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We study the effects of external noise in a one-dimensional model of front propagation. Noise
is introduced through the fluctuations of a control parameter leading to a multiplicative stochastic
partial differential equation. Analytical and numerical results for the front shape and velocity are
presented. The linear-marginal-stability theory is found to increase its range of validity in the presence
of external noise. As a consequence noise can stabilize fronts not allowed by the deterministic
equation. [S0031-9007(96)00015-4]
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The problem of front propagation has been receiving
great deal of attention in recent years due to its relevan
to a large variety of systems in nonlinear physics, che
istry, and biology [1]. Here we will focus on the simples
case in which a globally stable state invades an unstable
metastable state. This problem has been extensively s
ied in the recent literature [2–8] particularly concernin
the issue of velocity selection.

On the other hand, in the last few years there h
been a growing interest in the theoretical study of t
role of fluctuations in front propagation [7,9–14], and i
particular there have been some experiments on the eff
of stochastic turbulence in front propagation in the conte
of chemical fronts [15]. These studies have been basica
concerned with the modification of the front velocity an
the spreading of the front due to fluctuations.

Internal [9–12] and external [13,14] fluctuations hav
been introduced in particular models using both Langev
[9,11,13,14] and master equation formalisms [10,12], b
no systematic studies have been carried out concerning
modification of the well established selection criteria
the deterministic case. For internal fluctuations mos
numerical studies of different situations have obtain
distinct effects on the front propagation. The case with t
most direct comparison with the present work [9] found n
0031-9007y96y76(17)y3045(4)$10.00
a
ce
-

or
d-

s
e

cts
xt
lly

in
t

the
f
y
d
e
o

change in the front velocity. On the other hand, previo
analytical approaches for external fluctuations [13,14] ha
been based on small noise perturbative expansions wh
turn out to have a rather small range of validity for ou
purposes.

Here we will introduce a new approach which relies o
a physically intuitive picture of the problem but which i
nonperturbative. As the accompanying numerical simu
tions will show, our theoretical approach gives an accura
quantitative description for a very broad range of noise
tensities and allows for a general discussion of select
criteria in the presence of external fluctuations.

We focus our study on the simplest prototypical equati
for front propagation dynamics, and we introduce fluctu
tions via a Langevin equation. In our study, noise is a
sumed to be of external origin and is thus introduced a
stochastic spatiotemporal variation of a control paramet
For example, in an experimental situation such as a
matic liquid crystal in the presence of a magnetic field [8
the control parameter could be expressed in terms of
intensity of this field. This would give rise to a Langevi
equation with multiplicative noise, which is the situatio
we address here.

An additive noise source could also be considered
principle in this problem to model fluctuations from othe
© 1996 The American Physical Society 3045
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origins, for instance, internal noise [9]. However, this do
not modify the front velocity for the invasion of eithe
metastable or unstable states. Moreover, in the latter c
an additive noise would trigger the formation of domains
the two stable phases, modifying the nature of the prob
into a phase separation process with diffusive dynam
[9]. Actually, in this case, the front itself does exist on
during a short transient. Hence we will omit additive noi
sources in the present study.

Our starting point is an equation of the form
≠c

≠t
­

≠2c

≠x2 1 cs1 2 cd sa 1 cd , (1)

where the coefficient of the linear term,a, stands for an
external control parameter. The model has three homo
neous steady statesc ­ 0, 1, 2a. Their stability depends
on the particular value ofa, which is allowed to vary in the
intervals2 1

2 , 1d to ensure the global stability of thec ­ 1
state.

We are interested in the case in which a uniformly prop
gating front is moving to the right replacing thec ­ 0
state by thec ­ 1 state. In the absence of noise, th
situation has been extensively studied in the last few ye
[2–5], resulting in the following scenario.

When thec ­ 0 state is metastables21
2 # a , 0d, the

model has a unique front solution with a kinklike profi
and a velocityynl ­ s2a 1 1dy

p
2.

When c ­ 0 is unstables0 , a # 1d, there is a con-
tinuous degeneracy of solutions for steadily propagat
fronts, with a corresponding continuum of possible v
locities. All these solutions exhibit an exponential dec
e2kx, x ! `, with different velocities associated with dif
ferentk’s.

For 1
2 # a # 1, the linear-marginal-stability criterion

applies [4,5] and sufficiently localized initial condition
(with a compact support) evolve towards the solution
minimum velocity yl ­ 2

p
a with k ­ kl ­

p
a. This

kind of behavior will be referred to as the linear regim
of the model because only the linear part of Eq. (1)
required to predict its velocity. However, for0 # a #
1
2 , this linear criterion fails and the solution of the fu
nonlinear Eq. (1) is necessary; hence the name nonlin
regime. In the latter case, initial conditions withk $ kp ­p

2 a propagate, after a short transient, with the nonline
velocity ynl and with knl ­ 1y

p
2. This behavior is

actually the extrapolation of that of the metastable regim
In fact, knl corresponds to the invasion mode of Ref. [5
which destabilizes profiles withkp # k # kl .

In both linear and nonlinear regimes, higher propag
tion velocities may be obtained by preparing special i
tial conditions withk , kl or k , kp, respectively. In
these cases, the front profile keeps its initial asympto
exponential decaye2kx and it propagates with velocity
y ­

k21a
k . These front solutions will be termed hereaft

“quenched solutions.”
Fluctuations of external origin are introduced by r

placing the control parametera in Eq. (1) by a !
3046
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asx, td ­ a 1 jsx, td, with jsx, td a Gaussian noise o
zero mean and correlation given bykjsx, tdjsx 0, t0dl ­
2dst 2 t0d´s jx2x 0j

l d. The function´sxd accounts for the
spatial correlations of the external fluctuation and the
rameterl is the associated correlation length. We w
take l as finite but much smaller than any other sp
tial scale, in particular much smaller than the front widt
This limiting case could not be adequate for some rea
tic experimental situations. It would be interesting to te
the validity of our predictions as a function of the nois
correlation length, but such a study goes beyond the sc
of this Letter and is deferred to future work [16].

Incorporating the fluctuations in this way, then Eq. (
transforms into a stochastic partial differential equati
for the evolution of the front in the presence of mult
plicative noise

≠c

≠t
­

≠2c

≠x2 1 cs1 2 cd sa 1 cd 1 cs1 2 cdjsx, td .

(2)

It is worth remarking here that the way control param
ter fluctuations appear is such that it preserves the stat
ary statesc ­ 0 and c ­ 1 connected by the front. In
this way the noise is most important at the front regi
and vanishes at the asymptotic states.

The physical picture on which we base our approxim
tion scheme follows from illustrative simulations of th
Langevin Eq. (2) such as Fig. 1. We have used a stand
finite-difference Euler algorithm with spatial mesh sizeDx
and a time stepDt adequate to ensure stability and acc
racy. Noise values are taken as independent for dif
ent discretization cells, which in practice corresponds
choosing a correlation lengthl of orderDx. Integration
of the resulting stochastic differential equation is then i
plemented by means of a standard procedure [17].

As shown in Fig. 1, for moderate noise intensities o
sees that the front has a rather well defined position
width, and a basic kinklike shape which is not destroy
by the noise. The position of the front can thus be defin
by the integralzstd ­

R
L dx csx, td. The instantaneous

front velocity for a particular realization is then obtaine

FIG. 1. Two stages of a deterministic front (dashed line) a
a fluctuating front (solid line) from a steplike initial profile
(dotted line) with a ­ 0.3 and ´s0d ­ 0.3 (Dx ­ 0.1 and
Dt ­ 1023).
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Fig. 1 it is also apparent that the noisy front is faster.

Further analysis of simulation data reveals that the no
not only induces a shift of the ensemble averaged veloc
but also a diffusive spreading of the front position [18
In these circumstances the ensemble averagekcsx, tdl
exhibits a width which grows in time ast1y2 (in the frame
moving with the average velocity) [12], but which is no
the actual front width. In fact, the front has a well define
mean shape which is different from the deterministic kin
solution and which is obtained when the roughness of
front profile produced by noise is appropriately averag
out. These small fluctuations of the front shape relax
a much faster time scale than the wandering of the fro
position. The separation of time scales of the differe
effects of the noise is at the heart of our approximati
scheme.

In this spirit, and as long as the front has a well defin
position and shape, we may proceed formally as follow
We first define an instantaneous distance to the ensem
averaged position asDstd ­ zstd 2 kzstdl, and a displaced
profile aspsx, td ­ csssx 1 Dstd, tddd.

The equation forpsx, td is then

≠p
≠t

­ ÙD
≠p
≠x

1
≠2p
≠x2 1 ps1 2 pd sa 1 pd

1 ps1 2 pdj . (3)

The mean front shape is now given by the ensemble
eragep0sx, td ­ kpsx, tdl. Taking the ensemble averag
of Eq. (3) and using Novikov’s theorem [19] for the nois
term, we get an equation of motion forkpsx, tdl. Higher
order moments can be decoupled considering that the p
file functionpsx, td can be written as

psx, td ­ p0sx, td 1 dpsx, td . (4)

Based on simulational evidence, the quantitydp is nec-
essarily small and fast. Consequently, we keep terms
lowest order indp and we get

≠p0

≠t
­

≠2p0

≠x2 1 p0s1 2 p0d sa0 1 c0p0d , (5)

wherea0 ­ a 1 ´s0d andc0 ­ 1 2 2´s0d.
We should remark here that this approach, despite

fact of being valid, in principle, for small noise, does no
correspond to a systematic perturbative expansion in
noise intensity, as distinct effects of the noise are de
with differently. Results coming from our lowest orde
approximation do contain contributions from all orde
in the noise intensity, and therefore constitute a part
resummation of such an expansion.

We see in Eq. (3) that the mean front profile obeys
dynamic equation similar to the deterministic one Eq. (
but with renormalized parameters. We can now calcula
the selected shape and velocity of the front, within th
se
ty
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present approximation, by using the known results f
deterministic equations of this type.

The multiplicative noise increases the control param
ter a0 . a and so the strength of the linear term, and
reduces the weight of the nonlinearities of the determin
tic model through the parameterc0 , 1. Hence one could
expect an increase of the propagating velocity and an
crease of the domain of validity of the linear-margina
stability criterion as the intensity of the noise is increase

As a simple linear stability analysis indicates, fora .

2´s0d, thec ­ 0 state is unstable and then a continuum
propagating velocities is possible. The minimum of the
is given by the different linear and nonlinear-margina
stability criteria as mentioned above. Specifically, th
linear regime (L) is now delimited by the control parame
ter range1

2 2 2´s0d # a , 1 (Fig. 2). In this range, any
initial profile that asymptotically falls off more quickly
thane2klx with kl ­

p
a 1 ´s0d, propagates with the long

time asymptotic velocity

yl ­ 2
q

a 1 ´s0d (6)

and a decaykl . On the other hand, the nonlinear regim
(NL) holds for 2´s0d # a ,

1
2 2 2´s0d (Fig. 2). Here

the long time asymptotic propagation velocity for initia
profiles with

k $ kp ­
a 1 ´s0dq

1
2 2 ´s0d

is given by

ynl ­
2a 1 1p

2f1 2 2´s0dg
, (7)

which decays with aknl ­
q

1
2 2 ´s0d.

FIG. 2. Front velocities vs noise intensitýs0d for several
values of a. Continuous lines display analytical predictions
Dashed lines divide the different regimes. Points and their er
bars correspond to numerical simulation starting from stepli
profiles (Dx ­ 0.5 andDt ­ 1022).
3047
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The multiplicative noise reduces the metastable regi
(M) to the range2 1

2 # a , 2´s0d (Fig. 2). In this case,
a unique front solution is allowed with a propagatin
velocity given by Eq. (7) andknl.

The minimum velocity of the noisy fronts, Eqs. (6) an
(7), is shown in Fig. 2. The different regimes (L, NL
and M) are also displayed and it is shown how the line
criterion extends its range of validity as the intensity
the noise is increased. The agreement of the theoret
prediction with the simulation results is remarkable ev
for large values of the intensity of the noise.

Finally, we can establish that propagating velocitie
higher than the former minimum, Eq. (6) or (7), ar
also accessible. Initial fronts withk , kl in the linear
regime or withk , kp in the nonlinear regime, propagat
with a velocity y ­

k21a0

k . The asymptotic averaged
front profile is e2kx as x ! `; that is, these fronts keep
their initial spatial asymptotic decay. The increase
the propagating velocity for these “quenched stochas
solutions” is greater as their initialk is smoother.

In order to test this prediction, numerical simulation
have been performed witha ­ 0.1 and several values of
the noise intensitý s0d, starting from an initial slow de-
caying profile withk ­ 0.1. The numerical propagation
velocities are compared in Fig. 3 with the analytical pr
dictions, showing a very good agreement.

In summary, we conclude that, for the class of equatio
studied, the standard scenario of front propagation s
holds in the presence of external multiplicative noise.
very good approximation even for moderately large noi
intensities is given by an effective equation for the me
front of the same form as the original without noise, b
with modified parameters. The main result is then th
noise enlarges the domain of validity of the linear margin
stability zone. An interesting consequence of this resul

FIG. 3. Velocities for fronts with initial slow decaying profile
k ­ 0.1 and different noise intensities. Lines display analytic
predictions and symbols correspond to numerical simulatio
At t ­ 1000, noise is applied and att ­ 4000 the noise is
switched off.
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that multiplicative noise may sustain quenched solutio
within a continuous range of propagation velocities wh
the system would be, in the absence of noise, in
metastable regime,2 1

2 # a , 0, where a unique profile
propagating with a single velocityynl would be allowed.
Noise can thus stabilize profiles and velocities which a
not allowed by the deterministic problem [16].

We acknowledge financial support by Comisión Inte
ministerial de Ciencia y Tecnologı´a (Projects PB93-0769
PB93-0759, PB93-0054) and Comissió Interdepartame
de Recerca i Innovació Tecnològica (Project GRQ-199
01004), and computing support by Fundació Catala
per a la Recerca through Centre de Supercomputació
Catalunya.

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65,
851 (1993), and references therein.

[2] G. Dee and J. S. Langer, Phys. Rev. Lett.50, 1583 (1983).
See also J. S. Langer, inChance and Matter,edited by
J. Souletie, J. Vannimenus, and R. Stora (North-Holla
Amsterdam, 1987).

[3] E. Ben-Jacob, H. Brand, G. Dee, L. Kramer, and J.
Langer, Physica (Amsterdam)14D, 348 (1985).

[4] W. van Saarloos, Phys. Rev. Lett.58, 2571 (1987); Phys.
Rev. A 37, 211 (1988).

[5] W. van Saarloos, Phys. Rev. A39, 6367 (1989).
[6] J. A. Powell, A. C. Newell, and C. K. R. T. Jones, Phy

Rev. A 44, 3636 (1991).
[7] G. C. Paquette, L. Y. Chen, N. Goldenfeld, and Y. Oon

Phys. Rev. Lett.72, 76 (1994); L. Y. Chen, N. Goldenfeld
and Y. Oono, Phys. Rev. E49, 4502 (1994).

[8] W. van Saarloos, M. van Hecke, and R. Holyst, Phys. R
E 52, 1773 (1995).

[9] G. F. Mazenko, O. T. Valls, and P. Ruggiero, Phys. Re
B 40, 384 (1989).

[10] H. P. Breuer, W. Huber, and F. Petruccione, Phys
(Amsterdam)73D, 259 (1994).

[11] A. Lemarchand, A. Lesne, and M. Mareschal, Phys. R
E 51, 4457 (1995.)

[12] J. Riordan, C. R. Doering, and D. ben-Avraham, Ph
Rev. Lett.75, 565 (1995).

[13] L. Schimansky-Geier and Ch. Zülicke, Z. Phys. B82, 157
(1991).

[14] F. de Pasquale, J. Gorecki, and J. Popielawski, J. Phy
25, 433 (1992).

[15] P. D. Ronney, B. D. Haslam, and N. O. Rhys, Phys. R
Lett. 74, 3804 (1995).

[16] J. Armeroet al. (to be published).
[17] L. Ramirez-Piscina, J. M. Sancho, and A. Hernánde

Machado, Phys. Rev. B48, 119 (1993);48, 125 (1993).
[18] Our simulations show that the effective diffusion coef

cient for the spreading of the front position increases w
noise intensity but the actual dependence may not be t
ial. This point is currently under study and will be dis
cussed elsewhere.

[19] E. A. Novikov, Zh. Eksp. Teor. Fiz.47, 1919 (1964) [Sov.
Phys. JETP20, 1290 (1965)].


