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We study zero temperature phase transitions in two classes of random quantum systems—theq-state
quantum Potts and clock models. For models with purely ferromagnetic interactions in one dimen
we show that for strong randomness there is a second order transition with critical properties th
be determined exactly by use of a renormalization group procedure. Somewhat surprisingly, the c
behavior is completely independent ofq. For theq . 4 clock model, we suggest the existence of
novel multicritical point at intermediate randomness. We also consider theT ­ 0 transition from a
paramagnet to a spin glass in an infinite-range model, and findq independent exponents.

PACS numbers: 75.10.Nr, 05.50.+q, 75.10.Jm
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The effects of randomness on the properties of quan
many-body systems have been the subject of experime
and theoretical studies for many years [1]. Despite this,
understanding of phenomena where quantum effects,
domness, and interactions are all important is rather p
and there are as yet few reliable theoretical techniques.
cent work [2–5] has focused attention on simple quant
statistical mechanical systems with randomness as a
ful starting point to obtain insights into such phenome
and some progress has been made. In this paper we s
analytically the effects of disorder on the properties of t
classes of quantum models with discrete symmetry. Th
are to be regarded as quantum versions of the classicq-
state Potts and theq-state clock models [6]. Studies of th
corresponding classical models have yielded a fair amo
of insight into the competing effects of randomness, int
actions, and thermal fluctuations [7]. For instance, cla
cal Potts spin glasses have been studied extensively
paradigm for understanding the properties of orientatio
glasses [7].

We first consider the zero temperature quant
phase transition in random (purely ferromagnetic) o
dimensional quantum Potts and clock chains. For the
random transverse field Ising model (RTFIM), which (
we shall see below) is theq ­ 2 case of these models,
wealth of essentially exact information has recently be
obtained in a remarkable paper [2] by Fisher using a re
space renormalization group procedure. Here we sh
that this procedure can similarly be used to obtain ex
critical properties ofstrongly randomq-state Potts and
clock chains for allq, and implies, remarkably, that ther
is noq dependence in any of the exponents or the sca
functions. This is in stark contrast to the pure proble
where the properties of the transition depend crucially
the value ofq [6,8]. In addition, considerations on th
effects of weak randomness suggest the possibility
for any amount of randomness, the Potts model for anq
and the clock model for2 # q # 4 are described by the
strong randomness fixed point. For the clock chain w
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q . 4, we suggest the existence of a multicritical poi
at a finite strength of randomness. Next we consi
the zero temperature transition from a paramagnet t
spin glass ininfinite-ranged quantum Potts and clock
models. Again building on work on theq ­ 2 case [4,5],
and, assuming a second order transition, we find that
critical properties are independent ofq.

The models are defined in terms of a variable that can
sumeq possible states (which we denotej0l, j1l, . . . , jq 2

1l) on the sites of ad-dimensional lattice. Theclassical
Potts (clock) interaction in the presence of a uniform e
ternal “magnetic” fieldH along the “0” direction is

HP,int ­ 2
X
ki,jl

Jijdninj 2 2H
X

i

µ
dni ,0 2

1
q

∂
sPottsd,

(1)

HC,int ­ 2
X
ki,jl

2Jij cos

∑
2p

q
sni 2 njd

∏
2 2H

X
i

cos
2pni

q
sclockd. (2)

We introduce quantum fluctuations into these models
adding at each site a “transverse field” term that attem
to change the state of the variable at that site. Thus
consider the quantum Hamiltonians

HP ­ 2
X

i

hi

√
q21X

ni ,n
0
i­0

1
q

jnil kn0
ij

!
1 HP,inf sPottsd,

(3)

HC ­ 2

√
q21X
ni­0

hisjnil kni 1 1j 1 H.c.d

!
1 HC,inf sclockd. (4)

(We identify jni 1 ql ­ jnil.) Throughout the paper we
will assume that thehi and Jij are independent random
variables drawn from some distributionsP1shd andP2sJd,
respectively. Note that atH ­ 0 the HamiltonianHP

is invariant under a global permutationjnl ! jn0l of the
© 1996 The American Physical Society 3001
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states at each site. ForHC, the symmetry is a globa
cyclic rotation jnl ! jn 1 1l. Clearly for q ­ 2, both
these models reduce to the transverse field Ising mo
For generalq, just as in the Ising case, the “transver
field” term plays the role of a kinetic energy that oppos
the tendency to order due to the interaction term. A
as in the Ising case, thed-dimensionalq-state quantum
Potts (clock) model Eq. (3) [(4)] at zero temperature m
be regarded as the transfer matrix in thet-continuum limit
of a (d 1 1)-dimensionalq-state classical Potts (clock
model [9] with disorder constant along one direction.

In the absence of disorder, the mapping to the cla
cal (d 1 1)-dimensional pure problem provides a rath
complete picture of the possible phases and the transit
between them. For instance (at zeroH), the ferromag-
netic (i.e.,J . 0, h . 0) quantum Potts chain has a firs
order transition forq . 4, and a second order transitio
for q # 4 (for which all the exponents are known exact
and depend on the value ofq) [6,10]. The ferromagnetic
clock chains, on the other hand, have, forq . 4, a quasi-
long-range ordered (QLRO) phase sandwiched betw
a truly long-range ordered phase and a disordered ph
[8]. For q # 4, the quasi-long-range ordered phase d
appears and is replaced by an ordinary second order p
transition for which again all the exponents are known e
actly [6,8]. Below we will see that randomness drastica
modifies this picture.

We start with 1D chains in which all thehi ’s andJij ’s
are random but positive andH ­ 0. Defining the to-
tal magnetization asM ­

P
iksil with si ­ dni ,0 2 1yq

for the Potts model andsi ­ coss2pniyqd for the clock
model, it is clear that as the overall relative strength of
hi ’s is decreased, there will be a transition from a pha
with M ­ 0 to one with M fi 0. We assume that the
randomness is strong and follow closely a real-space re
malization group (RG) procedure used by Fisher [2]
extract an enormous amount of information on the RTF
(q ­ 2 case). The basic idea behind this procedure [
is to successively eliminate the strongest couplingV ­
maxhhi , Ji,i11j in the chain and get an effective Hamilton
ian for the low-energy degrees of freedom. First consi
the case when the maximum coupling is a field, sayhi . We
eliminate the sitei, and obtain, using second order pertu
bation theory, a new effective bond between the sitesi 2 1
and i 1 1 of strengthJ ­ sJi21,iJi,i11dykhi wherek is
qy2 for the Potts model andf1 2 coss2pyqdgys1 1 dq,2d
for the clock model. On the other hand, if the maximu
coupling is a bondJi,i11, we replace the sitesi andi 1 1
by a single Potts (or clock) degree of freedom with an
fective fieldh ­ shihi11dykJi,i11 wherek is the same as
before (as may be expected from a duality which the
models can be shown to possess [12]). Theq depen-
dence is only throughk. As in Ref. [2], we convert
these recursion relations into flow equations for the d
tributionsP1sssz ­ lnsVyJd, G ­ lnsVIyVdddd andP2sssb ­
lnsVyhd, G ­ lnsVIyVdddd, whereVI is the initial value of
the maximum coupling and find
3002
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≠P1

≠G
­

≠P1

≠z
1 P1fP1s0, Gd 2 P2s0, Gdg 1 P2s0, Gd

3
Z

dz1 dz2 P1sz1, GdP1sz2, Gd

3 dsz 2 z1 2 z2 2 lnkd (5)

and similarly withP1 $ P2 (as expected from duality)
When now we rescale and look for critical fixed point
the value of lnk becomes irrelevant at low energies (s
long as it is finite). The resulting probability distribution
in the scaling limit described by the fixed point a
independent ofq. In general it is necessary to kee
track of two joint distributions—that of bond lengths an
bond strengths at scaleG and that of cluster lengths
their magnetic moments and “transverse” field strength
scaleG. Both these distributions will be independent ofq
in the scaling limit.Thus the value ofq merely determines
a high-energy cutoffEc , VIe2jlnkj (below which one
should be in order to observe scaling behavior) but do
not affect the scaling behavior itself.Note that since this
cutoff goes to zero asq ! `, our results hold only for
finite q.

At this point it is tempting to conclude that all the Pot
and clock chains will have identical critical propertie
However, we note that, in general, identical probabil
distributions do not necessarily imply identical physic
properties. For instance, the pure problems trivially ha
identical distributions but have very different propertie
However, as shown by Fisher [2], the distributions of t
logarithmic couplingsz and b become infinitely broad
asymptotically at low energies. It is then straightforwa
to see that due to this extreme broadness all phys
quantities (such as magnetization or mean correlat
function) are described byq-independent scaling function
and exponents. The onlyq-dependence occurs in som
nonuniversal constants. We illustrate this point with t
example of the scaling of the magnetizationMsH, dd as
a function of small external applied fieldH s. 0d and a
dimensionless measured of the deviation from criticality
[13]. In the presence of a magnetic fieldH, the energy
levels of an otherwise-free cluster of magnetic mome
m split into a ground statejn ­ 0l and other excited
states with a gapEH ­ 2mqH for the Potts case and
(at least)EH ­ 2mHf1 2 coss2pyqdg for the clock case.
Proceeding exactly as for the RTFIM, we stop the R
when the maximum couplingV , EH . Because of the
extreme broadness of the distribution, an asymptotica
exact expression forMsH, dd is obtained by aligning all
the remaining clusters in the direction of the magnetic fie
Thus

MsH, dd ­ m̄ 3 ftotal number of activesi.e., undecimatedd

spins at scaleGH ­ lnsDHyHdg 1 corrections,

where m̄ and DH are nonuniversal and possiblyq-
dependent constants. The key point now is that
number of active spins at a given scaleG is entirely a
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property of the joint distribution of cluster lengths, mag
netic moments, and field strengths which isq independent
in the scaling limit. Consequently, the universal scalin
function describingMsH, dd will be the same for allq.
The q dependence is only in the nonuniversal quantiti
m̄ andDH . Through similar reasoning, one can establi
that the mean correlation function̄Csxd ­ ks0sxl is also
described by aq-independent scaling function.

Thus the Potts and clock chains for anyq (with strong
ferromagnetic randomness) do indeed have critical prop
ties identical to those of the RTFIM (theq ­ 2 case) for
which detailed results are available [2]. We point out som
salient features below. The spontaneous magnetiza
vanishes at the transition with exponentb ­ s3 2

p
5y2d.

The mean and typical correlation functions at the criti
point decay asC̄sxd , 1yjxjb and 2 lnCtypsxd ,

p
jxj,

respectively, for largejxj. In the disordered side, there
are two correlation lengths, characterizing the decay
mean and typical correlations, which diverge with exp
nentsn ­ 2 andñ ­ 1, respectively. The magnetization
scaling function is known exactly, and the scaling functio
for the mean correlation function known up to the solutio
of a linear ordinary differential equation. Asymptoticall
at the critical point “lengths” scale as the square of t
logarithm of “energies” (unlike most other quantum tran
sitions where lengths scale as a power of the energies).
either side of the transition there are regions in which va
ous thermodynamic quantities show nonanalytic behav
though the system is not at a critical point. This arises d
to contributions from statistically rare fluctuations. Suc
regions are generic to many disordered systems, and
known as Griffiths regions [14]. In the Griffiths region
of the disordered phase, the order-parameter susceptib
diverges asT ! 0 as a power with an exponent weake
than the Curie susceptibility. Throughout this region, th
magnetization increases as a power (with logarithmic c
rections) of an applied external magnetic field with a co
tinuously varying exponent. Similarly in the Griffiths
region of the ordered side the stiffness vanishes for an
finite system, and the susceptibility diverges asT ! 0 as
a power with an exponent that is stronger than the Cu
susceptibility. Very far from the critical point, there are
of course, the more conventional strongly ordered and d
ordered phases.

The RG procedure used above is valid only if th
randomness in the initial distributionsP1 andP2 is strong.
Clearly it cannot address the question whether, if the init
distribution is narrow, the low-energy properties will sti
be described by the strong randomness fixed point fou
above. Some insights on this matter are provided
considering the effect of weak randomness on the p
systems. So long as the pure transition is second ord
weak randomness is relevant at the fixed point ifn , 2yd
(the generalized Harris criterion [15]) whered is the spatial
dimension. From the known values ofn [6,10] for q # 4
for the Potts and clock chains, we conclude that we
randomness is indeed relevant. The simplest scenario t
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is that forq # 4, the RG flows take the system to the stron
randomness fixed point for any amount of randomne
in the initial distributions. The situation, however, i
different forq . 4. We discuss the Potts and clock cas
separately. The pure Potts chain forq . 4 has a first order
transition. For first order phase transitions in classic
systems, it has been argued that any amount of “bo
randomness converts the transition to second order [16]
d # 2. Extension of this argument to quantum system
would then suggest that the randomq . 4 quantum Potts
chain has a second order transition for any amount
randomness. We conjecture that this transition is descri
by the strong randomness fixed point.

We now turn to the clock model forq . 4 where there
is an intermediate quasi-long-range ordered phase sep
ing a truly ordered phase from the paramagnetic pha
The phase transitions into the QLRO phase from eith
side are of the Kosterlitz-Thouless type withn ­ `, there-
fore implying by the Harris criterion that weak random
ness is irrelevant. The QLRO phase is described by a
of fixed points. A straightforward perturbative calculatio
shows that weak randomness is irrelevant along this en
line [17]. Thus weak disorder does not change the nat
of the phase diagram in this case while for strong dis
der, as we have seen earlier, there is a single second
der phase transition (surrounded by Griffiths regions) a
no QLRO phase. Understanding how the phase diagr
changes as the strength of the disorder increases is a
teresting open question. We speculate that as the stre
of the disorder is increased, the two lines of Kosterlit
Thouless transitions bounding the QLRO phase merge
a multicritical point. Beyond this point the QLRO phas
disappears, and there is a single second order transition
scribed by the strong randomness fixed point (see Fig.
We do not, however, have any strong arguments ruling
more complicated scenarios (such as, for instance, a
intermediate phase separating the QLRO phase from
region with a single second order transition).

Having described the one-dimensional random fer
magnetic systems in some detail, it is natural to ask
there are other nontrivial yet solvable cases. One such
ample is provided by infinite-range spin glass models.

FIG. 1. One possible (schematic) phase diagram for theq .
4 random quantum clock chain.g ­ lnh is a parameter that
measures the strength of quantum fluctuations andV is a
measure of the strength of the randomness.
3003



VOLUME 76, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 APRIL 1996

la
g

it
d
is
e

c
a
o
o
d

c
h

o
ts
v
e

r
n

m
,

io
lu
tio

e

k
p
e

th
h
y

o
2

l
h
t
er

io

a
c
e

etic
go

ns,
at
a

ion

. S.
nts.
R-

a
d.

he
n,

ett.

n,
d

s;
the

n

,
ett.

v.

ev.
is well known, classical spin glass (SG) models disp
a complicated and rich structure even for infinite-ran
interactions. There has been some recent progress in
derstanding the zero temperature quantum phase trans
into a spin glass phase in the transverse field Ising mo
(the q ­ 2 case of our models) [4,5]. The basic idea
quite straightforward [18]. One first performs the disord
average using the replica trick and reduces the problem
an effective single site problem with a self-consisten
condition on the autocorrelation function. At the critic
point it is possible to solve the self-consistency conditi
by making a suitable ansatz for the long-time behavior
the autocorrelation function. For the Ising case, one fin
that the critical autocorrelation decays as1yt2 at large
imaginary timet [4,5]. In addition, in the paramagneti
side, there is an energy gap that vanishes on approac
the transition with an exponent1y2 with logarithmic cor-
rections. Repeating the analysis for theq-state quantum
Potts or clock spin glass model, and, assuming a sec
order transition, we find [17] that the critical exponen
once again remain the same as the Ising case. Howe
the assumption of a second order transition may be qu
tionable (at least for the Potts and odd-q clock models)
since the finite temperature phase transition from the pa
magnetic side in the corresponding classical models is
of the conventional second order type [19].

In summary, we have shown that for strongly rando
ferromagnetic quantumq-state Potts and clock chains
the critical properties are completely independent ofq
for 2 # q , `. This result isa priori surprising, as in
the pure models, the possible phases and the transit
between them are known to depend crucially on the va
of q. We have also studied the zero temperature transi
from a paramagnet to a spin glass in these models w
infinite-range interactions. If the transition is second ord
the critical exponents haveq-independent values. We
conclude by noting the following implications of our wor
and by raising some open questions. Our results im
that for classical 2D Potts and clock models with disord
correlated along one direction, the critical properties of
finite temperaturephase transition are independent of t
value ofq. It is interesting that numerical simulations b
Chen, Ferrenberg, and Landau [20] on the classical 2D
state Potts model with uncorrelated disorder find a sec
order transition with exponents equal to the classical
Ising values. This suggests the possibility that theq-
independence found here with correlated disorder a
holds with uncorrelated disorder. Some evidence for t
has also been found recently [21,22]. Similar results, bu
a different context, were obtained earlier [23]. Howev
an analytic calculation by expanding inq 2 2 [24] does
find q dependence in the exponents. Further studies
address this issue will be welcome. From our discuss
of the phase diagram for the clock chains withq . 4
(Fig. 1) there arises the possibility of a novel multicritic
point at finite randomness. Verification of the existen
of this point, perhaps numerically, is an interesting op
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problem. Also interesting is the question of whether thisq
independence persists in higher dimensional ferromagn
models. For the spin glass models, one approach to
beyond our results, at least in high enough dimensio
would be to study a Landau theory analogous to th
developed for the Ising and rotor models [4]. Such
study may also resolve the issue of whether the transit
is second order or not.
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