VOLUME 76, NUMBER 16 PHYSICAL REVIEW LETTERS 15 ARIL 1996

Nature of Phase Transitions of Superconducting Wire Networks in a Magnetic Field
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We study/-V characteristics of periodic square Nb wire networks as a function of temperature in a
transverse magnetic field, with a focus on three filling5,21/2, and 0.618 that represent very different
levels of incommensurability. For all three fillings, a scaling behaviof-&f characteristics is found,
suggesting a finite temperature continuous superconducting phase transition. The low-température
characteristics are found to have an exponential form, indicative of the domain-wall excitations.

PACS numbers: 74.60.Ge, 64.60.Cn

The presence of a quenched symmetry-breaking field imelting transition in the vortex lattice. The superconduct-
known to have important consequences on the orderingng transition will be determined by the one with the lower
of low temperature phases in many physical systems. Aransition temperature. Interesting physics arises when the
striking example is the pinning of a two-dimensional (2D) two types of excitations do couple [10]. Because of the
vortex lattice by a periodic potential in a superconduct-screening of the vortex interactions by the domain walls,
ing wire network. Without pinning, a 2D elastic vortex when the domain wall energy goes to zero at an Ising-like
lattice in homogeneous superconducting thin films wouldransition, a spontaneous generation of domain walls will
not have long-range translational order at any finite temunbind the vortex pairs and induce a KT-like transition
perature [1] and cannot have long-range superconductind0]. In this scenario there will be a single supercon-
phase coherence evenft= 0. A periodic pinning po- ducting transition of a new universality class [10,11]. In
tential, however, when commensurate to the vortex latticespite of intense theoretical effort on this problem, the ex-
can induce a gap in the low-energy excitation spectrunact nature of this transition remains unknown [11]. We
[2] and create a new thermodynamic phase [3] of a pinnefind in this Letter thathe superconducting transition at
2D solid with true long-range translational order, and withf = 1/2 is continuous and is strongly influenced by the
superconducting phase coherence [4]. In the presence tsfing-like excitations (domain walls), but is not an Ising
a high-order commensurate (or incommensurate) potentiaansition Moreover, we find thathe phase transitions
the competition between the vortex-vortex interactions anét higher order commensurate or incommensurate fillings
the vortex-network interactions leads to a whole new classuch asf = 2/5 and f = 0.618 are, surprisingly, also
of problems [5-7]. For example, the vortex lattice maysimilar in nature We suggest that such universal behav-
(a) become a 2D “floating” solid and again lose its trans4or may arise from disorder.
lational order and superconducting phase coherence at anyWe describe here an experiment on a periodic square
temperature [5], (b) form a metastable “glassy” phase [6]superconducting wire network. The network sample in
or (c) be pinned in a commensurate phase [7] and thus seur experiment is fabricated from high-quality sputtered
perconducting at low temperatures. The issue is far froniNb film. The microfabrication consists of standard steps,
being settled. i.e., electron beam lithography, liftoff, and reactive ion

Closely related to the low-temperature thermodynamicetch. The final sample ha&90 X 800 cells, with a lat-
phase, the nature of the superconducting transition of a stice constantl um, wire width 0.25 wm, and thickness
perconducting network in a magnetic field is also not well0.1 um. Scanning electron microscope (SEM) examina-
understood. At fillingf = 1/2, wheref is the fraction of tions of the final sample show that the overall periodicity
a flux quantume¢o = hc/2e per plaquette, for example, is maintained very well, as shown in Fig. 1. The zero-
the vortex configuration of the ground state of the systenfield transition hasT.(at0.5R,) = 8.920 K and width
has a checkerboard pattern [4]. Thus, the ground staf¢10%—-90%)R,] =~ 10 mK. The normal-state resistance
of the system has the discrete symmetry of the twofoldR, = 1.2 ) /square. The standard four-probe technique
degeneracy as well as the continuous symmetry of an ais used for the transport measurements. To ensure current
bitrary global phase change. Two types of excitations ar@niformity, we use large contact pads (silver paint), each
possible: vortex-antivortex pairs of the continuous phaseovering the entire edge of the network. The voltage con-
variable and domain walls of the two ground states. If thdacts are lithographically patterned with the network, both
two types of excitations do not interact, they should leacare5 wm in width, and are of the same material Nb. The
to two independent transitions [8]: a Kosterlitz-Thoulessclose-loop temperature regulation is done by a Linear Re-
(KT) transition [9] in the underlying network and an Ising search LR-130 controller and the voltage is measured by
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FIG. 2. Sample resistande (= V/I) as a function of filling
factor f at various temperatures: from top, 8.920, 8.912, 8.907,
8.901, 8.895, and 8.890 K. The test current Wigs= 10 uA

at 10.2 Hz.
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however, the true phase boundary of the superconducting
transitions due to the neglect of the vortex fluctuations.
Since the emergence of long-range superconducting
phase coherence is characterized by nonlifigdrcharac-
teristics, we study how theV curves behave as the sam-
ple is cooled in a fixed field. As a calibration, we measure
the temperature dependence of th& characteristics at
f =0, 1, and3 [14]. We find that thd-V curve changes
from Ohmic (at low current) to power law with decreasing
temperature. The low-temperature power-l&W curves
are characteristic of the vortex-antivortex pairs bound by
a logarithmic interaction. The temperature dependence of
the power-law exponent (V ~ I*) shows the familiar
25 kv x38.0K 'I.2@sm jump ata = 3 [15]. Other aspects of the data fgr= 0,
1, and3 are also consistent with earlier works [15]. We
thus conclude that gt = 0, 1, and3 our system undergoes

| i
a KT transition.
lpm In sharp contrast to the power-lawV curves atf = 0,
FIG. 1. SEM micrographs showing the structure of the superd: @nd3, the low-temperaturé-V characteristics at non-
conducting Nb wire network used in this work. integer fillings are found to have an exponential form and

the I-V curves behave similarly for different noninteger

fillings as a function of temperature. Figure 3 shows the
a transformer-coupled PAR-124A lock-in amplifier with a 7-V curves forf = 2/5,1/2,0.618, and5/2 [14]. At high
square-wave current at 10.2 Hz. To test possible heatinggmperatures and for all these fillings, thé/ curves are
effects on thd-V curves, we use different duty cycles and Ohmic at low current and concave upward at high current.
find no measurable differences. The temperature readingt low temperatures, theV curves become progressively
accuracy around 9 K is about 1 mK, although the temperamore concave downward. The highand lowZ behav-
ture stability is better than 0.5 mK (determined by usingiors are separated by & ~ I° power law. The lowest
the sample itself as a thermometer). temperature curves for all four fillings in Fig. 3 can be

Figure 2 shows the sample resistance as a function ditted with a formV ~ I exp(—1I7/I), wherelr is a fit-

magnetic field at various fixed temperatures. As the santing constant. This exponential form can be described by
ple is cooled from the normal state, the sample resistanca simple domain-wall nucleation process [16]: Assuming
first dips atf = 0 and other integer fillings; upon fur- the ground state vortex lattice is pinned by the underly-
ther cooling, the resistance dipsjfat= 1/2 and other fill-  ing network, the motion of the lattice is via a thermally
ings. Taking advantage of the variation of the sampleactivated domain nucleation process. The energy cost for
resistance withf, one can determine a mean-field phasecreating a domain scales ad., whereo is the wall en-
boundary [12] that resembles some features of the interesergy per unit length and the length of the domain wall;
ing Hofstadter spectrum [13]. That phase boundary is nothe energy gain from transport currehtscales agL>.
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The exponential-V curves found in this work and in a
previous one [19] suggest a true superconducting state at
low temperature forf = 0.618. This would imply that

the vortex lattice is pinned at low temperature, either by
the network or by the network irregularities which un-
doubtedly exist in our sample (a worst-case estimate from
the SEM photo in Fig. 1 gives-10% in areal fluctuations
among the cells) and that of the previous work [19].

The I-V data in Fig. 3 suggest phase transitions from
the high-temperature resistive state to low-temperature su-
perconducting state. If the superconducting transitions are
continuous, one would expect to see scaling behavior in
I-V characteristics [20,21]. In the following we attempt
a scaling analysis of theV data in Fig. 3. Approaching
the transition, the phase correlation lengt{not to be con-

FIG. 3. Temperature dependent current-voltage characteristidsised with the bulk superconducting coherence length) in
at various fillings f = 2/5, 1/2, 0.618, and 5/2. The I-V  the network diverges & ~ |T' — T.|~”. Dimensionality
;“i’%s/sfo;re:s%%”o% t(?o;hIe-vf)OItlgmg%gsgeF?Eg?tgjrﬁ-%?%g? f05:.1rguments [21] suggest a scaling relagion for he (or
f=1/2. T = 8880 to 8.847 K; for f = 0.618, 7 = 8.890  J-E) curves, in 2D, asE/))|T = T|*" = G=(JIT —
to 8.845 K; for f = 5/2, T = 8.905 to 8.855 K. The dashed 7| "), wherez is the dynamical critical exponent adtk
lines are hand drawn to indicate the~ I° power law. the scaling functions above and beldly. At T = T.

and in 2D,V ~ I**!: thus we can determing directly

from the I-V curves in Fig. 3. For all the cases which
Thus the energy barrier for growing an unbounded domaimve studied carefullyz; = 2; this includesf = 2/5, 1/2,
scales ag ! and this process gives an exponential form0.618, and5/2. Inthe scaling analyses, we fix the parame-
V ~ Iexp(—Iy/I) for I-V curves. As discussed earlier, ter z = 2, as determined independently from the power
due to the symmetry of the ground states for nonintegelaw, and keep’ adjustable until a good collapse of data is
fillings, both vortex pairs and domain walls are possi-achieved. The scaled data are shown in Fig. 4. The four
ble excitations. Note that the energy cost to create freeets of/-V curves in Fig. 3 are found to show good scal-
vortices from bound pairs diverges logarithmically with ing behavior, which strongly suggests a finite-temperature
vanishing current, while the cost to grow an unboundedontinuous superconducting transition for all these fillings.
domain diverges algebraically. Therefore, if the two typesThis is surprising because one would expect very different
of excitations are independent, the low-temperailsié  types of transitions for these different fillings.
curves should be power laws. The observed exponential At f = 1/2, one may have a continuous transition
I-V curves are then due to either the coupling between thBB—11]. But for f = 2/5, one expects [22] a strongly
two types of excitations or a result of a vanishing wall en-first-order melting transition. Af = 0.618, a glasslike
ergyo — 0 close to the transition. Fgt = 1/2, we note freezing into a metastable state may occur at a finite
that an early experiment [17] on Josephson arrays reportddmperature, but no finite-temperature phase transition;
power-lawI-V curves at low temperatures, and a recent
experiment [18] on Al wire networks showddV curves

10° . '
10¢ 10° 10°
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that appear to be exponential. The origin of this difference 2‘ 10°r PRy i 10° ————
between the two systems is not clear. ] 101:-__1/ 18 1053V

The exponential form of -V characteristics suggests & "t 1& 1
superconducting phase coherence at low temperatures irk1g2} 22105 =102 33—’%35
the wire network. Foy = 1/2 and2/5, this maybeun- B | veosss B Te=8.873K |1

Te=8871K [{ =

derstood as the long-range ordering in the pinned ground S 107 s T 1
state vortex lattice. For higher-order commensurate or in- ~ 10 VIT-TI"(AK) UVIT-T IV (A-K")
commensurate fillings, e.gf, = 0.618, the existence of % [ oes Y10l s |
an ordered ground state could be an issue [6]. For ad- € 105] __/// g .
sorbate systems [7] a strong pinning potential can force ‘—u I 2 10 ]
an incommensurate lattice into registry with the substrate E 10 | P s £10°
potential. The ground state is a pinned commensurate lat- 5, ,f S8 | = 1o [ Te=8.863K
tice [7]. However, in our system the vortex density is # 10° 10° 10°%> 107 10° 10°

fixed by an external field and the screening is very weak VIT-T 1" (AK™) IT-TJ" (A-K?)

in the temperature range of the experiment. The grour)gle_ 4. scaling plots forf = 1/2,2/5, 0.618, and5/2. The
state of the system may be either commensurate domaifigsets showing the values of v, andT, used to scale the data

separated by domain walls or ordered quasiperiodically(see text).

2991



VOLUME 76, NUMBER 16 PHYSICAL REVIEW LETTERS 15 ARIL 1996

thus no scaling behavior is expected [6], in contrast to[4] S. Teitel and C. Jayaprakash, Phys. Rev. LBt 1999
the interpretation in a previous work [19]. As discussed (1983).

earlier, a true superconducting phase at low temperature$5] M. Franz and S. Teitel, Phys. Rev. Let3, 480 (1994);
for f = 0.618 may be a result of the network irregularities. S. Hattel and J. Wheatley, Phys. Rev56 16 590 (1994).
The fact that there is no pronounced dip featurg at 2/5 {% ; ﬁ 'é%';sg'r;:‘ﬁﬁ- ge‘s’- Il_:(iastﬁzrlgl? ﬁgﬁfe)r-in b A Lee
on theR vs f curves (Fig. 2) suggests that thie= 2/5 s . P 1o T '
ground state may also be affected by such disorder. Since and W. Brinkman, Phys. Rev. Le#6, 549 (1981); V. L.

. o . . Pokrovsky, A. Talapov, and P. Bak, iBolitons, edited
the first-order transitions can be driven continuously by by S.E. Trullinger, V.E. Zakharov, and V. L. Pokrovsky

quenched disorder [23,24], especially in 2D [23], it is (Elsevier, Amsterdam, 1986), p. 71-127, and references

possible that the continuous transitions for= 2/5 [25] therein.

and 0.618 are due to the areal disorder in the network. [8] G.S. Grest, Phys. Rev. B9, 9267 (1989); P. Olsson,
For f = 1/2, we note that the critical exponent= 1.7 Phys. Rev. Lett75, 2758 (1995).

is different from the 2D Ising valuer(= 1) and from  [9] J.M. Kosterlitz and D.J. Thouless, J. Phys.6C 1181
the nonuniversal valuey(= 0.8) of a coupledXY Ising (1973).

model [11]. In a random-bond 2D eight-state Potts model{10] D-H. Lee, J.D. Joannopoulos, J.W. Negele, and D.P.
the transition was found [24] to be driven by disorder ﬁagﬂf,i’ glgysé4§7e\z.1 é—gg?z’ 433 (1984); T.C. Halsey,
to the ISI.ng unlvgrsallty class. .If weak QIsorder plays a[ll] J. Lee, E. éranato, and J.M. Kosterlitz, Phys. Rev. B
role in driving a first-order transition continuously in our

K . d ab . ; . . 44, 4819 (1991); Y. Knops, B. Nienhuis, H. Knops, and
network, as conjecture apbove, an mterestlng questlon IS H. Blote, Phys. Rev. B0, 1061 (1994)' and references

whether the transitions gt = 2/5, 1/2, and 0.618 are therein.
in the same universality class. Unfortunately, due to g12] B. Pannetier, J. Chaussy, R. Rammal, and J. C. Villegier,
systematic error 4 mK) in locating 7., the error bar Phys. Rev. Lett53, 1845 (1984); Q. Niu and F. Nori,

for exponentr can be 0.3 to 0.5. Thus it is not clear Phys. Rev. B39, 2134 (1989).

whether the variation in for different fillings represents [13] D.F. Hofstadter, Phys. Rev. B4, 2239 (1976).

a real change in their universality classes, or they arél4] The purpose of studying’ = 3 (and 5/2, below) is to

in fact in a single universality class of eithgr= 1/2 assess the amount of disorder in the sample. A small
or one controlled by disorder. In any case, the issue areall fluctuatlon from cell to cell in the network will be
of disorder-induced continuous transition [23,24] in a 2D amplified at a large’.

. . 15] D. Resnick, J. Garland, J.T. Boyd, S. Shoemaker, and
network deserves more careful studies and is currentl R. Newrock, Phys. Rev. Letd7, 1542 (1981): D. Abra-

under investigation. . 3 ham, C.J. Lobb, M. Tinkham, and T. Klapwijk, Phys. Rev.
Another remarkable feature of the data is the~ I B 26, 5268 (1982). As in these references, the condition

power law forf = 2/5, 1/2, and0.618 at the transition, for KT transition in 2D superconductors that< A is

which is typical of a KT transition, but which occurs while satisfied in the regime of our experiment, whérds the

the 10 curves clearly suggest domain-wall excitations just  width of the sample and the effective penetration depth.
below the transition. As mentioned earlier, the domain16] K.K. Mon and S. Teitel, Phys. Rev. Let#2, 673 (1989).
walls have the effect of screening the vortex-antivorte17] B.J. van Wees, H.S.J. van der Zant, and J.E. Mooij,
interactions; it is possible that an Ising-like transition at __ Phys. Rev. B35, 7291 (1987). _

which the domain-wall energy goes to zero may trigger[18] F. Yu, Ph.D. 'FheSIS, University of Minnesota, 1992. No
a KT transition [10]. It is not clear, however, why the scaling behavior was found fof = 1/2 data, however.

. L . [19] F. Yu, N. Israeloff, A.M. Goldman, and R. Bojko, Phys.
universal power of 3 which is related [26] to the universal Rev. Lett.68, 2535 (1992).

jump in the helicity modulus of a KT transition should [20] S.A. Wolf, D.U. Gubser, and Y. Imry, Phys. Rev. Lett.

appear at such a transition. 42, 324 (1979).
We wish to thank S.N. Coppersmith, G. Grest, J.M.[21] D.S. Fisher, M. P.A. Fisher, and D. Huse, Phys. Rev. B
Kosterlitz, and S. Teitel for helpful discussions, A.M. 43, 130 (1991).

Goldman and F. Yu for discussions of their work and[22] Y.-H. Li and S. Teitel, Phys. Rev. Let65, 2595 (1990).
for permission to quote their unpublishgd= 1/2 data, [23] M. Aizenman and J. Wehr, Phys. Rev. Le2, 2503

and C. Denniston for informing us of his unpublished (1989); K. Hui and A.N. Berkerjbid. 62, 2507 (1989);
[24] S. Chen, A.M. Ferrenberg, and D.P. Landau, Phys. Rev.
Lett. 69, 1213 (1992).
*Present address: Micrion Europe, Garmischer Strassg25] A recent numerical work showed a very weak first-order

80339 Munchen, Germany. transition atf = 2/5 without disorder [C. Denniston and
[1] N.D. Mermin and H. Wagner, Phys. Rev. Leff7, 1133 C. Tang (unpublished)], which cannot be ruled out by our

(1966); P.C. Hohenberg, Phys. R&%8 383 (1967). present experiment.
[2] S.C. Ying, Phys. Rev. B, 4160 (1971). [26] V. Ambegaokar, B. Halperin, D. R. Nelson, and E. Siggia,
[3] V.L. Pokrovsky and G.V. Uimin, J. Phys. @1, 3535 Phys. Rev. B21, 1806 (1980).

(1978).

2992



