The dashed line is obtained by adding to this a resumm
tion of renormalon chains of ordera5

s and higher, using
the results of Ref. [9]. The value ofassm2

td has been
adjusted so as to fit the data ats0 ­ m2

t. The central
values obtained in the two schemes areassm2

td ­ 0.329
(fixed order) andassm2

td ­ 0.309 (resummed). Their dif-
ference provides an estimate of the uncertainty due
unknown higher-order corrections, which is more cons
vative than that obtained by omitting the term of ord
a4

s in the fixed-order calculation. Varying the value
of the nonperturbative parameters within conservat
limits changesassm2

td by up to 2%. Adding linearly
the perturbative uncertaintys60.020d, the nonperturbative
uncertainty s60.006d, and the experimental uncertaint
s60.004d, we find

assm2
td ­ 0.329 6 0.030 ,

assm2
Zd ­ 0.119 6 0.004 .

(7)

For the sake of completeness, we have translated
result into a value ofas at the mass of theZ boson.

The assumption of global quark-hadron duality can
tested by comparing the data for the quantityRtss0d at
valuess0 , m2

t with the theoretical prediction [8]. Given
assm2

td, the value ofasss0d follows from the solution of
the renormalization-group equation

m2 dassm2d
dm2

­ 2assm2dbfassm2dg ,

bsasd ­ b0
as

4p
1 b1

√
as

4p

!2

1 b2

√
as

4p

!3

1 · · · , (8)

whereb0 ­ 9, b1 ­ 64, and b2 ­ 3863y6 are the first
three coefficients of theb function, evaluated fornf ­ 3
light quark flavors. (The value ofb2 is specific to the
MS scheme.) Whereas the theoretical uncertainties a
limiting factor in the determination ofassm2

td, they have
little influence on thes0 dependence ofRtss0d. For the
perturbative part of the calculation this is apparent fro
the good agreement of the two curves in Fig. 1, whi
refer to values ofassm2

td that differ by 9%. Varying the
values of the nonperturbative parameters has a neglig
effect (,0.5% at s0 ­ 1 GeV2) on the value ofRtss0d for
s0 , m2

t , since the only dependence ons0 in (6) comes
from the quark-mass corrections, which are known w
higher accuracy than the vacuum condensates. Hence
s0 dependence ofRtss0d is predicted essentially withou
free parameters, and the comparison between the
and experiment provides a direct test of quark-had
duality. We find good agreement over the entire ran
0.7 GeV2 , s0 , m2

t, indicating that int decays duality
holds as soon as the integral over the hadronic m
distribution includes ther resonance peak. The ons
of duality happens almost instantaneously, in accorda
with general expectations.
-
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From now on, we shall rely on this behavior an
assume that fors0 . 0.7 GeV2 possible violations of
duality can be neglected. We then turn to the ma
focus of our study: a test, at low energies, of the QC
prediction (8) for the running of the coupling constan
t decays are an ideal place to study this phenome
since the value ofasss0d changes by a factor of 2 ove
the region where duality holds, which is about the sam
change as in the region between 5 and 100 GeV. Fr
the quantityRtss0d shown in Fig. 1, we extractasss0d
as a function ofs0 by fitting to the data the theoretica
prediction obtained from (2) and (4)–(6). The resu
including experimental errors only, is represented by t
dark band in Fig. 2. Theoretical uncertainties arise fro
the truncation of the perturbation series and from t
uncertainty in the values of the nonperturbative paramet
As discussed above, they affect the overall scale of theas

values [by about (8–10)%], but have very little effect o
the evolution of the coupling constant. The sum of t
experimental and theoretical errors is represented by
light band. The dashed curve shows the QCD predictio
for asss0d obtained at three-loop order, normalized to th
central value of the data ats0 ­ m2

t. The observed scale
dependence of the running coupling constant is in go
agreement with the QCD prediction. The small oscillatio
of the experimental band around the theoretical cur
which could be due to some deviation from duality in th
a1 region, are not significant given the precision of the da

To quantify this agreement, we extract from the da
the b function that describes according to (8) the runnin
of asss0d. Definingx ­ asss0dy4p, we have

2
4p

a2
s ss0d

dasss0d
d lns0

­
bsxd

x
­ b0 1 b1x 1 b2x2 1 · · · .

(9)

FIG. 2. Values ofasss0d extracted from the data onRtss0d.
The dark band represents the experimental errors, the light
the sum of the experimental and theoretical errors. The err
are strongly correlated. The dashed line shows the three-l
QCD prediction for the running coupling constant.
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We approximate the derivativedasyd lns0 by a ratio of
differences,DasyD lns0, for a set ofs0 values chosen
such that the differencesDas, are large enough to be
significant given the errors in the measurement. Forasss0d
in (9) we take the central value of each interval. W
use the followings0 values: 0.75, 0.95, 1.35, 2.06, an
3.16 GeV2, corresponding to four intervals of increasin
width D lns0, but constantDas . 0.075. The results are
shown in Fig. 3. The estimate of the errors includ
the theoretical uncertainties, the error due to the cho
of finite intervals in as, and the experimental errors
which in this case are the dominant ones. The cur
in Fig. 3 show the QCDb function at one-, two-, and
three-loop order in perturbation theory. The data prov
clear evidence for the running of the coupling consta
Moreover, they prefer a running that is stronger th
predicted at one-loop order. Between the three curv
the one that shows the three-loop prediction provides
best description of the data. Performing a fit with t
three-loopb function, whereb0 ­ 9 and b1 ­ 64 are
kept fixed but the three-loop coefficientb2 is treated as
a parameter, we findb

exp
2 yb

th
2 ­ 1.6 6 0.7. We believe

that such an experimental determination of theb function
beyond the leading order can at present be done onlyt

decays. [A high-precision measurement ofRe1e2 ssd in the
region below the charmonium resonance would provide
alternative place for such a study.] At higher energi
the value ofas is too small to distinguish between th
three curves in Fig. 3; measurements in the regionQ ,
100 GeV, for instance, correspond to valuesx , 0.01.

In summary, we have presented a method to meas
the running coupling constantasssd in the low-energy
region 0.7 GeV2 , s , m2

t using t decay data obtained
in a single experiment. It provides a test of one of t
key features of QCD in a region where the effect
the running ofas is most pronounced. The theoretic

FIG. 3. Experimental determination of theb function. The
curves show the QCD prediction at one-loop (dash-dotte
two-loop (dashed), and three-loop (solid) order.
3064
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analysis is based on the OPE and the assumption of gl
quark-hadron duality. We have tested this assumption
find that it seems to hold if thet decay rate is integrated
over an energy interval large enough to include ther

resonance peak. Our analysis provides a test of QCD
scales comparable with the lowest ones attainable be
(Q2 . 2.5 GeV2 in deep-inelastic scattering), and wit
higher precision than all other single measurements of
running to date. We have extracted for the first time t
b function from data and find that it is in good agreeme
with the three-loop prediction of QCD.
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