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Monte Carlo Studies of Helicity Modulus and Heat Capacity of a CoupledXY Model
in Two Dimensions
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Utilizing Monte Carlo simulation techniques, we have calculated both the helicity modulus and heat
capacity versus temperature of a coupled classicalXY model in two dimensions. Our model system
is based on a Hamiltonian first proposed by Bruinsma and Aeppli [Phys. Rev. Lett.48, 1625 (1982)].
The helicity modulus results strengthen our previous report of a new type of phase transition in which
two distinct types of order are simultaneously established through a single continuous transition.

PACS numbers: 61.30.–v, 64.60.–i, 64.70.Md
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We have recently performed simultaneous measu
ment of both the heat capacity and optical reflectivi
near the smectic-A (SmA) to hexatic-B sHexBd transition
of extremely thin free-standing 3(10)OBC liquid-crysta
films [1]. 3(10)OBC is a member of thenmOBC (n-
alkyl-40-n-alkyoxy-biphenyl-4-carboxylated homologous
series. The films are layered structures, and the l
ers are separated by roughly the length of the sam
molecules sø 25 Åd. This work has revealed the
following salient results: (1) Unlike thicker films
sN . 2d, two-layer sN ­ 2d films display only a single
heat-capacity anomaly, indicating that the two-lay
films have reached the two-dimensional (2D) limit. (2
To within the high resolution (about 2 parts in 105) of
our measurement, the optical-reflectivity data display
smooth variation through the SmA-HexB transition with
an inflection point located within 10 mK of the pea
position of the heat-capacity anomaly. No jump in th
optical reflectivity data can be resolved to within th
2 mK temperature resolution of this measurement [2
These results indicate that the liquid-hexatic transiti
in two-layer films is continuous. (3) Both heat-capaci
and optical-reflectivity data can be well described by
power law expression with heat-capacity critical expone
a ­ 0.31 6 0.03 [3]. If the liquid-hexatic transition in
two-layer 3(10)OBC films exhibits anXY -like transition
as two-dimensional melting theory suggests [4,5], the
three experimental findings clearly indicate that hexa
order may not be the only order parameter responsible
the SmA-HexB transition in 3(10)OBC. The existence
of the herringbone order in the HexB phase has recently
been demonstrated by electron diffraction studies fro
an overexposed eight-layer 3(10)OBC film [6]. Inspire
by the above experimental findings, we have conduc
computer simulations to gain further physical insight in
the nature of coupled-order systems [7] which have be
found in various physical systems.

In light of x-ray [8] and calorimetric [9] studies of
bulk samples near the SmA-HexB transition of 65OBC,
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Bruinsma and Aeppli [10] proposed a Hamiltonian to d
scribe this intriguing transition in three dimensions. Th
basic idea is the following: The bond-orientational o
der sCd can be represented by anXY order parameter
fC ­ jCj expsi6cdg [4]. Because the HexB phase ex-
hibits only short ranged positional order, they sugges
that the herringbone ordersFd could also be represente
by anXY order parameterfF ­ jFj expsi2fd [11]. To
formulate the Landau free energy which describes b
the hexatic and herringbone order, one notices that
hexatic order possesses sixfold symmetry, while rotat
a herringbone pattern by 180± leaves it unchanged. Thu
the coupling term should be invariant under the transf
mationsc ! c 1 mspy3d andf ! f 1 np, wherem
and n are integers. Bruinsma and Aeppli included su
a coupling term and considered the fluctuation-induc
corrections to mean-field behavior in three dimensio
Their results demonstrate the existence of two tricritic
points [10]. The corrections to mean-field behavior ass
ciated with the proximity of a tricritical point could po-
tentially account for the large heat-capacity critical exp
nents observed near the SmA-HexB transition. However,
while this argument is plausible, it is extremely difficult t
understand why seven differentnmOBC compounds and
five binary mixtures, with very different SmA and HexB
temperature ranges, yield such similar valuessa ­ 0.60d
[12] and appear to be equally affected by such a spe
thermodynamic point [13].

To lowest order inC andF, the simplified Hamilton-
ian on a two-dimensional lattice can be written as

H ­ 2J1

X
ki,jl

cossci 2 cjd 2 J2

X
ki,jl

cossfi 2 fjd

2 J3

X
i

cossci 2 3fid , (1)

where the coefficientsJ1 andJ2 are the nearest-neighbo
ski, jld coupling constants for the bond-orientationalsCd
and herringbone ordersFd, respectively. The coefficien
J3 determines the coupling strength between these
© 1996 The American Physical Society
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types of order at the same lattice site. We are intere
in situations in whichC and F are coupled relatively
strongly, and thereforeJ3 was always taken to be large
than both J1 and J2 sJ3 ­ 2.1d for all of the work
presented here.

Employing standard Monte Carlo techniques [14], w
have conducted detailed heat-capacity calculations
a 30 3 30 lattice for J3 ­ 2.1 J1 ­ 1.0, and various
values of J2. The schematic phase diagram obtain
previously from the peak positions of the heat-capac
anomalies is shown in Fig. 1 [15]. For sufficient
low values of J2, the sequence of isotropic–hexatic
hexatic-herringbone transitions can be easily identifi
For example, Fig. 2 displays the simulation results
the case ofJ2 ­ 0.3. The heat-capacity data exhib
a broad hump just aboveT ­ 1.0 which is followed
by a sharp heat-capacity anomaly nearT ­ 0.43 (an
order-disorder transition). The hump represents
defect-mediated 2DXY transition. The peak denote
a three-state Potts transition and is characterized b
heat-capacity critical exponenta ­ 0.36 6 0.05 [15].
An interesting region of parameter space is encounte
for J2 . 0.75 as the isotropic to the hexatic-herringbo
phase transition appears to be characterized by a si
anomaly [15]. Detailed simulations yield continuou
sharp heat-capacity anomalies for0.75 , J2 , 1.4 [15].
Furthermore, these sharp anomalies can be described
power law with critical exponenta ­ 0.36 6 0.05 which
is in reasonably good agreement with our two-layer fi
results from fivenmOBC compounds. Similar behavio
has been reported in the 2D systems showing the com

FIG. 1. Schematic of the phase diagram obtained from sim
lation results of heat capacity [15]: transition temperature ver
J2 with J1 ­ 1.0 andJ3 ­ 2.1. The solid dots are determine
by the peak positions of heat-capacity anomalies. The nar
line is determined by the relationshipTc2 ­ 3J2y2 [24]. The
heavy isotropic-XY transition line is assumed to be atT ­ 1.0.
But as the temperature range for theXY state diminishes, it
is very difficult to separate the small heat-capacity hump
the XY transition from the large heat-capacity peak associa
with the three-state Potts transition. We have therefore us
dashed line in this region to indicate this uncertainty.
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FIG. 2. Temperature dependence of the heat capacity (Cy ,
solid dots), the energy difference (DUy2, open circles) and
helicity modulus (gy2, crosses) forJ1 ­ 1.0, J2 ­ 0.3, and
J3 ­ 2.1 from a 30 3 30 lattice.

tition between the Kosterlitz-Thouless-type and Ising-ty
transitions [7]. Our previous heat-capacity simulatio
provided the same critical exponent for the hexati
hexatic-herringbone and isotropic–hexatic-herringbo
transitions; however, the helicity modulus results no
enable these transitions to be distinguished.

An independent method of locating the transition tem
perature and investigating the nature of transition relies
calculated values for the helicity modulus, an elegant co
cept introduced by Fisher, Barber, and Jasnow [16]. T
helicity modulus is related to the difference in Helmhol
free energy obtained by applying periodic and twist
boundary conditions, namely,

Fsvd 2 Fs0d ­ 2gsbdv2 , (2)

This expression represents a twist of phase anglev ap-
plied along one axis of anN 3 N lattice. The coefficient
gsbd describes the temperaturesb ­ 1yT d dependence
of the helicity modulus and is a measure of the rigidity
the system under an imposed phase twist. It is interes
to note a clever argument that relatesg to the superfluid
density in liquid helium [16,17]. Thus the calculation o
g becomes an important method to characterize not o
the XY model [18–20] but also a related model [21] i
two dimensions.

On the basis of this definition, the difference betwe
the internal energy obtained under periodic boundary c
ditions kUpl and antiperiodicsv ­ pd boundary condi-
tions kUal yields the derivative of the helicity modulus
[16], namely,

hdfbgsbdgydbjy2 ­ skUal 2 kUpldyp2 . (3)

To further investigate the nature of the single he
capacity peak obtained in our simulations using0.75 ,

J2 , 1.4 (with J1 ­ 1.0, J3 ­ 2.1), we have performed
helicity calculations on a30 3 30 lattice employing the
coupledXY Hamiltonian presented as Eq. (1). The wo
2911
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has been tested in the simpleXY model [17] as well
as in an intuitively apparent region, namely,J1 ­ 1.0,
J2 ­ 0.3, and J3 ­ 2.1. The calculated internal en
ergies obtained by applying periodic and antiperio
boundary conditions provide both heat capacitysCyd and
hdfbgsbdgydbjy2 data. The antiperiodic boundary con
ditions were imposed on both variablesc and f along
only one of the 2D lattice axes. The results after p
forming 500 000 Monte Carlo steps (MCS) are shown
Fig. 2. Such a large number of MCS were found to
necessary to achieve reasonable statistics for the va
of hdfbgsbdgydbjy2 as the values forkUpl and kUal
generally differ by less than 1%. The heat-capacity d
yield the expected result [15], a defect-mediatedXY tran-
sition aroundT ­ 1 followed by an order-disorder-typ
three-state Potts transition nearT ­ 0.43. The energy
difference fDU ­ skUal 2 kUpldyp2g provides distinct
features associated with these two very different ph
transitions. At sufficiently high temperatures, the impos
antiperiodic boundary condition does not change the
ternal energy. ThusDU ­ 0 for T . 1.16. Near the
2D XY transition, both heat capacity and the differen
in internal energysDUd yield broad humps with maxima
located nearT ­ 1.07 and 0.98, respectively. The pea
position of theDU data more closely represents the r
ported defect-mediated transition temperature [22].

In the vicinity of the order-disorder transition (whe
f becomes ordered), while the heat capacity display
fairly symmetric peak, theDU data exhibit a sharp rise
followed by a gradual decrease upon decreasing temp
ture. The sharp rise inDU coincides with the heat
capacity peak position atT ­ 0.43. Between the two
transitions,0.46 , T , 0.6, the DU data are relatively
constant and nonzero, reflecting thec order. After
subtracting this residual difference, we can calculate
helicity modulus sgd for T , 0.6 due to the order of
f (see Fig. 2). As expected, near the order-disor
transition, g ! 0 as T ! T2

c and g ­ 0 for T . Tc.
The helicity data presented in Fig. 2 could be successf
fit by a simple power law expression,g ­ g0fsT 2

TcdyTcg2n , yielding the critical exponentn ­ 0.40 6

0.05 and the transition temperatureTc ­ 0.435.
Figure 3(a) displays the simulation results or he

capacity andDU as a function of temperature for th
caseJ1 ­ 1.0, J2 ­ 0.67, and J3 ­ 2.1. In addition to
the major anomalies, both the heat-capacity andDU data
show broad humps aroundT ­ 1.0. This indicates the
existence of two separate transitions, namely, a hig
temperature transition in which bond-orientational ord
is created from the disordered phase, followed by a low
temperature transition in which the herringbone ord
is also established. Similar results are obtained for
caseJ2 ­ 0.75.

By increasing the coupling constantJ2 to 0.85 and 0.95,
the broad humps disappear. The heat-capacity data
play a fairly symmetric anomaly. The simulation resu
2912
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FIG. 3. Temperature variation of the heat capacity (solid do
and the energy difference (DUy2, open circles) for the cases o
J2 ­ 0.67 (a) and J2 ­ 0.95 (b), respectively. For the case
of J2 ­ 0.95, simulation results forDU near the transition
temperature from a significantly larger lattices50 3 50d are
shown as solid triangles.

using J2 ­ 0.95 are shown in Fig. 3(b). As an impor
tant point, theDU data remain essentially zero in th
disordered phase and exhibit a sharp rise in the imm
diate vicinity of the heat-capacity peak. No addition
hump can be resolved nearT ­ 1.0 from either the heat-
capacity orDU data. This strongly suggests a sing
transition from the isotropic to the hexatic-herringbon
phase. The nonzero values just above the heat-capa
peak position appear to be due primarily to finite-size
fects. To confirm this hypothesis, simulations near t
transition region were performed on a significantly larg
lattice s50 3 50d. These results are included in Fig. 3(b
as solid triangles. The width of the nonzero region im
mediately before the transition is clearly reduced for t
larger lattice.

The helicity modulus calculated from theDU data is
displayed in Fig. 4. It is clear that finite values for th
helicity modulus are first obtained very near the pe
position of the heat capacity. A simple power law fittin
to the helicity data was found to yieldn ­ 0.82 6 0.05;
the fit is shown in Fig. 4 as the solid line. A similar valu
sn ­ 0.81 6 0.05d has been obtained for the caseJ2 ­
0.85. These results indicate that both bond-orientation
and herringbone order can be simultaneously crea
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FIG. 4. Helicity modulus versusT . The solid line represents
the simple power law fit result.

through a single continuous transition characterized b
distinct helicity modulus critical exponent.

Previously, by employing finite-size scaling analys
to the sharp heat-capacity anomaly observed, we h
obtained the heat-capacity critical exponentsa ­ 0.36 6

0.05d which is in good agreement with the expone
sa ­ 1y3d characterizing the three-state Potts model
two dimensions [23]. However, the simple three-sta
Potts transition nearT ­ 0.43 for J2 ­ 0.3 is definitely
different from the transition observed nearT ­ 1.17 for
J2 ­ 0.95 which establishes both herringbone and hexa
order. Although the distinction is not readily appare
based on heat-capacity critical exponents, the helic
modulus critical exponents are clearly different, exhibiti
the uniqueness of this novel transition. In light of th
simulation result, analytic calculations of the Hamiltonia
[Eq. (1)] near the single phase transition region a
essential to gain further physical insight into the nature
this transition. In a two-dimensional liquid helium film
the helicity modulus is directly related to the superflu
density. Hopefully, by obtaining better physical insig
into the stacked hexatic liquid-crystal phase found
nmOBC compounds, the calculated helicity modulus w
be shown to be related to some measurable quantities

The experimental determination of another critical e
ponent associated with the SmA-HexB transition of two-
layer nmOBC films would also provide great insight int
the nature of this transition. However, to the best of o
knowledge, no such critical exponent is readily acces
ble. Even though it is a very difficult task, in light o
this simulation work, high-resolution experimental cha
acterization of the range of the herringbone order in
hexatic-B phase ofnmOBC becomes very important.

We are grateful to Professor C. Campbell, Profes
C. Dasgupta, Professor M. Schick, Professor K. Y. Sze
and Professor J. Toner for valuable discussions. T
work was supported by the National Science Coun
Taiwan, under Contract No. NSC 82-0208-M-110-07
the Supercomputer Institute, University of Minneso
and National Science Foundation, Solid State Chemis
Grant No. DMR 93-00781.
a

e

c

y

f

r
i-

e

r
,

is
,
,
,
,

*To whom correspondence should be addressed. E
tronic address: huang001@maroon.tc.umn.edu

[1] T. Stoebe, C. C. Huang, and J. W. Goodby, Phys. R
Lett. 68, 2944 (1992); T. Stoebe and C. C. Huan
(unpublished).

[2] T. Stoebe and C. C. Huang, Phys. Rev. E49, 5238 (1994).
[3] T. Stoebe, I. M. Jiang, S. N. Huang, A. J. Jin, and C.

Huang, Physica (Amsterdam)205A, 108 (1994).
[4] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett.41, 121

(1978).
[5] A. P. Young, Phys. Rev. B19, 1855 (1979).
[6] T. Stoebe, J. T. Ho, and C. C. Huang, Int. J. Thermoph

15, 1189 (1994); A. J. Jin, M. Veum, T. Stoebe, C. F
Chou, J. T. Ho, S. W. Hui, V. Surendranath, and C.
Huang, Phys. Rev. E (to be published).

[7] M. den Nijs, Phys. Rev. Lett.66, 907 (1991); E. Granato,
J. M. Kosterlitz, J. Lee, and M. P. Nightengale,ibid. 66,
1090 (1991); M. den Nijs, Phys. Rev. B46, 10 386 (1992).

[8] R. Pindak, D. E. Moncton, S. C. Davey, and J. W. Goodb
Phys. Rev. Lett.46, 1135 (1981).

[9] C. C. Huang, S. M. Viner, R. Pindak, and J. W. Goodb
Phys. Rev. Lett.46, 1289 (1981).

[10] R. Bruinsma and G. Aeppli, Phys. Rev. Lett.48, 1625
(1982).

[11] The x-ray diffraction [7] from thick 65OBC films first
reveals the existence of the herringbone order in the HeB
phase.

[12] C. C. Huang, T. Stoebe, Adv. Phys.42, 343 (1993).
[13] The tricritical point is a very special thermodynamic poin

in the T (temperature) andx (nonordering parameter)
space. Thus it is extremely unlikely to have a tricritic
line in the T -concentration space which represents t
binary mixture systems.

[14] K. Binder, in Monte Carlo Methods in Statistical Physics
edited by K. Binder (Springer, Berlin, 1979).

[15] I. M. Jiang, S. N. Huang, J. Y. Ko, T. Stoebe, A. J. Jin, an
C. C. Huang, Phys. Rev. E48, R3240 (1993).

[16] M. E. Fisher, M. N. Barber, and D. Jasnow, Phys. Rev.
8, 1111 (1973).

[17] We are conducting detailed helicity modulus simulatio
of the simple 2D XY model. The preliminary results
from a 100 3 100 lattice clearly display a jump in
helicity modulus near the Kosterlitz-Thouless transitio
temperature.

[18] J. E. Van Himbergen and S. Chakravarty, Phys. Rev.
23, 359 (1981).

[19] C. Bowen, D. L. Hunter, and N. Jan, J. Stat. Phys.69,
1097 (1992).

[20] P. Olsson and P. Minnhagen, Phys. Scr.43, 203 (1991).
[21] G. Ramirez-Santiago and J. V. Jose, Phys. Rev. B49, 9567

(1994).
[22] R. Gupta, J. DeLapp, G. G. Batrouni, G. C. Fo

C. F. Baillie, and J. Apostolakis, Phys. Rev. Lett.61, 1996
(1988).

[23] B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick
Phys. Rev. Lett.43, 737 (1979).

[24] In the three-state Potts transition, the transition tempe
ture sTcd is related to the energy difference betwee
two energy statessDEd, namely,Tc ­ DEy1.005. In our
model,DE ­ 3J2y2, thusTc ­ 3J2ys2 3 1.005d.
2913


