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Interacting Electrons in Disordered Potentials: Conductance versus Persistent Currents
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An expression for the conductance of interacting electrons in the diffusive regime as a function
of the ensemble averaged persistent current and the compressibility of the system is presented. This
expression involves only ground-state properties of the system. The different dependencies of the
conductance and persistent current on the electron-electron interaction strength becomes apparent. The
conductance and persistent current of a small system of interacting electrons are calculated numerically
and their variation with the strength of the interaction is compared. It is found that while the persistent
current is enhanced by interactions, the conductance is suppressed.

PACS numbers: 71.55.Jv, 71.27.+a, 73.20.Dx
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There has been much recent interest in the physics
interacting electrons in disordered systems [1–19]. P
of this attention is motivated by the large amplitudes
persistent currents observed in mesoscopic metallic ri
[20,21]. These values are larger by up to 2 orders
magnitude than theoretical predictions based on the sin
electron picture using the value of the mean free path
measured by transport experiments. Another motivat
has to do with the rich physics contained therein. T
metal-insulator transition can be triggered by two differe
physical mechanisms: electron-electron (e-e) interactions
(generally referred to as the Mott-Hubbard transition) a
disorder (known as the Anderson transition). Althou
much effort has been devoted to the investigation of
interplay between the two, the problem of metal-insula
transition in the presence of disorder and interactions
not yet completely settled [22,23].

Theoretically, it has been established that due toe-e
interactions the amplitude of the persistent current
zero temperature) may be enhanced compared to its n
interacting value. The precise nature of this interact
induced modification depends on the model used and
the specific domains in parameter space. For spin
electrons in one-dimensional (1D) continuum models
amplitude can reach its disorder-free value for strong
teractions [8]. On the other hand, for spinless electron
1D lattice models a negligible enhancement of the am
tude occurs and that happens only for weak interaction
the localized regime [9,12,14]. When spin is taken in
account, a sizable enhancement of the amplitude is fo
[17,18]. Large enhancements occur also for 2D and
spinless electrons in lattice models for weak and medi
ranges of interaction strengths [16,19].

Thus one may conclude that it is conceivable that s
nificant enhancement of persistent currents may resu
calculations for realistic 3D lattice models which take sp
into account. Nevertheless, there still remain several
portant questions which have not yet been fully answer
The first, and perhaps the most interesting one from a g
eral point of view, is why doese-einteraction play such an
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important role in the determination of the persistent curre
while it is believed to play no important role in determin
ing the value of the conductance. Or, to pose the quest
in another way, it is conceivable that for the models co
sidered,e-einteractions enhance also the conductance a
therefore do not explain the discrepancy between the
and experiment. Other questions are connected with
precise origin and nature of the enhancement.

In this Letter we shall concentrate on the first questio
A new expression for the calculation of the dissipativ
conductance for a system of interacting electrons is p
sented. It can be written as the derivative of the persist
current at zero flux multiplied by the compressibility o
the system. It is argued that in the diffusive regime th
derivative of the current is of the same order of magn
tude as its amplitude, (which is enhanced bye-e interac-
tion), while the compressibility is suppressed. Therefo
in the same regime of disorder and interaction strength
which the persistent current is enhanced, the conducta
might behave in quite a different way. The new formu
lation is then applied in the numerical evaluation of th
conductance for 2D spinless electrons on a lattice wh
is known to exhibit large enhancement of the persiste
current. The results are compared with the conductan
as calculated via the Kubo-Greenwood formula (suitab
adopted for interacting systems). For both methods
calculations, the conductance of the system is suppres
by the interactions, thus supporting the suggestion thate-e
interactions might explain the discrepancy between the
and experiment.

As the starting point we shall use the Akkerman
Montambaux [24] definition of the conductance which
based on the response of a system to a change in
boundary condition

gdsmd ­ 2
1
4

≠2

≠F2 kdN2sm, FdlF­0 , (1)

where the boundary condition on the wave function
the system is given bycsx1, y1, z1; . . . ; xj , yj , zj; . . .d ­
csx1, y1, z1; . . . ; xj 1 L, yj, zj; . . .deiF . This form of
© 1996 The American Physical Society 291
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boundary condition is similar to the one arising in a rin
encompassing a magnetic fluxf. In that caseF ­
2pfyf0, wheref0 is the quantum flux unit.Nsm, Fd
is the number of particles for a given realization of th
disorder, with specific values of the chemical potentialm

andF. HerekdN2sm, Fdl ­ kN2sm, Fdl 2 kNsm, Fdl2,
andk· · ·l represents an average over disorder realizatio
Since this expression describes the conductance a
fixed chemical potential, it is especially appropriate for
system coupled with the external world, for example,
leads. It is applicable in the metallic regime in which th
usual diagrammatic expansion is valid. In the mesosco
regime, it is the case for which the level broadeningg is
larger than the averaged single-particle level spacingD

[25], which is compatible with the experimental situatio
Thus, one must be careful in applying expression (1)
the deep quantum limit in which the level broadening
smaller than the level separation (see Ref. [26]). T
above definition remains valid also for interacting par
cles described by a Fermi liquid picture. A connecti
between the relation (1) for the conductance and
Thouless formulagc ­ kj≠2Eny≠F2jlF­0yD (where En

is the energy of a single electron level in the vicinity
the Fermi energy) in the absence ofe-e interaction was
established analytically [24]. From numerical studi
[26] it seems thatgd ~ gc holds (for varying disorder
strength) even in the deep quantum limit although t
proportionality factor changes.

We would like to expressgd in terms of the persisten
current. Altshuler, Gefen, and Imry [27] have show
that the fluctuations in the number of particles in t
grand canonical ensemble is connected to the disorde
averaged persistent current in the canonical ensemble
an average over different realizations of disorder with
fixed number of electronsN0) in the following way [28]:

kIsFdlN0 ­
p

f0

∑ø
≠N
≠m

¿21 ≠

≠F
kdN2sm, Fdl

∏
m­kml

, (2)

wherek≠Ny≠ml is the averaged compressibility andkml is
the averaged chemical potential for whichNsm ­ kmld ­
N0. This connection is general and valid for interactin
systems as well.

Combining Eqs. (1) and (2) one obtains

gdsmd ­
f0

4p

ø
≠N
≠m

¿
m­kml

≠

≠F
kIsFdlN0,F­0 . (3)

Thus, in the metallic regime where the usual diagra
matic expansion is valid (g * D) one can relate the
derivative of the averaged persistent current at zero fl
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for a canonical ensemble to the dissipative conductanc
a given chemical potential. This connection remains va
also for interacting systems under the previously me
tioned restrictions. Expression (3) is extremely useful f
numerical calculations of the dissipative conductance
zero temperature for such systems since it involves o
the ground-state properties (energy and compressibil
of a system with fixed number of particles.

The definition [Eq. (3)] agrees with our physical con
cept of the conductance especially for systems in inter
tion. As pointed out by Lee [29], the conductivity for th
interacting case can be written ass ­ s≠Ny≠mdDyLd ,
(whereD is the diffusion constant andd is the dimension-
ality of the system) which is simply the Einstein relatio
Thus the conductance isg ­ Ld22s ­ s≠Ny≠mdDyL2,
which is exactly the content of Eq. (3). This is ea
ily verified in the noninteracting limit where the deriva
tive of the averaged persistent current was calcula
by Altshuler, Gefen, and Imry [27], and was shown
bef0k≠IsFdy≠FlN0 ,F­0 ­ sDyL2dDyg. Forg ­ D the
continuous spectrum conductance is recovered, and
g . D the Drude formula for conductance with inela
tic scattering is obtained.

It is also possible to directly connectgd to the am-
plitude of the persistent current for the interacting ca
In the diffusive regime, the average persistent curre
is determined by the first few harmonics of the cu
rent [2,27,30]. The situation changes in the presen
of interactions where it was shown analytically that th
first harmonic describes very well the current for an
value of the flux [1]. Later on it has also been co
firmed numerically [8,16]. Thus, for interacting elec
trons kIsFdlN0 , kIsF ­ py2dlN0 sinsFd, which results
in k≠IsFdy≠FlN0 ,F­0 , kIsF ­ py2dlN0 . Inserting this
relation into Eq. (3) one obtainsgd , sk≠Ny≠mld kIsF ­
py2dlN0 . Therefore, the conductance is proportional
the persistent current multiplied by the compressibilit
This implies that strong correlations might influence pe
sistent currents and conductance in an opposite w
While persistent currents are enhanced bye-einteractions,
the conductance which is the persistent current multipl
by the compressibility (a decreasing function of intera
tion) might be suppressed at higher values of interactio

We shall now illustrate our arguments by calculating t
conductance for a system of interacting electrons on a
cylinder of circumferenceLx and heightLy. In this model
large enhancement of the persistent current in the diffus
regime has been found [16]. The model Hamiltonian
given by
n

H ­
X
k,j

ek,ja
y
k,jak,j 2 V

X
k,j

fexpsiFsyLxday
k,j11ak,j 1 H.c.g 2 V

X
k,j

say
k11,jak,j 1 H.c.d 1 ´c

X
k,j.l,p

a
y
k,jak,ja

y
l,pal,p

j$rk,j 2 $rl,pjys
,

(4)

where ay
k,j is the fermionic creation operator,ek,j is the energy of a site (k, j), which is chosen randomly betwee

2Wy2 andWy2 with uniform probability,V is a constant hopping matrix element, ands is the lattice constant. The
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interaction term represents a Coulomb interaction betw
electrons confined to a 2D cylinder embedded in a
space with́ c ­ e2ys.

Let us start by presenting numerical results forgd. Since
we are concerned with an exact diagonalization of
Hamiltonian for interacting electrons, the size of the sy
tem is naturally limited. We consider a4 3 4 lattice
with m ­ 16 sites which in the half-filled case (N0 ­
8) corresponds to a12 870 3 12 870 matrix. As previ-
ously mentioned, the main interest lies in the diffusi
regime. Therefore we must chose the disorder stren
W accordingly, i.e.,j . Lx , Ly ¿ ,, wherej is the lo-
calization length and, is the mean free path. We tak
W ­ 8V for which j ­ 8.4s (estimated using the partici
pation ratio) and, ­ 0.97s (estimated from the Thoules
conductancegc). We also checked that the single-electr
level spacing distribution is close to the Gaussian ensem
prediction, thus confirming that the system is in the met
lic regime [31].

For systems with interacting electrons it is not pos
ble to calculate directly the Thouless conductance, si
the single electron energy levels are not defined. On
other hand, the basic ingredients needed for the calc
tion of gd are easily available once the ground-state e
ergy of the many-particle system as a function of fl
is obtained by diagonalizing the Hamiltonian (4). Th
persistent current can be calculated via the well-kno
relationkIsFdlN0 ­ 2s2pyf0d k≠EsFdg.s.,N0y≠Fl [where
EsFdg.s.,N0 is the ground-state energy of an interactin
system of N0 particles] and k≠my≠Nl ­ kEg.s.,N011 2

2Eg.s.,N0 1 Eg.s.,N021l. Thus, once the ground-state ene
gies for systems withN0 6 1 particles are known, the
conductancegd can be immediately calculated.

The derivative of the persistent current at zero fl
for N0 ­ 8 averaged over 4500 realizations is presen
in Fig. 1. It can be seen that an enhancement of
derivative as function of the interaction strength´c is
obtained. This is similar to the enhancement of the curr
at F ­ py2 shown in the inset. Thus our assumptio
k≠IsFdy≠FlN0,F­0 , kIsF ­ py2dlN0 is validated.

The inverse of the compressibility atN0 ­ 8 averaged
over 500 samples is shown in the inset of Fig. 2. It can
seen that, foŕ c . 2V , k≠my≠Nl , ´

4y3
c . The dissipative

conductance is presented in Fig. 2. For small values of´c,
gd shows a substantial decrease since the derivative of
current is only weakly enhanced and the main influen
on the conductance comes from the compressibility.
larger values of interactions (´c . 2V ), the enhancemen
of the current is compensated by the compressibility a
the conductance slowly decreases. Thus, for all value
´c the conductance is not enhanced by the interactio
This strongly points towarde-e interactions as a possibl
explanation for the large amplitudes of persistent curr
measured in experiments [20,21].

A useful check of our formalism is to compare th
values ofgd to the values obtained from a many-partic
formulation of the Kubo-Greenwood conductancegk for
en
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FIG. 1. The derivative of the averaged persistent current
zero flux for a fixed number of particles as a function o
the interaction strength (in units ofV ). The derivatives were
averaged over4500 realizations. In the inset the average
persistent current at a given flux for the same system
presented.

the same system. Following Kohn [32,33] the real part
the conductance may be written asgk ­ s8phyL2e2d 3P0

a jkajJx j0lj2´a,0gs´2
a,0 1 g2d22, where j0l is the

many-particle ground state,Jx is the current operator, and
´a,0 ­ ´a 2 ´0. This is a very cumbersome calculatio
since it involves calculating the many-particle low-lying
eigenvalues and eigenvectors for each realization of dis
der. We chose the inelastic broadening to be of the sa
order as the single-electron level separation, i.e.,g ­
0.7V . The results forgk averaged over 180 realizations
are plotted in the inset of Fig. 3. As in the relationship b
tweengc andgd [24,26],gk is an order of magnitude larger
thangd. gk seems to followgd for ´c . 2V (for which

FIG. 2. The dissipative conductancegd as a function of the
interaction strength. In the inset the inverse of the averag
compressibility as a function of the interaction strength for th
same system is presented.
293
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FIG. 3. The correspondence between the Kubo conducta
gk and the dissipative conductancegd . For strong interactions
(´c . 2V ,gd , 0.015) a good fit with a linear relationgk ­
13.9gd 1 0.04 is obtained. In the insetgk as a function of the
interaction strength is presented.

the excitation separation is much bigger thang), while
there is no sharp decrease for small values of interactio
This may be clearly seen in Fig. 3 wheregk is plotted
as a function ofgd . For ´c . 2V a clear linear relation
gk ­ 13.9gd 1 0.04 is obtained, which can be compare
to the noninteracting relationgk ­ 8.9gd 1 0.04. For
´c , 2V gk is almost constant whilegd decreases. This
might be connected to the transition of the statistic
properties of the many-particle energy levels for we
interactions [34] and to the influence of interactions
the inelastic broadeningg currently under investigation
Nevertheless, in both methods of calculation the cond
tance never increases as function of interaction strengt

In conclusion, we have presented a new method for c
culating the conductance of an interacting electronic s
tem in the presence of static disorder. This formulati
clarifies the difference in the interaction dependence
tween the persistent current and the conductance. S
the compressibility decreases as a function of thee-e in-
teraction, the conductance is always less enhanced
probably suppressed) compared with the persistent curr
Thus,e-einteractions are a probable candidate for expla
ing the discrepancy between theory and experiment. T
method has also the advantage of being dependent onl
ground-state energies of neighboring systems, which
much easier to calculate numerically than the full spe
trum of eigenvalues and eigenvectors.

We are grateful to E. Akkermans, Y. Gefen, an
G. Montambaux for useful discussions. R. B. would lik
to thank the Alon Foundation and the U.S.-Israel Bin
tional Science Foundation for financial support. Y.
thanks the Israeli Academy of Science and Humanities
financial support.
294
ce

s.

l
k

-
.
l-
-

-
ce

or
nt.
-
is
on
re
-

-

r

*Also at Department of Physics, Ben-Gurion University
Beer-Sheva, Israel.

[1] V. Ambegaokar and U. Eckern, Phys. Rev. Lett.65, 381
(1990).

[2] A. Schmid, Phys. Rev. Lett.66, 80 (1991).
[3] F. von Oppen and E. K. Riedel, Phys. Rev. Lett.66, 84

(1991).
[4] U. Eckern and A. Schmid, Europhys. Lett.18, 457 (1992).
[5] D. Loss, Phys. Rev. Lett.69, 343 (1992).
[6] R. A. Smith and V. Ambegaokar, Europhys. Lett.20, 161

(1992).
[7] F. V. Kusmartsev, Phys. Lett. A161, 433 (1992).
[8] A. Muller-Groeling, H. A. Weidenmuller, and C. H.

Lewenkopf, Europhys. Lett.22, 193 (1993); H. A. Wei-
denmuller, Physica (Amsterdam)200A, 104 (1993);
A. Muller-Groeling and H. A. Weidenmuller, Phys. Rev
B 49, 4752 (1994).

[9] M. Abraham and R. Berkovits, Phys. Rev. Lett.70, 1509
(1993); Physica (Amsterdam)200A, 519 (1993).

[10] P. Kopietz, Phys. Rev. Lett.70, 3123 (1993).
[11] N. Argaman and Y. Imry, Phys. Scr.49A, 333 (1993).
[12] G. Bouzerar, D. Poilblanc, and G. Montambaux, Phy

Rev. B49, 8258 (1994).
[13] D. L. Shepelyansky, Phys. Rev. Lett.73, 2607 (1994).
[14] H. Kato and Y. Yoshioka, Phys. Rev. B50, 4943 (1994).
[15] G. Vignale, Phys. Rev. B50, 7668 (1994).
[16] R. Berkovits and Y. Avishai, Europhys. Lett.29, 475

(1995).
[17] T. Giamarchi and B. Shastry, Phys. Rev. B51, 10 915

(1995).
[18] M. Ramin, B. Reulet, and H. Bouchiat, Phys. Rev. B51,

5582 (1995).
[19] G. Bouzerar and D. Poilblanc (to be published).
[20] L. P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phy

Rev. Lett.64, 2074 (1990).
[21] V. Chandrasekhar, R. A. Webb, M. J. Brady, M. B

Ketchen, W. J. Galager, and A. Kleinsasser, Phys. Re
Lett. 67, 3578 (1991).

[22] For a recent review, see D. Belitz and T. R. Kirkpatrik
Rev. Mod. Phys.66, 261 (1994).

[23] S.-R. Eric Yang, A. H. MacDonald, and B. Huckestein
Phys. Rev. Lett.74, 3229 (1995).

[24] E. Akkermans and G. Montambaux, Phys. Rev. Lett.68,
642 (1992).

[25] A. Kamenev, B. Reulet, H. Bouchiat, and Y. Gefen
Europhys. Lett.28, 391 (1994).

[26] D. Braun and G. Montambaux, Phys. Rev. B50, 7776
(1994).

[27] B. L. Altshuler, Y. Gefen, and Y. Imry, Phys. Rev. Lett
66, 88 (1991).

[28] The correct sign, pointed out in Ref. [8], was taken.
[29] P. A. Lee, Phys. Rev. B26, 5882 (1982).
[30] H. Bouchiat and G. Montambaux, and D. Sigeti, Phy

Rev. B44, 1682 (1991).
[31] B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianide

and H. B. Shore, Phys. Rev. B47, 11 487 (1993).
[32] W. Kohn, Phys. Rev. A133, 171 (1964).
[33] N. Trivedi and D. A. Browne, Phys. Rev. B38, 9581

(1988).
[34] R. Berkovits, Europhys. Lett.25, 681 (1994); R. Berkovits

and Y. Avishai (to be published).


