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We study the effects of external noise in a one-dimensional model of front propagation. Noise
is introduced through the fluctuations of a control parameter leading to a multiplicative stochastic
partial differential equation. Analytical and numerical results for the front shape and velocity are
presented. The linear-marginal-stability theory is found to increase its range of validity in the presence
of external noise. As a consequence noise can stabilize fronts not allowed by the deterministic
equation. [S0031-9007(96)00015-4]

PACS numbers: 03.40.Kf, 05.40.+j, 47.20.Ky, 47.54.+r

The problem of front propagation has been receiving a&hange in the front velocity. On the other hand, previous
great deal of attention in recent years due to its relevancanalytical approaches for external fluctuations [13,14] have
to a large variety of systems in nonlinear physics, chembeen based on small noise perturbative expansions which
istry, and biology [1]. Here we will focus on the simplest turn out to have a rather small range of validity for our
case in which a globally stable state invades an unstable @urposes.
metastable state. This problem has been extensively stud- Here we will introduce a new approach which relies on
ied in the recent literature [2—8] particularly concerninga physically intuitive picture of the problem but which is
the issue of velocity selection. nonperturbative. As the accompanying numerical simula-

On the other hand, in the last few years there hasions will show, our theoretical approach gives an accurate
been a growing interest in the theoretical study of thequantitative description for a very broad range of noise in-
role of fluctuations in front propagation [7,9—14], and intensities and allows for a general discussion of selection
particular there have been some experiments on the effeatsiteria in the presence of external fluctuations.
of stochastic turbulence in front propagation in the context We focus our study on the simplest prototypical equation
of chemical fronts [15]. These studies have been basicallfor front propagation dynamics, and we introduce fluctua-
concerned with the modification of the front velocity andtions via a Langevin equation. In our study, noise is as-
the spreading of the front due to fluctuations. sumed to be of external origin and is thus introduced as a

Internal [9—12] and external [13,14] fluctuations havestochastic spatiotemporal variation of a control parameter.
been introduced in particular models using both LangevirFor example, in an experimental situation such as a ne-
[9,11,13,14] and master equation formalisms [10,12], bumatic liquid crystal in the presence of a magnetic field [8],
no systematic studies have been carried out concerning tliee control parameter could be expressed in terms of the
modification of the well established selection criteria ofintensity of this field. This would give rise to a Langevin
the deterministic case. For internal fluctuations mostlyequation with multiplicative noise, which is the situation
numerical studies of different situations have obtainedve address here.
distinct effects on the front propagation. The case with the An additive noise source could also be considered in
most direct comparison with the present work [9] found noprinciple in this problem to model fluctuations from other
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origins, for instance, internal noise [9]. However, thisdoesa(x, ) = a + &(x,1), with £(x,7) a Gaussian noise of
not modify the front velocity for the invasion of either zero mean and correlation given K¢ (x,)&(x/,¢')) =
metastable or unstable states. Moreover, in the latter casey(; — ,/)8(@)_ The functione(x) accounts for the
an additive noise would trigger the formation of domains ofspatial correlations of the external fluctuation and the pa-
the two stable phases, modifying the nature of the problerfametera is the associated correlation length. We will
into a phase separation process with diffusive dynamicgake A as finite but much smaller than any other spa-
[9]. Actually, in this case, the front itself does exist only tial scale, in particular much smaller than the front width.
during a short transient. Hence we will omit additive noiseThis limiting case could not be adequate for some realis-

sources in Fhe present study. _ tic experimental situations. It would be interesting to test
Our starting point is an equation of the form the validity of our predictions as a function of the noise
w3y correlation length, but such a study goes beyond the scope
9t ox2 ol —y)a+ ), (D) of this Letter and is deferred to future work [16].

Incorporating the fluctuations in this way, then Eq. (1)
ransforms into a stochastic partial differential equation
or the evolution of the front in the presence of multi-
plicative noise

where the coefficient of the linear term, stands for an
external control parameter. The model has three homog
neous steady statés= 0, 1, —a. Their stability depends
onthe partlicular value af, which is allowed to vary in the
interval (— 5, 1) to ensure the global stability of thie = 1 2
soe, 2 ’ YT W T - e+ - g,
We are interested in the case in which a uniformly propa- )
gating front is moving to the right replacing thie = 0
state by theyy = 1 state. In the absence of noise, this It is worth remarking here that the way control parame-
situation has been extensively studied in the last few yeangr fluctuations appear is such that it preserves the station-
[2-5], resulting in the following scenario. ary statesy = 0 and ¢y = 1 connected by the front. In
When theyy = 0 state is metastab[e% = a < 0),the this way the noise is most important at the front region
model has a unique front solution with a kinklike profile and vanishes at the asymptotic states.
and a velocityv,, = (2a + 1)/+/2. The physical picture on which we base our approxima-
When ¢ = 0 is unstable(0 < a < 1), there is a con- tion scheme follows from illustrative simulations of the
tinuous degeneracy of solutions for steadily propagatindg-angevin Eq. (2) such as Fig. 1. We have used a standard
fronts, with a corresponding continuum of possible ve-finite-difference Euler algorithm with spatial mesh sive
locities. All these solutions exhibit an exponential decayand a time ste@\r adequate to ensure stability and accu-
ek x — oo, with different velocities associated with dif- racy. Noise values are taken as independent for differ-
ferentk’s. ent discretization cells, which in practice corresponds to
For % = a = 1, the linear-marginal-stability criterion choosing a correlation length of order Ax. Integration
applies [4,5] and sufficiently localized initial conditions of the resulting stochastic differential equation is then im-
(with a compact support) evolve towards the solution ofplemented by means of a standard procedure [17].
minimum velocity v; = 2./a with k = k; = \/a. This As shown in Fig. 1, for moderate noise intensities one
kind of behavior will be referred to as the linear regimesees that the front has a rather well defined position and
of the model because only the linear part of Eq. (1) iswidth, and a basic kinklike shape which is not destroyed
required to predict its velocity. However, for= a = by the noise. The position of the front can thus be defined
3, this linear criterion fails and the solution of the full by the integralz(r) = [, dx ¢/(x,7). The instantaneous
nonlinear Eq. (1) is necessary; hence the name nonline&iont velocity for a particular realization is then obtained
regime. Inthe latter case, initial conditions with= k* =
2 a propagate, after a short transient, with the nonlinear
velocity v,; and with k) = 1/\/5. This behavior is
actually the extrapolation of that of the metastable regime.
In fact, k,, corresponds to the invasion mode of Ref. [5], ¥
which destabilizes profiles with* < k =< k;.
In both linear and nonlinear regimes, higher propaga-
tion velocities may be obtained by preparing special ini-
tial conditions withk < k; or k < k*, respectively. In
these cases, the front profile keeps its initial asymptotic 00

exponential decay ~** and it propagates with velocity
_ kK’+a . . X
v = =3~ These front solutions will be termed h(_:‘reaﬂerFlG. 1. Two stages of a deterministic front (dashed line) and

“quencheq solutions.” . . a fluctuating front (solid line) from a steplike initial profile
Fluctuations of external origin are introduced by re-(dotted line) with @ = 0.3 and £(0) = 0.3 (Ax = 0.1 and

placing the control parametes in Eq. (1) by a —  Ar=1073).
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asv = z, averaged over an appropriate time window. Inpresent approximation, by using the known results for
Fig. 1 it is also apparent that the noisy front is faster. deterministic equations of this type.

Further analysis of simulation data reveals that the noise The multiplicative noise increases the control parame-
not only induces a shift of the ensemble averaged velocityer a’ > a and so the strength of the linear term, and it
but also a diffusive spreading of the front position [18]. reduces the weight of the nonlinearities of the determinis-
In these circumstances the ensemble average,:)) tic model through the parameter < 1. Hence one could
exhibits a width which grows in time a¥/2 (in the frame  expect an increase of the propagating velocity and an in-
moving with the average velocity) [12], but which is not crease of the domain of validity of the linear-marginal-
the actual front width. In fact, the front has a well definedstability criterion as the intensity of the noise is increased.
mean shape which is different from the deterministic kink As a simple linear stability analysis indicates, for>
solution and which is obtained when the roughness of the-£(0), theys = 0 state is unstable and then a continuum of
front profile produced by noise is appropriately averagegropagating velocities is possible. The minimum of them
out. These small fluctuations of the front shape relax iris given by the different linear and nonlinear-marginal-
a much faster time scale than the wandering of the fronstability criteria as mentioned above. Specifically, the
position. The separation of time scales of the differentinear regime (L) is now delimited by the control parame-
effects of the noise is at the heart of our approximatiorter range% — 2&(0) = a < 1 (Fig. 2). In this range, any
scheme. initial profile that asymptotically falls off more quickly

In this spirit, and as long as the front has a well definedhane —<* with k; = \/a + &(0), propagates with the long
position and shape, we may proceed formally as followstime asymptotic velocity
We first define an instantaneous distance to the ensemble

averaged position as(r) = z(r) — (z(¢)), and a displaced v, = 4Ja + £(0) (6)
profile asp(x,t) = ¢(x + A(z),1).
The equation fop(x, 7) is then and a decay;. On the other hand, the nonlinear regime
5 y 52 (NL) holds for —£(0) = a < 5 — 2&(0) (Fig. 2). Here
L _AZL 2P p(1 = p)(a + p) the long time asymptotic propagation velocity for initial
Jat ax 9x2 fil ith
profiles wi
+ p(l = p)é. 3 o at s
The mean front shape is now given by the ensemble av- 0T 1 0)
eragepo(x,t) = {p(x,t)). Taking the ensemble average 27 8
of Eqg. (3) and using Novikov's theorem [19] for the noiseis given by
term, we get an equation of motion fop(x, r)). Higher
order moments can be decoupled considering that the pro- T L, @
file function p(x, ) can be written as V2[1 — 2(0)]
plx, 1) = polx, 1) + 8p(x,1). (4)  Which decays with a, = \/% — €(0).
Based on simulational evidence, the quantty is nec-
essarily small and fast. Consequently, we keep terms to 24 a=10

lowest order ind p and we get

(:)2
20— B0 (1 = po) @+ Cp). (B)
wherea’ = a + £(0) andc’ =1 — 2¢(0).

We should remark here that this approach, despite the
fact of being valid, in principle, for small noise, does not
correspond to a systematic perturbative expansion in the
noise intensity, as distinct effects of the noise are dealt
with differently. Results coming from our lowest order
approximation do contain contributions from all orders oo . ;
in the noise intensity, and therefore constitute a partial "0 02 04 06

resummation of such an expansion. - o )
We see in Eq. (3) that the mean front profile obeys d G- 2. Front velocities vs noise intensii(0) for several
values ofa. Continuous lines display analytical predictions.

dynamlc equatlon similar to the deterministic one Eq. (1)Dashed lines divide the different regimes. Points and their error
but with renormalized parameters. We can now calculatars correspond to numerical simulation starting from steplike

the selected shape and velocity of the front, within theprofiles @x = 0.5 andAr = 1072).
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The multiplicative noise reduces the metastable regiméhat multiplicative noise may sustain quenched solutions
(M) to the range—3 = a < —&(0) (Fig. 2). In this case, Within a continuous range of propagation velocities when
a unique front solution is allowed with a propagatingthe system would be, in the absence of noise, in the
velocity given by Eq. (7) and,. metastable regime,—% = a < 0, where a unique profile

The minimum velocity of the noisy fronts, Egs. (6) and propagating with a single velocity,; would be allowed.

(7), is shown in Fig. 2. The different regimes (L, NL, Noise can thus stabilize profiles and velocities which are
and M) are also displayed and it is shown how the lineanot allowed by the deterministic problem [16].

criterion extends its range of validity as the intensity of We acknowledge financial support by Comision Inter-
the noise is increased. The agreement of the theoreticatinisterial de Ciencia y Tecnol&gProjects PB93-0769,
prediction with the simulation results is remarkable everPB93-0759, PB93-0054) and Comissid Interdepartamental
for large values of the intensity of the noise. de Recerca i Innovacidé Tecnologica (Project GRQ-1993-

Finally, we can establish that propagating velocities01004), and computing support by Fundacié Catalana
higher than the former minimum, Eq. (6) or (7), areper a la Recerca through Centre de Supercomputacié de
also accessible. Initial fronts with < k; in the linear Catalunya.
regime or withk < «* in the nonlinear regime, propagate
with a velocity v = kT”/ The asymptotic averaged
front profile ise * asx — o; that is, these fronts keep
their initial spatial asymptotic decay. The increase of
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