VOLUME 76, NUMBER 16 PHYSICAL REVIEW LETTERS 15 ARIL 1996

Critical Properties of Random Quantum Potts and Clock Models
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We study zero temperature phase transitions in two classes of random quantum systemsstatbe
guantum Potts and clock models. For models with purely ferromagnetic interactions in one dimension,
we show that for strong randomness there is a second order transition with critical properties that can
be determined exactly by use of a renormalization group procedure. Somewhat surprisingly, the critical
behavior is completely independent @f For theq > 4 clock model, we suggest the existence of a
novel multicritical point at intermediate randomness. We also considef the( transition from a
paramagnet to a spin glass in an infinite-range model, and4findependent exponents.

PACS numbers: 75.10.Nr, 05.50.+q, 75.10.Jm

The effects of randomness on the properties of quantum > 4, we suggest the existence of a multicritical point
many-body systems have been the subject of experimentat a finite strength of randomness. Next we consider
and theoretical studies for many years [1]. Despite this, théhe zero temperature transition from a paramagnet to a
understanding of phenomena where quantum effects, raspin glass ininfinite-ranged quantum Potts and clock
domness, and interactions are all important is rather poomodels. Again building on work on thg = 2 case [4,5],
and there are as yet few reliable theoretical techniques. Rend, assuming a second order transition, we find that the
cent work [2-5] has focused attention on simple quantuncritical properties are independentgpf
statistical mechanical systems with randomness as a use-The models are defined in terms of a variable that can as-
ful starting point to obtain insights into such phenomenasumeg possible states (which we dend®g, |1),...,|q —
and some progress has been made. In this paper we stutly on the sites of a/-dimensional lattice. Thelassical
analytically the effects of disorder on the properties of twoPotts (clock) interaction in the presence of a uniform ex-
classes of quantum models with discrete symmetry. Thedernal “magnetic” fieldH along the 0” direction is
are to be regarded as quantum versions of the clasgical

state Potts and thg-state clock models [6]. Studies of the Hp, = — Zjijé,,’.n/ — 2H Z(Sn[,o — i) (Potts,
corresponding classical models have yielded a fair amount (i) i q
of insight into the competing effects of randomness, inter- 1)
actions, and thermal fluctuations [7]. For instance, classi- )
cal Potts spin glasses have been studied extensively as#;, = — Z 2J; co{—w (n; — l’lj)i|
paradigm for understanding the properties of orientational (i) q
glasses [7]. 2 n;
We first consider the zero temperature quantum B ZHECOST (clock). (2)

phase transition in random (purely ferromagnetic) one-

dimensional quantum Potts and clock chains. For the lﬂVe_introduce quantum fluctuation§ into these models by
random transverse field Ising model (RTFIM), which (asaddlng at each site a “transverse field” term that attempts

we shall see below) is the = 2 case of these models, a to change the state of the variable at that site. Thus we
wealth of essentially exact information has recently bee/fonsider the quantum Hamiltonians

obtained in a remarkable paper [2] by Fisher using a real- =

space renormalization grgurra) pr[ogedyure. Here v?/e show’*? = Zhl( Z ; |”i><”§|) + Hpin (Potts,
that this procedure can similarly be used to obtain exact ' =0 3)
critical properties ofstrongly randomg-state Potts and

clock chains for ally, and implies, remarkably, that there !

is no ¢ dependence in any of the exponents or the scaling”*¢ = — (ZO hillng) (ni + 11 + H-C-))

functions. This is in stark contrast to the pure problem ¢ Hew (clock. @)

where the properties of the transition depend crucially on
the value ofq [6,8]. In addition, considerations on the (We identify|n; + g) = |n;).) Throughout the paper we
effects of weak randomness suggest the possibility thatill assume that thé:; and J;; are independent random
for any amount of randomness, the Potts model for @ny variables drawn from some distributio®s(k) and P, (J),
and the clock model fo2 = ¢ = 4 are described by the respectively. Note that a¥ = 0 the Hamiltonian 7
strong randomness fixed point. For the clock chain withis invariant under a global permutati¢m) — |n’) of the
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states at each site. FdHc, the symmetry is a global ~ 9P1 _ 9P1 P\[P1(0.T) — Py(0.T)] + P»(0.T)

cyclic rotation|n) — |n + 1). Clearly for ¢ = 2, both o’ al

these models reduce to the transverse field Ising model.

For generalg, just as in the Ising case, the “transverse X fdé"l d{ Pi(¢1, T)P1(4,T)

field” term plays the role of a kinetic energy that opposes

the tendency to order due to the interaction term. Also X8 =4 — & —Ink) )

as in the Ising case, thé-dimensionalg-state quantum and similarly with P, — P, (as expected from duality).
Potts (clock) model Eqg. (3) [(4)] at zero temperature Mayyhen now we rescale and look for critical fixed points,
be regarded as the tr_ansfer matrix in ﬁh_eontmuum imit * the value of I becomes irrelevant at low energies (so
ofafd + 1)-d|menS|onan—state classical P(_)tts (ClOCk) long as it is finite). The resulting probability distributions
model [9] with dlsorder_ constant along one direction. in the scaling limit described by the fixed point are
In the absence of disorder, the mapping to the classi,yehendent ofy. In general it is necessary to keep
cal @ + l)jdlmensmnal pure problem provides a rat_h,ertrack of two joint distributions—that of bond lengths and
complete picture of the possible phases and the transitiongy, strengths at scalf and that of cluster lengths,

betyve(_an them. Zor instance (at édﬁ) tEe.fe;roma?- their magnetic moments and “transverse” field strengths at
netic ("e"J. >0, h > 0) quantum Potts chain has a first goalel”. Both these distributions will be independentgof
order transition forg > 4, and a second order transition i, y, scaling limit. Thus the value of merely determines
for ¢ = 4 (for which all the exponents are known exagtly a high-energy cutofz, ~ Qe ™« (below which one
and depend on the value gj [6,10]. The ferromagnetic should be in order to observe scaling behavior) but does

clock chains, on the other hand, have, for 4, a quasi- . - . X
long-range ordered (QLRO) phase sandwiched betweenOt affect the scaling behavior itseliNote that since this

a truly long-range ordered phase and a disordered phag%}gfqgoes to zero ag — e, our results hold only for

[8]. Forgq §.4’ thel quzsg)—long—ra:que ordereddphz:\jse dri]s— At this point it is tempting to conclude that all the Potts
appears and IS replaced by an ordinary second oraer pnagfiy cjock chains will have identical critical properties.

transition for which again all the exponents are knovv_n EXHowever, we note that, in general, identical probability
actly [6,8]. Below we will see that randomness dr""St'calIydistributions do not necessarily imply identical physical

modifies this picture. . . -
! o . , , properties. For instance, the pure problems trivially have
We start with 1D chains in which all thie’s and /'S jgenical distributions but have very different properties.
are ra”d"”.“ b.Ut positive andl = O Defining the to- However, as shown by Fisher [2], the distributions of the
tal magnetization asf =3 ,(s;) with s; = 8,0 = 1/q logarithmic couplings¢ and 8 become infinitely broad
for the Potts model ang; = co92,/4) for the clock asymptotically at low energies. It is then straightforward
model, it is clear that as the overall relative strength of thg J"coa that due to this extreme broadness all physical

hi’s is decreased, there will be a transition from a phasg, antities (such as magnetization or mean correlation

with M =0 to one withM # 0. We assume that the ¢,tion) are described hy-independent scaling functions
randomness is strong and follow closely a real-space renog. 4 exponents. The only-dependence occurs in some

malization group (RG) procedfqr(? used_ by F'Sr?erR[I?I]:IRCA)nonuniversal constants. We illustrate this point with the
extract an enormous amount of information on the xample of the scaling of the magnetizatibh(H, 5) as

.(q =2 case)._ TIhe tl)_as_ic ideahbehind this proceltfj;re [11§ function of small external applied field (> 0) and a
IS to successively eliminate the strongest COUpAdG= 4 ensionless measuskof the deviation from criticality

maxh;, J;+1} in the chain and get an effective Hamilton- 13]. In the presence of a magnetic fielf, the energy
ian for the low-energy degrees of freedom. First Cons'del;evels of an otherwise-free cluster of magnetic moment

thg case when_the maXim““? coupling is afield, sayWe n split into a ground statdn = 0) and other excited
eliminate the site, and obtain, using second order pertur-gites with a garEy = 2uqH for the Potts case and
bation theory, a new effective bond between the sites1 (at leasEy = 2,(LHIEI — cod2/q)] for the clock case
andi + 1 of strength/ = (J;i—1iJii+1)/kh; where« is Proceeding exactly as for the RTFIM, we stop the RG
q/2 for the Potts model andl — cod27/¢)]/(1 + 82)  \hen the maximum couplin@ ~ Ex. Because of the
for thﬁ Cl(.)Ck r;od;l. On the otlher hﬁnd'. 'f.thedmax'mumextreme broadness of the distribution, an asymptotically
coupling is a bond’;,;+;, we replace the sitesandi + 1 = gy expression fob (H, ) is obtained by aligning all

by a single Potts (or clock) degree of freedom with an efy, o yemaining clusters in the direction of the magnetic field.
fective fieldh = (h;h;+1)/xJ;i+1 Wherek is the same as Thus

before (as may be expected from a duality which these
models can be shown to possess [12]). Thelepen- M(H, )= i X [total number of activéi.e., undecimated
dence is only throughc. As in Ref. [2], we convert

: - . ! . [ = + i
these recursion relations into flow equations for the dis- spins at scald’y = In(Dy/H)] + corrections

tributionsP(¢ = In(QQ/J),I = In(Q;/Q)) andP,(8 = where & and Dy are nonuniversal and possibly-
In(Q/h), T = In(Q;/Q)), whereQ, is the initial value of dependent constants. The key point now is that the
the maximum coupling and find number of active spins at a given scdleis entirely a

3002



VOLUME 76, NUMBER 16 PHYSICAL REVIEW LETTERS 15 ARIL 1996

property of the joint distribution of cluster lengths, mag-is thatforq = 4, the RG flows take the system to the strong
netic moments, and field strengths whiclyigndependent randomness fixed point for any amount of randomness
in the scaling limit. Consequently, the universal scalingin the initial distributions. The situation, however, is
function describingM (H, 8) will be the same for aly.  different forq > 4. We discuss the Potts and clock cases
The ¢ dependence is only in the nonuniversal quantitieseparately. The pure Potts chain §or> 4 has a first order
o andDy. Through similar reasoning, one can establishtransition. For first order phase transitions in classical
that the mean correlation functiofi(x) = (sos,) is also  systems, it has been argued that any amount of “bond”
described by &-independent scaling function. randomness converts the transition to second order [16] for
Thus the Potts and clock chains for apywith strong d = 2. Extension of this argument to quantum systems
ferromagnetic randomness) do indeed have critical propewould then suggest that the randgnm> 4 quantum Potts
ties identical to those of the RTFIM (thg= 2 case) for chain has a second order transition for any amount of
which detailed results are available [2]. We point out some@andomness. We conjecture that this transition is described
salient features below. The spontaneous magnetizatidoy the strong randomness fixed point.
vanishes at the transition with exponght= (3 — /5/2). We now turn to the clock model fay > 4 where there
The mean and typical correlation functions at the critialis an intermediate quasi-long-range ordered phase separat-
point decay asC(x) ~ 1/|x|# and — INCyyp(x) ~ Vx|, ing a truly ordered phase from the paramagnetic phase.
respectively, for largdx|. In the disordered side, there The phase transitions into the QLRO phase from either
are two correlation lengths, characterizing the decay o$ide are of the Kosterlitz-Thouless type with= <, there-
mean and typical correlations, which diverge with expo-fore implying by the Harris criterion that weak random-
nentsy = 2 and# = 1, respectively. The magnetization ness is irrelevant. The QLRO phase is described by a line
scaling function is known exactly, and the scaling functionof fixed points. A straightforward perturbative calculation
for the mean correlation function known up to the solutionshows that weak randomness is irrelevant along this entire
of a linear ordinary differential equation. Asymptotically line [17]. Thus weak disorder does not change the nature
at the critical point “lengths” scale as the square of theof the phase diagram in this case while for strong disor-
logarithm of “energies” (unlike most other quantum tran-der, as we have seen earlier, there is a single second or-
sitions where lengths scale as a power of the energies). Qter phase transition (surrounded by Griffiths regions) and
either side of the transition there are regions in which varino QLRO phase. Understanding how the phase diagram
ous thermodynamic quantities show nonanalytic behaviochanges as the strength of the disorder increases is an in-
though the system is not at a critical point. This arises dugeresting open question. We speculate that as the strength
to contributions from statistically rare fluctuations. Suchof the disorder is increased, the two lines of Kosterlitz-
regions are generic to many disordered systems, and afdouless transitions bounding the QLRO phase merge at
known as Griffiths regions [14]. In the Griffiths region a multicritical point. Beyond this point the QLRO phase
of the disordered phase, the order-parameter susceptibilitiisappears, and there is a single second order transition de-
diverges as’ — 0 as a power with an exponent weaker scribed by the strong randomness fixed point (see Fig. 1).
than the Curie susceptibility. Throughout this region, theWe do not, however, have any strong arguments ruling out
magnetization increases as a power (with logarithmic cormore complicated scenarios (such as, for instance, a new
rections) of an applied external magnetic field with a con-intermediate phase separating the QLRO phase from the
tinuously varying exponent. Similarly in the Griffiths region with a single second order transition).
region of the ordered side the stiffness vanishes for an in- Having described the one-dimensional random ferro-
finite system, and the susceptibility divergesTas> 0 as  magnetic systems in some detail, it is natural to ask if
a power with an exponent that is stronger than the Curi¢here are other nontrivial yet solvable cases. One such ex-
susceptibility. Very far from the critical point, there are, ample is provided by infinite-range spin glass models. As
of course, the more conventional strongly ordered and dis-
ordered phases. A
The RG procedure used above is valid only if the
randomness in the initial distributioy and P, is strong.
Clearly it cannot address the question whether, if the initial TRUE PARAMAGNET
distribution is narrow, the low-energy properties will still LRO
be described by the strong randomness fixed point found
above. Some insights on this matter are provided by
considering the effect of weak randomness on the pure QLRO
systems. So long as the pure transition is second order,
weak randomness is relevant at the fixed poimt i 2/d g

(the generalized Harris criterion [15]) whetés the spatial FIG. 1. One possible (schematic) phase diagram forgthe

dimension. From the known yalues ©f6,10] forg = 4 4 random quantum clock chaing = Inh is a parameter that
for the Potts and clock chains, we conclude that weakneasures the strength of quantum fluctuations &hds a

randomness is indeed relevant. The simplest scenario themasure of the strength of the randomness.
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is well known, classical spin glass (SG) models displayproblem. Also interesting is the question of whether this
a complicated and rich structure even for infinite-rangendependence persists in higher dimensional ferromagnetic
interactions. There has been some recent progress in umodels. For the spin glass models, one approach to go
derstanding the zero temperature quantum phase transititmeyond our results, at least in high enough dimensions,
into a spin glass phase in the transverse field Ising modeVtould be to study a Landau theory analogous to that
(the ¢ = 2 case of our models) [4,5]. The basic idea isdeveloped for the Ising and rotor models [4]. Such a
quite straightforward [18]. One first performs the disorderstudy may also resolve the issue of whether the transition
average using the replica trick and reduces the problem tis second order or not.
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