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Impossibility of Measuring the Wave Function of a Single Quantum System
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The general impossibility of determining the state of a single quantum system is proved for arbitrary
measuring schemes, including a succession of measurements. Some recently proposed methods are
critically examined. A scheme for tomographic measurements on a single copy of a radiation field is
devised, showing that the system state is perturbed however weak the system-apparatus interaction is,
due to the need of preparing the apparatus in a highly “squeezed” state.
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Recently, the possibility of determining the wave func-learned that a minimum nonvanishing quantum efficiency
tion of a single quantum system has been debated hyfthe detectom. = %is needed for measuring the density
several authors [1-5], exploring concrete measuremenhatrix. Here, we show that the existence of a lower bound
schemes based on vanishingly weak quantum nondemoli;, is of fundamental relevance, because it prevents one
tion measurements [1], weak measurements on “protectediom measuring the state of a single system. In fact, when
states [2], “logically reversible” [3], and “physically re- a repeatable homodyne scheme is devised, its effective
versible” [4,5] measurements. In each of these schemeaguantum efficiency vanishes for a weak system-apparatus
the conclusion s that it is practically impossible to measurénteraction. Thus, in order to overcome low quantum
the wave function of a single system, either because thefficiency, the apparatus must be prepared in a highly
weakness of the measuring interaction prevents one frorqueezed state which, by itself, amplifies the backaction to
gaining information on the wave function [1] or becausea finite extent. Hence, however weak the system-apparatus
the method of protecting the state [2] actually requiresinteraction is, on average the system is always perturbed
somea priori knowledge on the state (this is suggestedpy a finite amount, or else no information is gained.
in Refs. [5] and [1]), or because quantum measurements The “cloning machine” argument—A quantum
can be physically reverted only with a probability of suc-cloning machine [10,11] is a device that is capable of
cess equal to 2 [5]. producingn > 1 copies of a generic state/) from a

In this Letter, we will show the impossibility of any given set of possible states which may be the whole
measurement scheme for determining the wave functiogpace. It has to be represented by a state transformation
from a single copy of the system. Despite its fundamentabf the general form
relevance in the logical framework of quantum mechanics
it seems that the impossibility of measuring asingle—systen%v> ® ) @ lw) @ & |w,-1)

wave function has never been proved in general. On the — @) e e |y, Q)
basis of a simple argument—the “cloning machine"—we —
will prove that such a possibility would contradict the n times

most basic assumption of quantum mechanics, namelyyhere both the transformation and the state preparation
unitarity. Moreover, we demonstrate that any sequencenust be independent ¢fs)—which a priori is unknown.

of measurements on the same system cannot yield mota Eq. (1)|w;) ® --- ® |w,—) denotes the state prepara-
information on its state than just an appropriately chosetion of the modes that support clones, wherkgsis the
single measurement, and we show explicitty how bothnitial state of sufficiently many other modes—including
the “state protection” and the “reversible measurementsthe apparatus and the environment—so that the trans-
methods fall under such general consideration. These twimrmation (1) can be taken unitary. All states are sup-
first parts together cover all possible transformations irposedly normalized. For simplicity, a pure state for the
quantum physics. In order to gain physical insight onenvironment has been used: the argument can be easily
why vanishingly weak repeated measurements cannot lextended to a mixed state. We now show that if the
successful, we consider the case of “quantum homodyngystem is knowra priori to be in any one of two known
tomography” [6,7], which recently has been shown tononorthogonal states, then the possibility of exactly de-
be a genuine measurement of the density matrix of théermining merely which one of the two states already
radiation field [8]; in this case the field is prepared inviolates unitarity. Consider the cloning of two nonor-
the same state at each measurement, in agreement witibgonal states—says) and|¢), with 0 < [{/|¢)| < 1:

the usual statistical meaning of the quantum state basdtie transformation (1) must preserve the scalar product in
on an ensemble of identical systems. From Ref. [9] weorder to be unitary. Taking the scalar product of the two
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states on the left-hand side of Eq. (1) fgr and|¢), and  where the system operatf¥(x) is given by
equating the result to the scalar product of the two cor-
responding states on the right, we obtain the contradic- Q) = &|0]e), (3)
tory identity (v/(¢)|v'(¢)) (¥|@)"~! = 1, which would
require [(v/(y)|v'(¢))l > 1 for n > 1. Hence,reductio  gpg
ab absurdumthe transformation (1) cannot be unitary.
(Th(_e same conclusion follows for antiunitary transfor- dp(x) = QT ()OO () dx (4)
mations.) Thus one cannot clone the state of a system
known to be inany oneof two nonorthogonal states,
say,|¢) and|e), using a single state-independent unitary
transformation. Let us now suppose that there is a de’
vice that is capable of determining (by a unitary process) A
in which of these two states the system is. Then, once p)dx = Trledax)]. (5)
the state is known, one can easily choose unitary transfor- . .
mations that generate anclone of i) or |¢), depend- Equation (5) is also the most general _form of the Born’s
ing on the two possible results of this device. Hencelule for any kind of measurement, wititii(x) a POM
such a “state detector” would lead to a realization of thd"ot necessarily given in the form (4). In the present
cloning machine. In this way it is proven that the possibil-Situation, the most general representation of a quantum
ity of distinguishing two nonorthogonal states contradicts™easurement—the so-called “instrument” map [13]—
the unitarity of quantum mechanical transformations. ~ reduces to

Repeated versus single measurementdsing an ap- R R
paratus that interacts very weakly with the system, one 0 —dix)0 = Qx0T (x)dx, (6)
could devise measurement schemes involving repeated
measurements, which, on first sight, seem to allow on&hich provides both Born’s rule(x)dx = Tr[dI(x)0]
to retrieve more information on the quantum state of aand the state reductio@ — 0, = dI(x)0/Tr[dI(x)Q].
single system than that obtained by a single measuremer#. sequence ofV indirect measurements is described by
In fact, they turn out not to, often for rather subtle rea-the composition of their respective instruments, corre-
sons. Examples were given in [1,2,5], and we shall latesponding to the operatdt ™ (x) = Qn(xy) - Qa(xy) X
give another one. Here we will show that no successiof);(x;), with x = (x1,x2,...,x,) and the setup
of repeated measurements performed on a single systefll,.. |¢,),X,} generally different at every measuring
can retrieve more information than an appropriately chostep. Now we show that the same POW(x) =
sen single measurement whose output state is independéfit™)(x)]T Q™ (x)d"x can be achieved by a single mea-
of the input one. Incidentally, this also shows that the sinsurement whose output state is independent of the input
gle measurement formulation in quantum detection theorgne. Indeed, according to Naimark's theorem [12] any
[12] entails no loss of generality. POM d i1(x) on the Hilbert spacé{ can be achieved by

In order to have an output state that depends on the statemeasurement of self-adjoint commuting operators acting
before the measurement, the measurement scheme muost a suitably extended Hilbert spadé ® Hp. One has
involve a probe that interacts with the system and lated/au(x) = Trp[1 ® |F){F||x)(x|], with Trp denoting the
is “measured” to yield information on the original state partial trace over the (probe) Hilbert spagép, |x) being
of the system [13]. Thisndirect measurement scheme simultaneous eigenvectors of the commuting observables,
is completely specified once the following ingredients areand |F) a suitable probe preparation. This POM can be
given: (i) the unitary operatdy that describes the system- achieved, for example, by the instrumedti(x)¢ =
probe interaction, (ii) the stafer) of the probe before the Trp[|Ax) (x|0 ® |F){F||x){A«|] where|As) is any fam-
interaction, and (iii) the observablg which is measured ily of normalized vectors inH ® Hp. For such an
on the probe. At the end of the system-probe interactioinstrument the state after the measurementpis=
it is possible to consider another measurement on th&rp[|Ax){A«|], which is independent of the state before
system, say the measurement of an observitfor the  the measurement. Thus we conclude that any succession
sake of notation we tak& and¥ both having continuous of repeated measurements performed on a single system
spectrum, with eigenvectork:) and |y), respectively). gives exactly the same probability distribution of an
The conditional probability density(y|x) of getting a appropriately chosen single measurement with the output
result y from the second measurement given the resulstate independent of the input one.
of the first one beingx can again be written in terms  Regarding the possibility of “reversible” measure-
of the Born’s rulep(y|x)dy = (y|0.ly) upon defining a ments [3-5] note that the measurement can be reversed

is a “probability operator-valued measure” (POM) [13]. It
rovides the Born’s rule for the measurement in the form

“reduced state, as follows: with probability one for any & priori unknown) state
AA AT 0 only if the operator()(x) in Eq. (3) is unitary, and
s Qx)eQl(x) ) this can only be achieved by an interaction Hamiltonian

T Ot () ()] H, = f(Op, Os, 0%, ...) which is a function of a single
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probe operato0, (and of any number of system opera- The above tomographic scheme requires preparation of
tors) with eitherdx) or [¢) in Eq. (3) an eigenvector @p.  the field in the same state at every measurement, because
In this case, however, the POM (4) is trivially a multiple the radiation is completely absorbed by the detector.
of the identity, and the probability distribution does not Now we devise an indirect scheme that allows repeated
depend on the state and thus is no measurement at atheasurement on the same physical field. It goes by
Regarding the “protective measurements” in Ref. [2], theymeasuring the quadraturgs through the quadraturé¢
are achieved by Hamiltonians of the foly + «POgs in  of another “probe” modé interacting witha. Without
the limit of « vanishingly small compared to the strengthloss of generality, we consider that before every single
of the “protecting” free Hamiltoniarl,, and with the measurement the probe is prepared in a pure hitéte)),
probe operato® conjugate to the measured operatar ~ which we have the freedom to choose as a functiog of
Then, it is easy to show that for interaction timeone  The generating function of the momentslb; after the
has Q(x) = exp(—iHot/F)[o(x) — kd,o(x) ff) dr X interaction witha is given by
Os(7)] + O(k?), with ¢(x) = {x|¢): Hence, in the limit -
x — 0 the operatof) (x) leaves invariant only the eigen- XA, ¢) = Ti[e* 00 ® lu(d)(w()IUT], (9)
states ofH,, which, however, constitute an orthogonal
set. Note that the possibility of distinguishing amasrg ~ and is just the Fourier transform of the probability distri-
thogonalstates is not ruled out by the “cloning machine” bution of the experimental outcomes. We consider the in-
argument: In fact, it is possible to duplicate a state knowreraction [15]0 = exd«(ab® — a'b)], which describes
a priori to beany oneof a known orthogonal set [14]. the field transformation at a beam splitter

Quantum tomography on a single systerOptical o
homodyne tomography [6] is a method for determining 06U = sinka + cosch = e?a + (1 - &)'?b,
the matrix elementsy|0|y’) of the density operatod (10)
of the electromagnetic field between vectdis) and
|'), preparing the field again in the same state at eactvhere ¢ is the mirror transmissivity, and is the anni-
measurement. For a single mode field with annihilatohilation operator of the field mode of the unused port at
operatora the matrix elements are obtained by makingthe same frequency af. Thus the present scheme cor-
repeated measurements of the quadrature oper@jors  responds physically to letting the field modeshine over
%(afenﬁ + ae”'?) at different phaseg. Before analyz- @ chain of many low-transmissivity mirrors and detect the
ing a repeatab|e measurement scheme for a Sing|e systequadrature of the weak transmitted field at each mirror.
let us briefly recall the basics of the method [9]. From the linearity of Eq. (10), the generating function

The density operator is connected to the probabilities{(A, ¢) factorizes into the product of the generating func-
p(x, ¢) of the outcomes of the quadraturés according tions pertaining to modes or b separately(xa(A, ¢) =
to the identity [9] Trlexp(iAag)@] and similarly x; (A, ¢)), namely,

o = fﬂ aé [+x dx p(x, §)Ky(x — ag), (7) XA, d) = xalePX, d)xp((1 — )20, ¢). (1)
0 a —o0

Using Eg. (11), by the same methods of Refs. [8,9] it is
easy to obtain the identity

_ 1 +x l—7n , . T +o0
Ko = gRedrren{ SR s i) @ [T o dEe - a. (2
0 —o0

depends parametric.ally on the det_ector guantum efficienc%herep (x. &) is the probability of the measured quadra-
- In a.real experlmeAnt, /accordlng to Eq. (7) the qen'ture ZS(/, Sres’caled bye!/2 (as in customary homodyning,
sity matrix elementsy) LQW >, are measured by averaging  here the output photocurrent is rescaled by the quantum
the kernelsy |K,,(x — a4)|y') over the experimental data efficiency)

(x, @), provided thaty|K, (x — ag)l¥’) are bounded as y

a function ofx and¢. As shown in Ref. [9] the matrix el- _ap [T ey

ements(y|K,(x — ag)ly’) can be bounded although the pe(x, @) =& ]ﬁm o € Xo(A, @), (13)
kernel K, (x) is an unbounded function (not even a tem- o

pered distribution). For example, for the number represer@nd the kerneE.(x) is given by

tation () and|¢’) number states) the kernel matrix ele- _ 1 +oo ,

ments are bounded when> % More generally, forany Se(x) = ) Refo dA Ae™ (M (1 — €)/e, )],
representation there is a lower bound above which the (14)
density matrix can be obtained, and, at minimgm= %
Hence, in order to measure the density matrix by homoand generally depends on the coupling parametand
dyne tomography, one needs a sizable quantum efficienayn the probe stath/(#)). One can easily see that when

n > n.. the probe modé is in the vacuum state the kernel (14)
2834
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is identical toK,,(x) in Eq. (8) withe = 5, namely, the stant quantum efficiency in Eq. (17), has the asymptotic
transmissivity e plays the role of the overall quantum form
efficiency of the indirect measurement. However, as

noticed in Ref. [16], the effective quantum efficiency can a _ 27 1/4 n . \2
be increased at will by squeezing the probe mbde the (x, ) = ) S n (x = ag)”|.
direction of the quadraturg,. More precisely, the probe (20)

is prepared in the squeezed vacuum

- Equation (20) is the typical form of a von Neumann
lu()) = §410), S = exp(—? 2opt? — H.c.), “reduction” of the state (state projection fay — 1).
Therefore, we conclude that although the interaction has
(15)  been taken vanishingly small, the state is in fact “reduced”

. at each measuring step.
wherer > 0 denotes the squeezing parameter. One has  Tnis work was supported by the Office of Naval

" n at A ot Research.
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