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Conditions for Adaptation of an Evolving Population
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We propose a model to study the adaptation of an evolving population to a given environ
Using the Monte Carlo simulations we find how much the phenotypes of individuals of the popu
and those required by the environment may differ for the population to grow. We show that su
chances are greater if the number of the phenotype’s features is smaller. In the case when a
the population may colonize an empty niche, we show that there is a minimum value of the sim
of the two environments in order that such a colonization may succeed. We also show that th
populations differentiate with time. [S0031-9007(96)00054-3]
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The similarity, at least at a formal level, betwee
some evolution processes and statistical physics meth
has led to a growing interest of physicists in biologic
problems [1–5]. Some of them have been investigat
the problem of speciation and constructed simple m
els showing interesting features, such as the condition
species formation within simpatric and geographic spe
ation. By necessity, all physical models are simple a
deal only with a part of the biological aspects conside
to be important. Problems of various types of speciati
e.g., requiring or not geographical barriers and adaptat
were intensively discussed by biologists in [6–8].

In this paper we present a new model, more appropr
to the case of geographic speciation. Again, many es
tial features are neglected. We are looking for answer
the following two questions: Under what conditions c
a population survive in a given environment (more p
cisely, to what kind of an environment a population c
adapt)? If the population may also migrate to another,
tially empty, space—what are the necessary similari
between the two environments, in order that the popu
tion can develop in both regions?

The first (one region) problem may correspond to
situation when a certain area, previously empty, becom
populated by different species. The founders are
genetically random population. This also can be regar
as the first step in the peripatric speciation proposed
Mayr [8]. The second problem may be related to fillin
up of an ecological niche by a population adapted to
previous environment. Because of the limitations of o
model (see below), we do not consider full speciati
but rather adaptation processes which are the first s
of speciation processes [8]. We use the Monte Ca
technique.

The model.—The habitat for the investigated popul
tion is, as usual in the Monte Carlo simulations, rep
sented by a two-dimensionalsL 3 Ld square lattice with
hard boundary conditions. The population consists ofM
individuals. No more then one individual may occupy
lattice site.
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Each individual is characterized by its genome, i.e.
sequence of genes. The respective allele may be e
dominantsAd or recessivesad. Here we consider diploida
organisms, hence the genotype of an individual sitting
the sitei can be written as a sequence of 0’ssaad, 1’s
sAa  aAd, and 2’ssAAd:

Gi 
©
G1

i , G2
i , . . . , GN

i

™
, Ga

i  0, 1, 2 , (1)

whereN is the size of the genome.
We assume that the phenotypeF of an individual, i.e.,

a set of its features, simply follows from its genotyp
The relation between the two is far from being simp
or well understood; e.g., in different environments t
same genotype may manifest itself as different phenoty
and vice versa. In our simple model we neglect tho
complications. We assume that ifGa

i  1 or 2 then
Fa

i  1 or, i.e., if Ga
i  0, thenFa

i  0. Hence

Fi 
©
F1

i , F2
i , . . . , FN

i

™
, Fa

i  0, 1 . (2)

Let us define the phenotype size as the number of p
notype featuresN. To produce an offspring two parent
are needed, each contributing one allele, in such a w
that particular features are inherited independently. Af
producing an offspring the parents die. An individual c
become a parent provided it moved into a new locat
(see below).

The environment is characterized by a certain “ide
phenotype”F̂. The survival probabilitypi for an individ-
ual i during the time intervalst, t 1 Dtd is defined by the
similarity of its phenotype to the ideal onêF:

pistd  N21
NX

a1

Fa
i std ^ Fa , (3)

where^ denotes the common part of the twoF’s. Hence,
the ideal phenotype may be regarded as correspondin
an individual characterized bypi  1. We also define
the average adaptation of the population at timet to the
environment as

Astd  M21
MX

j1

pistd . (4)
© 1996 The American Physical Society 3025
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A number of important factors, such as selection rules
breeding, mutation, genetic drift, Malthusian factor, et
have been omitted here in order to keep the numbe
external parameters minimal.

Simulation.—The simulation algorithm consists of ini
tially putting M individuals on the lattice. The genotype
of the individuals are random sequences of 0’s, 1’s, a
2’s. Then in one time step we choose randomly an
dividual i; from Eq. (3) we calculate its survival proba
bility. We choose randomly an adjacent site to move
individual. Only if the site is empty is the move realize
and the mating partner is selected randomly from nea
neighbors. The condition that only the individual whic
moved can mate is equivalent in our model to all oth
acts necessary in life to breed. This activity is requir
here only from one partner. The parents producex off-
springs which are located in random empty places (if th
are no such places the simulation stops) or in a given w
on the lattice. The parents then die.

The simulations were run for the latticeL  30,
concentration of the foundersc  ML22  0.2, number
of offspring x  3. The averaging was over at least 2
and in some cases 100 samples. For the considered m
and a given phenotype, we have found that populati
with c , 0.2 died out rather fast, i.e., aftert ø 500 we
got c  0. The choice ofx  2 also led to extinction
of the population, while forx  4 and absence in the
model of the factor relating death and fertility process
the population overcrowdssc  1d soon.

It should be noted that in an initial distribution o
the phenotypes there will be twice as many 1’s as 0
since the genotypes of the initial population are rando
The initial adaptation of the random population can
obtained from (4) as

As0d 
1
3 s1 1 md , (5)

where m [ f0, 1g is the relative number of 1’s in the
ideal phenotypeF̂. A population survived if, after the
simulation timet  2 3 104 steps, we hadc . 0.

Single region.—Let us consider a single environment
system, characterized by its ideal phenotype (pattern)F̂,
with a population initially having random sequences
genotypes (random population). Simulations lead us
the following observations.

Because of the way a phenotype is constructed from
genotype, the chance for a population to survive gro
with the number of 1’s in the pattern [see Eq. (5)].

The survival of the random population depends a
on the sizeN of the phenotype. The chance of surviv
grows asN decreases.

For a fixed size of the phenotype and a defined patte
there is a critical value of the initial adaptation given b
a critical valuemc of the number of 1’s in the pattern
Below this value all populations die out, and above it t
ratio of surviving populations grows rapidly.mc, as well
as the rate of the surviving populations, increases w
3026
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increasingN. For N . 10 we observe a steplike increas
in the number of surviving populations, similar to th
curves known from phase transitions. Figure 1 illustra
the above observations. Althoughmc increases withN,
it never attains unity. Let us denote bym50 the relative
number of 1’s in the pattern necessary for at least50% of
the random populations to survive. As seen in Fig. 2,m50
initially increases withN quite fast, then asymptotically
goes to a valueø0.8.

We may also define, in analogy to the general inves
gation of the birth and death processes [9], the probabi
of birth, l, and of death,m, in a unit time:

mstd  1 2 Astd, lstd  KAstdcs1 2 cd . (6)

From simulations we have found thatK  3.26. The
simulation curves coincide with those following from
Eq. (6). They are smooth and symmetric with respect
c  0.5. Their shape does not depend on the structure
the ideal phenotypêF.

We define the similarity of the phenotypes of tw
individualsi andj as

simf si, j; td  N21
NX

a1

Fa
i std ^ Fa

j std . (7)

This is analogous to the “spin glass order paramet
qab introduced in this context by Derida and Higg
[2]. We may use simf to check the changes in the
phenotypes of the population. As can be seen in Fig. 3
the phenotypes of the population become more and m
homogeneous. After some3 3 104 steps, about90% of
the population shows total similarityssimf  1d.

We can repeat the same kind of estimations for t
genotypes, defining the measure of their likeness ana
gously as in (7). Time development of simg is shown
in Fig. 3(b). The behavior is different from that in
Fig. 3(a)—because of hereditary rules the shape of
genetic similarity distribution does not change signi
cantly, although the mean value of simg increases with
time. This increase is rather fast at the beginning a

FIG. 1. The relation betweenm, i.e., the relative number of
1’s in the pattern, and percentage of the surviving populatio
for different sizesN of the phenotype.
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FIG. 2. The relation betweenm50, i.e., the relative number o
1’s in the pattern necessary for at least50% of the populations
to survive, and sizeN of the ideal phenotype.

then an asymptotic one. Even at much later moments
scatter of genotypes is quite large. These results a
with the observation in biology [10]—identical-lookin
individuals can contain different genotypes, since part
the genetic variety is masked by dominance.

We have found that the adaptation as well as conc
tration of the surviving population are characterized b
fast initial growth and then an asymptotic one. The ad
tation is quite high—Ast . 103d . 0.9.

Another factor which influences, for a given patte
and its size, the survival of a population is the way t
offspring are located. Since we consider only the c
of each pair of parents giving birth to 3 descendan

FIG. 3. The similarity distribution for phenotype (a) and f
genotype (b). The earliest is at the bottom, and subseq
curves (moving upwards) are at intervals of104 time steps.
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we simulated two classes—in the first one, two of t
offspring were put in the places of the parents and o
the third one randomly; in the second case all three w
located at random positions. We have found that
former way strongly increases the survival chances wh
the initial population is put in a cluster.

Finally, we should mention that even in such a simp
model as ours, the role of the genotype is important. F
the same initial distribution of phenotypes the populati
of homozygotes grows much faster and, lacking t
malthusian factor, dies out of suffocation.

Two regions.—In order to answer the second questio
formulated earlier, let us consider two regions char
terized by two ideal phenotypes (patterns)F̂I and F̂II.
As before, initial random population is located in one
them, say, the first one. We want to know under wh
conditions this population can colonize the second regi
We define, as in (7), the measure of similarity of the ph
notypes of the two patterns

simsI, II d  N21
NX

a1

F̂a
I ^ F̂a

II . (8)

In Fig. 4 we present the change in concentrati
[Fig. 4(a)] and adaptation [Fig. 4(b)] of the populatio
in the second region as a function of time. The curv
are parametrized by simsI, II d. For example, if F̂I 
1111111000 andF̂II  1111111111, then simsI, II d  0.7.

FIG. 4. The change in the concentration (a) and in t
adaptation (b) of the population in the second region as
function of time.
3027
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It is evident from Fig. 4 that there is a critical valu
simcsI, II d  0.5, below which a population which devel
oped in I from an initial random one has no chance
populating the second region. This critical value does
depend on the sizeN of the phenotype, but it depends o
the ratio of the length of the border between the two
gions and the size of the first one. With the increase
this ratio, the critical value slightly decreases.

If simsI, II d $ simcsI, II d we can describe the growth
of the population in the region II by the Verhulst-Pea
Reed equation [11]

dc
dt

 rcs1 2 cd , (9)

wherer is the growth rate.r increases with the increas
of simsI, II d. The simulation results agree well with thos
coming from Eq. (9).

In Fig. 5 we show the increase with time of the numb
of offspring born in region II depending on the origi
of their parents. Clearly the natives form the bulk
the population. The fast initial growth and subseque
stabilization follows from Eq. (6), i.e.,l ! 0 for c ! 1.
The role of immigrants in colonization of region II i
marginal. The influence of the population in II on th
population in I is negligible also.

We have also investigated the time evolution of t
similarity of individuals belonging to different regions
It turns out that the phenotypes in the two regio
become more and more different. Each one is adap
to its pattern. We have hence a differentiation of t
initial population. However, since the patterns have
be similar, the populations are never totally different; i.
their similarity never goes to zero.

In conclusion, we have presented a simple mo
allowing the investigation of the conditions necessary
a population to grow in a given environment and coloni

FIG. 5. The change in the concentration of the population
the second environment as a function of time, depending on
origin of parents.
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a new, empty niche. We have shown that, within t
limits set by our model, a random population must ha
an initial adaptation larger than a certain critical valu
in order to grow in a region with an ideal phenotypeF̂.
The condition is related to the structure ofF̂. When the
condition is met, we expect a very fast colonization
the region, i.e., an “explosion” of the population, suc
as the ones predicted, due to other reasons, in Ba
model [3,4]. This adaptation of the average phenoty
in the population to the pattern of the environment is ju
one of the sides of the natural selection. The populat
has a better chance of survival if the ideal phenotype
small and contains more 1’s. Moreover, if the populati
grows, the adaptation increases asymptotically to a va
close to 1.

In the case of two regions we have a process
populating an ecological niche characterized by a patt
different from that of the main (first) region. We hav
found that there exists a certain minimum similari
between patterns in both regions in order that a populat
which adapted to the first one can successfully colon
the second one. With increasing time, the two populatio
will have different phenotypes, although never total
different. Since we did not introduce any rules for matin
both populations can still interbreed, and we do not defi
a new species in the second region. Instead, we h
found under what conditions a part of the population c
migrate and populate a different habitat.

We are grateful to A. Ogorzałek and R. Galar fo
helpful discussions.

[1] F. Manzo and L. Peliti, J. Phys. A27, 7079 (1994).
[2] B. Derida and P. G. Higgs, J. Phys. A24, L985 (1991).
[3] P. Bak and K. Sneppen, Phys. Rev. Lett.71, 4083 (1993).
[4] P. Bak and M. Paczuski, Proc. Natl. Acad. Sci. U.S.A.92,

6689 (1995).
[5] N. Vandewalle and M. Ausloos, inAnnual Reviews of

Computational Physics, edited by D. Stauffer (World
Scientific, Singapore, 1996), p. 45.

[6] S. Wright, Evolution36, 427 (1982).
[7] S. M. Stanley,Macroevolution-Pattern and Process(Free-

man and Co., San Francisco, 1979).
[8] E. Mayr, Evolution36, 1119 (1982).
[9] L. E. Reichl, A Modern Course in Statistical Physic

(University of Texas Press, 1987).
[10] T. Dobzhansky, Genetics and the Origin of Specie

(Columbia University Press, New York, 1937).
[11] D. Collier, G. W. Cox, A. W. Johnson, and P. C. Miller

Dynamic Ecology(Prentice-Hall, Englewood Cliffs, NJ,
1973).


