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Nature of Phase Transitions of Superconducting Wire Networks in a Magnetic Field
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We studyI-V characteristics of periodic square Nb wire networks as a function of temperature in a
transverse magnetic field, with a focus on three fillings 2y5, 1y2, and 0.618 that represent very different
levels of incommensurability. For all three fillings, a scaling behavior ofI-V characteristics is found,
suggesting a finite temperature continuous superconducting phase transition. The low-temperatureI-V
characteristics are found to have an exponential form, indicative of the domain-wall excitations.

PACS numbers: 74.60.Ge, 64.60.Cn
ld
rin
.
D)
ct
x
ul
m
tin

ice
um
ne
ith
e
tia

an
las
ay
ns
t a
[6

s
om

mi
s

el

,
tem
ta
ol

a
ar
as
th
a
ss
g

ct-
er
the

the
lls,
like
will
on
n-
In
ex-

e
t
he
g

gs

v-

are
in

ed
ps,
n

a-
ity
o-

e
ue
rrent
ch

on-
oth
he
Re-

by
The presence of a quenched symmetry-breaking fie
known to have important consequences on the orde
of low temperature phases in many physical systems
striking example is the pinning of a two-dimensional (2
vortex lattice by a periodic potential in a supercondu
ing wire network. Without pinning, a 2D elastic vorte
lattice in homogeneous superconducting thin films wo
not have long-range translational order at any finite te
perature [1] and cannot have long-range superconduc
phase coherence even atT ­ 0. A periodic pinning po-
tential, however, when commensurate to the vortex latt
can induce a gap in the low-energy excitation spectr
[2] and create a new thermodynamic phase [3] of a pin
2D solid with true long-range translational order, and w
superconducting phase coherence [4]. In the presenc
a high-order commensurate (or incommensurate) poten
the competition between the vortex-vortex interactions
the vortex-network interactions leads to a whole new c
of problems [5–7]. For example, the vortex lattice m
(a) become a 2D “floating” solid and again lose its tra
lational order and superconducting phase coherence a
temperature [5], (b) form a metastable “glassy” phase
or (c) be pinned in a commensurate phase [7] and thus
perconducting at low temperatures. The issue is far fr
being settled.

Closely related to the low-temperature thermodyna
phase, the nature of the superconducting transition of a
perconducting network in a magnetic field is also not w
understood. At fillingf ­ 1y2, wheref is the fraction of
a flux quantumf0 ­ hcy2e per plaquette, for example
the vortex configuration of the ground state of the sys
has a checkerboard pattern [4]. Thus, the ground s
of the system has the discrete symmetry of the twof
degeneracy as well as the continuous symmetry of an
bitrary global phase change. Two types of excitations
possible: vortex-antivortex pairs of the continuous ph
variable and domain walls of the two ground states. If
two types of excitations do not interact, they should le
to two independent transitions [8]: a Kosterlitz-Thoule
(KT) transition [9] in the underlying network and an Isin
0031-9007y96y76(16)y2989(4)$10.00
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melting transition in the vortex lattice. The supercondu
ing transition will be determined by the one with the low
transition temperature. Interesting physics arises when
two types of excitations do couple [10]. Because of
screening of the vortex interactions by the domain wa
when the domain wall energy goes to zero at an Ising-
transition, a spontaneous generation of domain walls
unbind the vortex pairs and induce a KT-like transiti
[10]. In this scenario there will be a single superco
ducting transition of a new universality class [10,11].
spite of intense theoretical effort on this problem, the
act nature of this transition remains unknown [11]. W
find in this Letter thatthe superconducting transition a
f ­ 1y2 is continuous and is strongly influenced by t
Ising-like excitations (domain walls), but is not an Isin
transition. Moreover, we find thatthe phase transitions
at higher order commensurate or incommensurate fillin
such asf ­ 2y5 and f ­ 0.618 are, surprisingly, also
similar in nature. We suggest that such universal beha
ior may arise from disorder.

We describe here an experiment on a periodic squ
superconducting wire network. The network sample
our experiment is fabricated from high-quality sputter
Nb film. The microfabrication consists of standard ste
i.e., electron beam lithography, liftoff, and reactive io
etch. The final sample has800 3 800 cells, with a lat-
tice constant1 mm, wire width 0.25 mm, and thickness
0.1 mm. Scanning electron microscope (SEM) examin
tions of the final sample show that the overall periodic
is maintained very well, as shown in Fig. 1. The zer
field transition hasTcsat 0.5Rnd ø 8.920 K and width
fs10% 90%dRng ø 10 mK. The normal-state resistanc
Rn ø 1.2 Vysquare. The standard four-probe techniq
is used for the transport measurements. To ensure cu
uniformity, we use large contact pads (silver paint), ea
covering the entire edge of the network. The voltage c
tacts are lithographically patterned with the network, b
are5 mm in width, and are of the same material Nb. T
close-loop temperature regulation is done by a Linear
search LR-130 controller and the voltage is measured
© 1996 The American Physical Society 2989
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FIG. 1. SEM micrographs showing the structure of the sup
conducting Nb wire network used in this work.

a transformer-coupled PAR-124A lock-in amplifier with
square-wave current at 10.2 Hz. To test possible hea
effects on theI-V curves, we use different duty cycles an
find no measurable differences. The temperature rea
accuracy around 9 K is about 1 mK, although the tempe
ture stability is better than 0.5 mK (determined by usi
the sample itself as a thermometer).

Figure 2 shows the sample resistance as a functio
magnetic field at various fixed temperatures. As the sa
ple is cooled from the normal state, the sample resista
first dips atf ­ 0 and other integer fillings; upon fur
ther cooling, the resistance dips atf ­ 1y2 and other fill-
ings. Taking advantage of the variation of the sam
resistance withf, one can determine a mean-field pha
boundary [12] that resembles some features of the inter
ing Hofstadter spectrum [13]. That phase boundary is n
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FIG. 2. Sample resistanceR s­ VyId as a function of filling
factor f at various temperatures: from top, 8.920, 8.912, 8.9
8.901, 8.895, and 8.890 K. The test current wasIac ­ 10 mA
at 10.2 Hz.

however, the true phase boundary of the superconduc
transitions due to the neglect of the vortex fluctuations.

Since the emergence of long-range superconduc
phase coherence is characterized by nonlinearI-V charac-
teristics, we study how theI-V curves behave as the sam
ple is cooled in a fixed field. As a calibration, we measu
the temperature dependence of theI-V characteristics at
f ­ 0, 1, and3 [14]. We find that theI-V curve changes
from Ohmic (at low current) to power law with decreasin
temperature. The low-temperature power-lawI-V curves
are characteristic of the vortex-antivortex pairs bound
a logarithmic interaction. The temperature dependenc
the power-law exponenta (V , Ia) shows the familiar
jump ata ø 3 [15]. Other aspects of the data forf ­ 0,
1, and3 are also consistent with earlier works [15]. W
thus conclude that atf ­ 0, 1, and3 our system undergoe
a KT transition.

In sharp contrast to the power-lawI-V curves atf ­ 0,
1, and3, the low-temperatureI-V characteristics at non
integer fillings are found to have an exponential form a
the I-V curves behave similarly for different nonintege
fillings as a function of temperature. Figure 3 shows t
I-V curves forf ­ 2y5, 1y2, 0.618, and5y2 [14]. At high
temperatures and for all these fillings, theI-V curves are
Ohmic at low current and concave upward at high curre
At low temperatures, theI-V curves become progressivel
more concave downward. The high-T and low-T behav-
iors are separated by aV , I3 power law. The lowest
temperature curves for all four fillings in Fig. 3 can b
fitted with a form V , I exps2IT yId, whereIT is a fit-
ting constant. This exponential form can be described
a simple domain-wall nucleation process [16]: Assumi
the ground state vortex lattice is pinned by the under
ing network, the motion of the lattice is via a thermal
activated domain nucleation process. The energy cos
creating a domain scales assL, wheres is the wall en-
ergy per unit length andL the length of the domain wall;
the energy gain from transport currentI scales asIL2.
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FIG. 3. Temperature dependent current-voltage characteri
at various fillings f ­ 2y5, 1y2, 0.618, and 5y2. The I-V
curves correspond to the following temperature ranges:
f ­ 2y5, T ­ 8.900 (top I-V ) to 8.850 K (bottomI-V ); for
f ­ 1y2, T ­ 8.880 to 8.847 K; for f ­ 0.618, T ­ 8.890
to 8.845 K; for f ­ 5y2, T ­ 8.905 to 8.855 K. The dashed
lines are hand drawn to indicate theV , I3 power law.

Thus the energy barrier for growing an unbounded dom
scales asI21 and this process gives an exponential fo
V , I exps2IT yId for I-V curves. As discussed earlie
due to the symmetry of the ground states for noninte
fillings, both vortex pairs and domain walls are pos
ble excitations. Note that the energy cost to create f
vortices from bound pairs diverges logarithmically wi
vanishing current, while the cost to grow an unbound
domain diverges algebraically. Therefore, if the two typ
of excitations are independent, the low-temperatureI-V
curves should be power laws. The observed expone
I-V curves are then due to either the coupling between
two types of excitations or a result of a vanishing wall e
ergys ! 0 close to the transition. Forf ­ 1y2, we note
that an early experiment [17] on Josephson arrays repo
power-lawI-V curves at low temperatures, and a rec
experiment [18] on Al wire networks showedI-V curves
that appear to be exponential. The origin of this differen
between the two systems is not clear.

The exponential form ofI-V characteristics sugges
superconducting phase coherence at low temperature
the wire network. Forf ­ 1y2 and2y5, this may be un-
derstood as the long-range ordering in the pinned gro
state vortex lattice. For higher-order commensurate or
commensurate fillings, e.g.,f ­ 0.618, the existence of
an ordered ground state could be an issue [6]. For
sorbate systems [7] a strong pinning potential can fo
an incommensurate lattice into registry with the substr
potential. The ground state is a pinned commensurate
tice [7]. However, in our system the vortex density
fixed by an external field and the screening is very we
in the temperature range of the experiment. The gro
state of the system may be either commensurate dom
separated by domain walls or ordered quasiperiodica
ics
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The exponentialI-V curves found in this work and in a
previous one [19] suggest a true superconducting sta
low temperature forf ­ 0.618. This would imply that
the vortex lattice is pinned at low temperature, either
the network or by the network irregularities which u
doubtedly exist in our sample (a worst-case estimate fr
the SEM photo in Fig. 1 gives,10% in areal fluctuations
among the cells) and that of the previous work [19].

The I-V data in Fig. 3 suggest phase transitions fro
the high-temperature resistive state to low-temperature
perconducting state. If the superconducting transitions
continuous, one would expect to see scaling behavio
I-V characteristics [20,21]. In the following we attem
a scaling analysis of theI-V data in Fig. 3. Approaching
the transition, the phase correlation lengthj (not to be con-
fused with the bulk superconducting coherence length
the network diverges asj , jT 2 Tcj2n . Dimensionality
arguments [21] suggest a scaling relation for theI-V (or
j-E) curves, in 2D, assEyjd jT 2 Tcj2zn ­ G6s jjT 2

Tcj
2nd, wherez is the dynamical critical exponent andG6

the scaling functions above and belowTc. At T ­ Tc

and in 2D,V , Iz11; thus we can determinez directly
from the I-V curves in Fig. 3. For all the cases whic
we studied carefully,z ­ 2; this includesf ­ 2y5, 1y2,
0.618, and5y2. In the scaling analyses, we fix the param
ter z ­ 2, as determined independently from the pow
law, and keepn adjustable until a good collapse of data
achieved. The scaled data are shown in Fig. 4. The
sets ofI-V curves in Fig. 3 are found to show good sc
ing behavior, which strongly suggests a finite-temperat
continuous superconducting transition for all these fillin
This is surprising because one would expect very differ
types of transitions for these different fillings.

At f ­ 1y2, one may have a continuous transitio
[8–11]. But for f ­ 2y5, one expects [22] a strongl
first-order melting transition. Atf ­ 0.618, a glasslike
freezing into a metastable state may occur at a fin
temperature, but no finite-temperature phase transit

FIG. 4. Scaling plots forf ­ 1y2, 2y5, 0.618, and5y2. The
insets showing the values ofz, n, andTc used to scale the dat
(see text).
2991
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thus no scaling behavior is expected [6], in contrast
the interpretation in a previous work [19]. As discuss
earlier, a true superconducting phase at low temperat
for f ­ 0.618 may be a result of the network irregularitie
The fact that there is no pronounced dip feature atf ­ 2y5
on theR vs f curves (Fig. 2) suggests that thef ­ 2y5
ground state may also be affected by such disorder. S
the first-order transitions can be driven continuously
quenched disorder [23,24], especially in 2D [23], it
possible that the continuous transitions forf ­ 2y5 [25]
and 0.618 are due to the areal disorder in the netwo
For f ­ 1y2, we note that the critical exponentn ø 1.7
is different from the 2D Ising value (n ­ 1) and from
the nonuniversal value (n ø 0.8) of a coupledXY Ising
model [11]. In a random-bond 2D eight-state Potts mod
the transition was found [24] to be driven by disord
to the Ising universality class. If weak disorder plays
role in driving a first-order transition continuously in ou
network, as conjectured above, an interesting questio
whether the transitions atf ­ 2y5, 1y2, and 0.618 are
in the same universality class. Unfortunately, due to
systematic error (,4 mK) in locating Tc, the error bar
for exponentn can be 0.3 to 0.5. Thus it is not clea
whether the variation inn for different fillings represents
a real change in their universality classes, or they
in fact in a single universality class of eitherf ­ 1y2
or one controlled by disorder. In any case, the iss
of disorder-induced continuous transition [23,24] in a 2
network deserves more careful studies and is curre
under investigation.

Another remarkable feature of the data is theV , I3

power law forf ­ 2y5, 1y2, and0.618 at the transition,
which is typical of a KT transition, but which occurs whil
the 10 curves clearly suggest domain-wall excitations j
below the transition. As mentioned earlier, the doma
walls have the effect of screening the vortex-antivort
interactions; it is possible that an Ising-like transition
which the domain-wall energy goes to zero may trigg
a KT transition [10]. It is not clear, however, why th
universal power of 3 which is related [26] to the univers
jump in the helicity modulus of a KT transition shoul
appear at such a transition.

We wish to thank S. N. Coppersmith, G. Grest, J.
Kosterlitz, and S. Teitel for helpful discussions, A. M
Goldman and F. Yu for discussions of their work an
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