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Impossibility of Measuring the Wave Function of a Single Quantum System
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The general impossibility of determining the state of a single quantum system is proved for ar
measuring schemes, including a succession of measurements. Some recently proposed met
critically examined. A scheme for tomographic measurements on a single copy of a radiation fi
devised, showing that the system state is perturbed however weak the system-apparatus intera
due to the need of preparing the apparatus in a highly “squeezed” state.
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Recently, the possibility of determining the wave fun
tion of a single quantum system has been debated
several authors [1–5], exploring concrete measurem
schemes based on vanishingly weak quantum nondem
tion measurements [1], weak measurements on “protec
states [2], “logically reversible” [3], and “physically re
versible” [4,5] measurements. In each of these schem
the conclusion is that it is practically impossible to measu
the wave function of a single system, either because
weakness of the measuring interaction prevents one f
gaining information on the wave function [1] or becau
the method of protecting the state [2] actually requir
somea priori knowledge on the state (this is suggest
in Refs. [5] and [1]), or because quantum measureme
can be physically reverted only with a probability of su
cess equal to 1y2 [5].

In this Letter, we will show the impossibility of any
measurement scheme for determining the wave func
from a single copy of the system. Despite its fundamen
relevance in the logical framework of quantum mechani
it seems that the impossibility of measuring a single-syst
wave function has never been proved in general. On
basis of a simple argument—the “cloning machine”—w
will prove that such a possibility would contradict th
most basic assumption of quantum mechanics, nam
unitarity. Moreover, we demonstrate that any seque
of measurements on the same system cannot yield m
information on its state than just an appropriately chos
single measurement, and we show explicitly how bo
the “state protection” and the “reversible measuremen
methods fall under such general consideration. These
first parts together cover all possible transformations
quantum physics. In order to gain physical insight
why vanishingly weak repeated measurements canno
successful, we consider the case of “quantum homod
tomography” [6,7], which recently has been shown
be a genuine measurement of the density matrix of
radiation field [8]; in this case the field is prepared
the same state at each measurement, in agreement
the usual statistical meaning of the quantum state ba
on an ensemble of identical systems. From Ref. [9]
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learned that a minimum nonvanishing quantum efficien
of the detectorhp ­

1
2 is needed for measuring the densi

matrix. Here, we show that the existence of a lower bou
hp is of fundamental relevance, because it prevents
from measuring the state of a single system. In fact, wh
a repeatable homodyne scheme is devised, its effec
quantum efficiency vanishes for a weak system-appara
interaction. Thus, in order to overcome low quantu
efficiency, the apparatus must be prepared in a hig
squeezed state which, by itself, amplifies the backactio
a finite extent. Hence, however weak the system-appar
interaction is, on average the system is always pertur
by a finite amount, or else no information is gained.

The “cloning machine” argument.—A quantum
cloning machine [10,11] is a device that is capable
producing n . 1 copies of a generic statejcl from a
given set of possible states which may be the wh
space. It has to be represented by a state transforma
of the general form

jyl ≠ jcl ≠ jv1l ≠ · · · ≠ jvn21l

! jy0scdl ≠ jcl ≠ · · · jcl| {z }
n times

, (1)

where both the transformation and the state prepara
must be independent ofjcl—which a priori is unknown.
In Eq. (1) jv1l ≠ · · · ≠ jvn21l denotes the state prepara
tion of the modes that support clones, whereasjyl is the
initial state of sufficiently many other modes—includin
the apparatus and the environment—so that the tra
formation (1) can be taken unitary. All states are su
posedly normalized. For simplicity, a pure state for t
environment has been used: the argument can be e
extended to a mixed state. We now show that if t
system is knowna priori to be in any one of two known
nonorthogonal states, then the possibility of exactly d
termining merely which one of the two states alrea
violates unitarity. Consider the cloning of two nono
thogonal states—sayjcl and jwl, with 0 , jkcjwlj , 1:
the transformation (1) must preserve the scalar produc
order to be unitary. Taking the scalar product of the tw
© 1996 The American Physical Society
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states on the left-hand side of Eq. (1) forjcl andjwl, and
equating the result to the scalar product of the two c
responding states on the right, we obtain the contra
tory identity ky0scdjy0swdl kcjwln21 ­ 1, which would
require jky0scdjy0swdlj . 1 for n . 1. Hence,reductio
ab absurdum,the transformation (1) cannot be unitar
(The same conclusion follows for antiunitary transfo
mations.) Thus one cannot clone the state of a sys
known to be inany oneof two nonorthogonal states
say,jcl and jwl, using a single state-independent unita
transformation. Let us now suppose that there is a
vice that is capable of determining (by a unitary proce
in which of these two states the system is. Then, o
the state is known, one can easily choose unitary trans
mations that generate ann clone of jcl or jwl, depend-
ing on the two possible results of this device. Hen
such a “state detector” would lead to a realization of
cloning machine. In this way it is proven that the possib
ity of distinguishing two nonorthogonal states contradi
the unitarity of quantum mechanical transformations.

Repeated versus single measurements.—Using an ap-
paratus that interacts very weakly with the system, o
could devise measurement schemes involving repe
measurements, which, on first sight, seem to allow o
to retrieve more information on the quantum state o
single system than that obtained by a single measurem
In fact, they turn out not to, often for rather subtle re
sons. Examples were given in [1,2,5], and we shall la
give another one. Here we will show that no success
of repeated measurements performed on a single sy
can retrieve more information than an appropriately c
sen single measurement whose output state is indepen
of the input one. Incidentally, this also shows that the s
gle measurement formulation in quantum detection the
[12] entails no loss of generality.

In order to have an output state that depends on the s
before the measurement, the measurement scheme
involve a probe that interacts with the system and la
is “measured” to yield information on the original sta
of the system [13]. Thisindirect measurement schem
is completely specified once the following ingredients a
given: (i) the unitary operator̂U that describes the system
probe interaction, (ii) the statejwl of the probe before the
interaction, and (iii) the observablêX which is measured
on the probe. At the end of the system-probe interact
it is possible to consider another measurement on
system, say the measurement of an observableŶ (for the
sake of notation we takêX andŶ both having continuous
spectrum, with eigenvectorsjxl and j yl, respectively).
The conditional probability densityps yjxd of getting a
result y from the second measurement given the res
of the first one beingx can again be written in term
of the Born’s ruleps yjxddy ­ k yj%̂x jyl upon defining a
“reduced state”̂%x as follows:

%̂x ­
V̂sxd%̂V̂ysxd

Trf%̂V̂ysxdV̂sxdg
, (2)
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where the system operatorV̂sxd is given by

V̂sxd ­ kxjÛjwl , (3)

and

dm̂sxd ­ V̂ysxdV̂sxd dx (4)

is a “probability operator-valued measure” (POM) [13].
provides the Born’s rule for the measurement in the fo

psxd dx ­ Trf%̂dm̂sxdg . (5)

Equation (5) is also the most general form of the Bor
rule for any kind of measurement, withdm̂sxd a POM
not necessarily given in the form (4). In the prese
situation, the most general representation of a quan
measurement—the so-called “instrument” map [13]
reduces to

%̂ ! dIsxd%̂ 8 V̂sxd%̂V̂ysxd dx , (6)

which provides both Born’s rulepsxd dx ­ TrfdIsxd%̂ g
and the state reduction̂% ! %̂x ­ dIsxd%̂yTrfdIsxd%̂ g.
A sequence ofN indirect measurements is described
the composition of their respective instruments, cor
sponding to the operator̂VsNdsxd ­ V̂N sxN d · · · V̂2sx2d 3

V̂1sx1d, with x ­ sx1, x2, . . . , xnd and the setup
hÛn, jwnl, X̂nj generally different at every measurin
step. Now we show that the same POMdm̂sxd ­
fV̂sNdsxdgyV̂sNdsxddnx can be achieved by a single me
surement whose output state is independent of the in
one. Indeed, according to Naimark’s theorem [12] a
POM dm̂sxd on the Hilbert spaceH can be achieved by
a measurement of self-adjoint commuting operators ac
on a suitably extended Hilbert spaceH ≠ HP . One has
dm̂sxd ­ TrPf1̂ ≠ jFl kFj jxl kxjg, with TrP denoting the
partial trace over the (probe) Hilbert spaceHP , jxl being
simultaneous eigenvectors of the commuting observab
and jFl a suitable probe preparation. This POM can
achieved, for example, by the instrumentdIsxd%̂ ­
TrPfjlxl kxj%̂ ≠ jFl kFj jxl klxjg where jlxl is any fam-
ily of normalized vectors inH ≠ HP . For such an
instrument the state after the measurement is%̂x ­
TrPfjlxl klxjg, which is independent of the state befo
the measurement. Thus we conclude that any succes
of repeated measurements performed on a single sy
gives exactly the same probability distribution of a
appropriately chosen single measurement with the ou
state independent of the input one.

Regarding the possibility of “reversible” measur
ments [3–5] note that the measurement can be reve
with probability one for any (a priori unknown) state
%̂ only if the operatorV̂sxd in Eq. (3) is unitary, and
this can only be achieved by an interaction Hamilton
ĤI ­ fsÔP , ÔS, Ô0

S, . . .d which is a function of a single
2833
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probe operator̂OP (and of any number of system oper
tors) with eitherjxl or jcl in Eq. (3) an eigenvector of̂OP .
In this case, however, the POM (4) is trivially a multip
of the identity, and the probability distribution does n
depend on the state and thus is no measurement a
Regarding the “protective measurements” in Ref. [2], th
are achieved by Hamiltonians of the form̂H0 1 kP̂ÔS in
the limit of k vanishingly small compared to the streng
of the “protecting” free HamiltonianĤ0, and with the
probe operator̂P conjugate to the measured operatorX̂.
Then, it is easy to show that for interaction timet one
has V̂sxd ­ exps2iĤ0tyh̄d fwsxd 2 k≠xwsxd

Rt
0 dt 3

ÔSstdg 1 O sk2d, with wsxd ­ kxjwl: Hence, in the limit
k ! 0 the operatorV̂sxd leaves invariant only the eigen
states ofĤ0, which, however, constitute an orthogon
set. Note that the possibility of distinguishing amongor-
thogonalstates is not ruled out by the “cloning machin
argument: In fact, it is possible to duplicate a state kno
a priori to beany oneof a known orthogonal set [14].

Quantum tomography on a single system.—Optical
homodyne tomography [6] is a method for determini
the matrix elementskcj%̂ jc 0l of the density operator̂%
of the electromagnetic field between vectorsjcl and
jc 0l, preparing the field again in the same state at e
measurement. For a single mode field with annihila
operatora the matrix elements are obtained by maki
repeated measurements of the quadrature operatorsâf ­
1
2 sayeif 1 ae2ifd at different phasesf. Before analyz-
ing a repeatable measurement scheme for a single sys
let us briefly recall the basics of the method [9].

The density operator is connected to the probabilit
psx, fd of the outcomes of the quadraturesâf according
to the identity [9]

%̂ ­
Z p

0

df

p

Z 1`

2`
dx psx, fdKhsx 2 âfd , (7)

where the kernelKhsxd given by

Khsxd ­
1
2

Re
Z 1`

0
dr r exp

µ
1 2 h

8h
r2 1 irx

∂
(8)

depends parametrically on the detector quantum efficie
h. In a real experiment, according to Eq. (7) the de
sity matrix elementskcj%̂ jc 0l are measured by averagin
the kernelskcjKhsx 2 âfdjc 0l over the experimental dat
sx, fd, provided thatkcjKhsx 2 âfdjc 0l are bounded as
a function ofx andf. As shown in Ref. [9] the matrix el-
ementskcjKhsx 2 âfdjc 0l can be bounded although th
kernel Khsxd is an unbounded function (not even a tem
pered distribution). For example, for the number repres
tation (jcl and jc 0l number states) the kernel matrix el
ments are bounded whenh .

1
2 . More generally, for any

representation there is a lower boundhp above which the
density matrix can be obtained, and, at minimumhp ­

1
2 .

Hence, in order to measure the density matrix by hom
dyne tomography, one needs a sizable quantum efficie
h . hp.
2834
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The above tomographic scheme requires preparatio
the field in the same state at every measurement, bec
the radiation is completely absorbed by the detec
Now we devise an indirect scheme that allows repea
measurement on the same physical field. It goes
measuring the quadraturêaf through the quadraturêbf

of another “probe” modeb interacting witha. Without
loss of generality, we consider that before every sin
measurement the probe is prepared in a pure statejysfdl,
which we have the freedom to choose as a function off.
The generating function of the moments ofb̂f after the
interaction witha is given by

Xsl, fd ­ Trfeilb̂f Û%̂ ≠ jysfdl kysfdjÛyg , (9)

and is just the Fourier transform of the probability dist
bution of the experimental outcomes. We consider the
teraction [15]Û ­ expfksaby 2 aybdg, which describes
the field transformation at a beam splitter

ÛybÛ ­ sinka 1 coskb ; ´1y2a 1 s1 2 ´d1y2b ,
(10)

where ´ is the mirror transmissivity, andb is the anni-
hilation operator of the field mode of the unused port
the same frequency ofa. Thus the present scheme co
responds physically to letting the field modea shine over
a chain of many low-transmissivity mirrors and detect t
quadrature of the weak transmitted field at each mirr
From the linearity of Eq. (10), the generating functio
Xsl, fd factorizes into the product of the generating fun
tions pertaining to modesa or b separatelysssxasl, fd ­
Trfexpsilâfd%̂g and similarlyxbsl, fdddd, namely,

Xsl, fd ­ xas´1y2l, fdxbssss1 2 ´d1y2l, fddd . (11)

Using Eq. (11), by the same methods of Refs. [8,9] it
easy to obtain the identity

%̂ ­
Z p

0

df

p

Z 1`

2`

dx p´sx, fdJ´sx 2 âfd , (12)

wherep´sx, fd is the probability of the measured quadr
ture b̂f rescaled bý 1y2 (as in customary homodyning
where the output photocurrent is rescaled by the quan
efficiency)

p´sx, fd ­ ´1y2
Z 1`

2`

dl

2p
e2il´1y2xXusl, fd , (13)

and the kernelJ´sxd is given by

J´sxd ­
1
2

Re
Z 1`

0
dl leilxfxbsssl

q
s1 2 ´dy´ , fdddg21,

(14)

and generally depends on the coupling parameter´ and
on the probe statejysfdl. One can easily see that whe
the probe modeb is in the vacuum state the kernel (14
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is identical toKhsxd in Eq. (8) with ´ ; h, namely, the
transmissivity´ plays the role of the overall quantum
efficiency of the indirect measurement. However,
noticed in Ref. [16], the effective quantum efficiency c
be increased at will by squeezing the probe modeb in the
direction of the quadraturêbf. More precisely, the probe
is prepared in the squeezed vacuum

jysfdl ; Ŝfj0l, Ŝf ­ exp

µ
2

r
2

e2ifby2 2 H.c.

∂
,

(15)

wherer . 0 denotes the squeezing parameter. One h

Ŝfb̂fŜ
y
f ­ erb̂f, Ŝ

y
fjxlf ­ ery2jerxlf , (16)

with jxlf ; eibybfjxl0 denoting the eigenvector ofb̂f for
eigenvaluex. With the help of transformations (15) an
(16) it is easy to check that the kernelJ´sxd in Eq. (14)
coincides withKhsxd in Eq. (8) with an effective quantum
efficiency

h ;
e2r´

e2r ´ 1 1 2 ´
. (17)

Therefore, by increasing the squeezing parameterr it is
possible to enhance the effective quantum efficiencyh

beyond the boundhp. At this point it may appear tha
by squeezing the vacuum ofb one can consider weake
and weaker interactionś ! 0, with the possibility of
performing repeated measurements on the same sys
and, at the same time, with vanishing perturbation at e
measurement. However, as we will see immediately,
is not the case, because the squeezing needed to
h constant amplifies the perturbation back to a fin
extent. To demonstrate this, we need to analyze
´ ! 0 limiting behavior of the operator in Eq. (3)

V̂sx, fd ­ ´
1y4
f k´1y2xjŜfeksar by2a

y
r bdj0l , (18)

where ar ­ coshra 1 e2if sinhray, the powers of ´

account for the quadrature rescaling in Eq. (13), and
should keep in mind that the matrix element is evalua
between vectors of the Hilbert space of modeb only.
The explicit form of the operator̂Vsx, fd in Eq. (18) can
be evaluated using Eq. (16), and ordering the interac
operator normally with respect tob. After some algebra
one obtains

V̂sx, fd ­

µ
2e2r´

p

∂1y4

expf2se2r´x 2 e2if tankar d2g

3 exp

µ
1
2

e22if tan2 ka2
r

∂
j coskja

y
r ar , (19)

which, in the limit of vanishing transmission coefficie
´ ! 0 and infinite squeezing parameterr ! ` at con-
s

s

m,
ch
is
eep
e
e

e
d

n

stant quantum efficiencyh in Eq. (17), has the asymptoti
form

V̂sx, fd ­

∑
2h

ps1 2 hd

∏1y4

exp

∑
2

h

1 2 h
sx 2 âfd2

∏
.

(20)

Equation (20) is the typical form of a von Neuman
“reduction” of the state (state projection forh ! 1).
Therefore, we conclude that although the interaction
been taken vanishingly small, the state is in fact “reduce
at each measuring step.
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