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Monte Carlo Studies of Helicity Modulus and Heat Capacity of a CoupledXY Model
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Utilizing Monte Carlo simulation techniques, we have calculated both the helicity modulus and heat
capacity versus temperature of a coupled classidémodel in two dimensions. Our model system
is based on a Hamiltonian first proposed by Bruinsma and Aeppli [Phys. Rev4Bett625 (1982)].
The helicity modulus results strengthen our previous report of a new type of phase transition in which
two distinct types of order are simultaneously established through a single continuous transition.

PACS numbers: 61.30.—v, 64.60.—i, 64.70.Md

We have recently performed simultaneous measureBruinsma and Aeppli [10] proposed a Hamiltonian to de-
ment of both the heat capacity and optical reflectivityscribe this intriguing transition in three dimensions. The
near the smectig- (SmA) to hexaticB (HexB) transition  basic idea is the following: The bond-orientational or-
of extremely thin free-standing 3(10)OBC liquid-crystal der (V) can be represented by afY order parameter
films [1]. 3(10)OBC is a member of themOBC (n- [V = [¥|expi6y)] [4]. Because the Hex phase ex-
alkyl-4’-n-alkyoxy-biphenyl-4-carboxylaje homologous hibits only short ranged positional order, they suggested
series. The films are layered structures, and the laythat the herringbone ordé®) could also be represented
ers are separated by roughly the length of the sampley an XY order parametef® = |®|expi2¢) [11]. To
molecules (= 25 A). This work has revealed the formulate the Landau free energy which describes both
following salient results: (1) Unlike thicker films the hexatic and herringbone order, one notices that the
(N > 2), two-layer (N = 2) films display only a single hexatic order possesses sixfold symmetry, while rotating
heat-capacity anomaly, indicating that the two-layera herringbone pattern by 18Gaves it unchanged. Thus
films have reached the two-dimensional (2D) limit. (2)the coupling term should be invariant under the transfor-
To within the high resolution (about 2 parts in 9)@f  mationsy — ¢ + m(7/3) and¢p — ¢ + nw, wherem
our measurement, the optical-reflectivity data display andn are integers. Bruinsma and Aeppli included such
smooth variation through the StyHexB transition with  a coupling term and considered the fluctuation-induced
an inflection point located within 10 mK of the peak corrections to mean-field behavior in three dimensions.
position of the heat-capacity anomaly. No jump in theTheir results demonstrate the existence of two tricritical
optical reflectivity data can be resolved to within the points [10]. The corrections to mean-field behavior asso-
2 mK temperature resolution of this measurement [2]ciated with the proximity of a tricritical point could po-
These results indicate that the liquid-hexatic transitiortentially account for the large heat-capacity critical expo-
in two-layer films is continuous. (3) Both heat-capacity nents observed near the 8rlexB transition. However,
and optical-reflectivity data can be well described by awhile this argument is plausible, it is extremely difficult to
power law expression with heat-capacity critical exponentuinderstand why seven differentnOBC compounds and
a =031 = 0.03 [3]. If the liquid-hexatic transition in five binary mixtures, with very different Senand HexB
two-layer 3(10)OBC films exhibits aiXY-like transition temperature ranges, yield such similar valtes= 0.60)
as two-dimensional melting theory suggests [4,5], thes§l2] and appear to be equally affected by such a special
three experimental findings clearly indicate that hexatidhermodynamic point [13].
order may not be the only order parameter responsible for To lowest order in¥ and ®, the simplified Hamilton-
the SmA-HexB transition in 3(10)OBC. The existence ian on a two-dimensional lattice can be written as
of the herringbone order in the HBxphase has recently
been demonstrated by electron diffraction studies from # = =/i > cosy; — ) = J2 > code — &)
an overexposed eight-layer 3(10)OBC film [6]. Inspired (@) @)
by the above experimental findings, we have conducted —Js ZCOS(% -3¢, 1)
computer simulations to gain further physical insight into i
the nature of coupled-order systems [7] which have beewhere the coefficient$; andJ, are the nearest-neighbor
found in various physical systems. ({i, 7)) coupling constants for the bond-orientatiof®)

In light of x-ray [8] and calorimetric [9] studies of and herringbone orddrP), respectively. The coefficient
bulk samples near the StrHexB transition of 650BC, J; determines the coupling strength between these two
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types of order at the same lattice site. We are interestec N T

in situations in whichW and ® are coupled relatively .

strongly, and thereford; was always taken to be larger

than bothJ; and J, (J3 = 2.1) for all of the work

presented here. ab ;
Employing standard Monte Carlo techniques [14], we . %

have conducted detailed heat-capacity calculations or [ m&yf“ *'.°'1.

a 30 X 30 lattice for J; = 2.1 J; = 1.0, and various oF f‘, . S .--......---M
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values of J,. The schematic phase diagram obtained woady
previously from the peak positions of the heat-capacity ° 40000000°° % ]
anomalies is shown in Fig. 1 [15]. For sufficiently o Ly, Sseabo0ns g0 ]
low values of J,, the sequence of isotropic—hexatic— 0.2 0.7 1.2
hexatic-herringbone transitions can be easily identified. Temperature

For example, Fig. 2 displays the simulation results for

the case of/, = 0.3. The heat-capacity data exhibit F'% 2d tTerm)erature d%ﬁ’f‘?“de”‘g szthe heat Cf‘pa‘m d(
broad hump just abov& = 1.0 which is followed oo ots), the energy difference\U//2, open circles) an

a broa P ) . helicity modulus §/2, crosses) for/; = 1.0, J, = 0.3, and

by a sharp heat-capacity anomaly neér= 0.43 (an  j, = 2.1 from a30 X 30 lattice.

order-disorder transition). The hump

represents a
defect-mediated 2DXY transition. The peak denotes

a three-state Potts transition and is chfracterized by @ion between the Kosterlitz-Thouless-type and Ising-type
heat-capacity critical exponent = 0.36 + 0.05 [15].  ansitions [7]. Our previous heat-capacity simulations
An interesting region of parameter space is encounteregioyided the same critical exponent for the hexatic—
for J, > 0.75 as the isotropic to the hexat!C-herflngbODehexatic-herringbone and isotropic—hexatic-herringbone
phase transition appears to be characterized by a singlgynsitions; however, the helicity modulus results now
anomaly [15]. D_eta|led S|r_nulat|ons yield continuous, anaple these transitions to be distinguished.

sharp heat-capacity anomalies fo75 < J, < 1.4 [15]. An independent method of locating the transition tem-
Furthermore, these sharp anomalies can+be described byyaraiure and investigating the nature of transition relies on
power law with critical exponent = 0.36 = 0.05which  ¢5\cy|ated values for the helicity modulus, an elegant con-
is in reasonably good agreement with our two-layer filmeept introduced by Fisher, Barber, and Jasnow [16]. The
results from fivenmOBC compounds. Similar behavior pejicity modulus is related to the difference in Helmholtz

has been reported in the 2D systems showing the compge energy obtained by applying periodic and twisted

boundary conditions, namely,
F(w) = F(0) = 2y(B)w?, 2

. This expression represents a twist of phase anglep-
plied along one axis of aN X N lattice. The coefficient
v(B) describes the temperatu(@ = 1/T) dependence

. of the helicity modulus and is a measure of the rigidity of

4 the system under an imposed phase twist. It is interesting
Xy to note a clever argument that relatggo the superfluid
density in liquid helium [16,17]. Thus the calculation of
v becomes an important method to characterize not only
the XY model [18—20] but also a related model [21] in

Isotropic

0.5 - XY + 3-state Potts

Temperature (units of T/J1)

FIG. 1.
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Schematic of the phase diagram obtained from simu
lation results of heat capacity [15]: transition temperature versu
Jo with J; = 1.0 andJ; = 2.1. The solid dots are determined
by the peak positions of heat-capacity anomalies. The narrow
line is determined by the relationshify, = 3J,/2 [24]. The
heavy isotropicXY transition line is assumed to be Bt= 1.0.
But as the temperature range for ti& state diminishes, it
is very difficult to separate the small heat-capacity hump fo
the XY transition from the large heat-capacity peak associate

rgz < 1.4 (with J; = 1.0, J3 = 2.1), we have performed

two dimensions.

On the basis of this definition, the difference between
the internal energy obtained under periodic boundary con-
ditions (U,,) and antiperiodidw = 7r) boundary condi-

jions (U,) yields the derivative of the helicity modulus
%16], namely,

{d[By(B))/dB}/2 = (Us) = U)/7*.  (3)

To further investigate the nature of the single heat-
capacity peak obtained in our simulations usih@s <

with the three-state Potts transition. We have therefore used Re€licity calculations on &0 X 30 lattice employing the

dashed line in this region to indicate this uncertainty.

coupledXY Hamiltonian presented as Eq. (1). The work
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has been tested in the simpéY model [17] as well 9
as in an intuitively apparent region, namely, = 1.0, (a)
J» =0.3, and J; = 2.1. The calculated internal en-
ergies obtained by applying periodic and antiperiodic
boundary conditions provide both heat capa¢ity) and ¢ .
{d[ By(B)]/dB}/2 data. The antiperiodic boundary con- >
ditions were imposed on both variablgsand ¢ along

only one of the 2D lattice axes. The results after per-
forming 500 000 Monte Carlo steps (MCS) are shown in %40 o o000

Fig. 2. Such a large number of MCS were found to be , AT
necessary to achieve reasonable statistics for the value 0.6 0.8 10 12
of {d[Bvy(B)]/dB}/2 as the values fokU,) and (U,)
generally differ by less than 1%. The heat-capacity data i .
yield the expected result [15], a defect-mediai&d tran- (b)

sition aroundT = 1 followed by an order-disorder-type s o
three-state Potts transition ne@r= 0.43. The energy god a°
difference [AU = ((U,) — (U,))/#*] provides distinct s it e *.
features associated with these two very different phase”™ oo o® .
transitions. At sufficiently high temperatures, the imposed
antiperiodic boundary condition does not change the in- . Soecees
ternal energy. Thud\U = 0 for T > 1.16. Near the
2D XY transition, both heat capacity and the difference 0 L S
in internal energy{AU) yield broad humps with maxima L0 12 14
located neafl’ = 1.07 and 0.98, respectively. The peak Temperature

position of theAU data more closely represents the e G 3. Temperature variation of the heat capacity (solid dots)

ported defect-mediated transition temperature [22]. and the energy difference&\(/ /2, open circles) for the cases of
In the vicinity of the order-disorder transition (where J, = 0.67 (a) andJ, = 0.95 (b), respectively. For the case

¢ becomes ordered), while the heat capacity displays af /> = 0.95, simulation results forAU near the transition
fairly symmetric peak, the\U data exhibit a sharp rise temperature from a significantly larger latti¢é0 X 50) are
followed by a gradual decrease upon decreasing temper?tbown as solid triangles.

ture. The sharp rise iU coincides with the heat-

capacity peak position af = 0.43. Between the two

transitions,0.46 < T < 0.6, the AU data are relatively usingJ, = 0.95 are shown in Fig. 3(b). As an impor-
constant and nonzero, reflecting the order. After tant point, theAU data remain essentially zero in the
subtracting this residual difference, we can calculate thelisordered phase and exhibit a sharp rise in the imme-
helicity modulus(y) for T < 0.6 due to the order of diate vicinity of the heat-capacity peak. No additional
¢ (see Fig. 2). As expected, near the order-disordehump can be resolved ne@r= 1.0 from either the heat-
transition,y — 0 as7 — T, andy =0 for T > T..  capacity orAU data. This strongly suggests a single
The helicity data presented in Fig. 2 could be successfullyransition from the isotropic to the hexatic-herringbone
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fit by a simple power law expressiony = yo[(T — phase. The nonzero values just above the heat-capacity
T.)/T.]"”, yielding the critical exponentr = 0.40 =  peak position appear to be due primarily to finite-size ef-
0.05 and the transition temperatufe = 0.435. fects. To confirm this hypothesis, simulations near the

Figure 3(a) displays the simulation results or heatransition region were performed on a significantly larger
capacity andAU as a function of temperature for the lattice (50 X 50). These results are included in Fig. 3(b)
caseJ; = 1.0, J, = 0.67, andJ; = 2.1. In addition to as solid triangles. The width of the nonzero region im-
the major anomalies, both the heat-capacity Add data mediately before the transition is clearly reduced for the
show broad humps arouril = 1.0. This indicates the larger lattice.
existence of two separate transitions, namely, a higher The helicity modulus calculated from th&eU data is
temperature transition in which bond-orientational ordedisplayed in Fig. 4. It is clear that finite values for the
is created from the disordered phase, followed by a lowehelicity modulus are first obtained very near the peak
temperature transition in which the herringbone ordeiposition of the heat capacity. A simple power law fitting
is also established. Similar results are obtained for théo the helicity data was found to yield = 0.82 * 0.05;
case/, = 0.75. the fit is shown in Fig. 4 as the solid line. A similar value

By increasing the coupling constaftto 0.85 and 0.95, (v = 0.81 = 0.05) has been obtained for the cage=
the broad humps disappear. The heat-capacity data dif-85. These results indicate that both bond-orientational
play a fairly symmetric anomaly. The simulation resultsand herringbone order can be simultaneously created
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