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Noncommuting Mixed States Cannot Be Broadcast
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We show that, given a general mixed state for a quantum system, there are no physical means for
broadcastinghat state onto two separate quantum systems, even when the state need only be reproduced
marginally on the separate systems. This result extends the standard no-cloning theorem for pure states.
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The fledgling field of quantum information theory [1] tra(ps) = ps and trg(p,) = p;. @
draws attention to fundamental questions about what is i
physically possible and what is not. An example is theHeretrA andtrz denote partial traces ovArandB. If there

theorem [2,3] that there are no physical means by whicti$ @nZ that satisfies Eq. (1) for boiy andp,, then the set
an unknown purequantum state can be reproduced or

AA can bebroadcast A special case of broadcasting is the
copied—a result summarized by the phrase “quantun§velution specified b (p, ® %) = p, ® p,; we reserve
states cannot be cloned.” In this paper we formulate anf'€ Wordcloningfor this strong form of broadcasting..
prove an impossibility theorem that extends the pure-state 11€ Most general actiorE' on AB consistent with
no-cloning theorem to (invertible) mixed quantum statesduantum theory is to allovAB to interact unitarily with
The theorem answers the question: Are there any physic&f 2uxiliary quantum syste@ in some standard state and
means forbroadcastingan unknown quantum state onto tereafter to ignore the auxiliary system [4]; that is,
two separate quantum systems? By broadcasting we mean F(ps ®3) =tre[U(ps ® S ® Y)UT], (2)
that the marginal density operator of each of the separaﬁ%
systems is the same as the state to be broadcast.

The pure-state “no-cloning” theorem [2,3] prohibits
broadcasting pure states, for the only way to broadcast

r some auxiliary syster@, some standard sta¥ on C,

and some unitary operatéf on ABC. We show that such

an evolution can lead to broadcasting if and onlypif

pure statdy) is to put the two systems in the product stateghd p1 commute. This result strl_kes close to the heart _of

1) ® |, i.e., to clond). Things are more complicated the d|ﬁer9nce bgtween the cIassmgI and. quantum theories,

when theis;taﬂas are mixea A mixed-state no-cloning thet_)ecausg it provides anothgr physical distinction between

orem is not sufficient to démonstrate no broadcasting focommut_lngand noncommutingstates. we furt_her s_how
. "= “that A is clonable if and only ifpq and p; are identical

there are many conceivable ways to broadcast a mixed stai

| 7 - ¥ orthogonal = 0).
p without the joint state being in the product fopns p, To sege thatkt)ﬁglseﬂ ():an be broadcast when the states
the mixed-state analog of cloning; the systems might b

correlated or entangled in such a way as to give the ri ommute, we do not need to attach an auxiliary system.
) i 9 ; yas 109 > 9MSince orthogonal pure states can be cloned, broadcasting
marginal density operators. Forinstance, if the density op-

erator has the spectral decompositior= 3, A, [b) (5], a c?n be obtained by cIonTg the simultaneous eigenstates
) : X ; - po andp;. Let|b), b =1,...,N, be an orthonormal

potential broadcasting state is the highly correlated Jomg : : : .

state = 3, A, b)) (5| (b], which, though not of the asis forA in which both Po gnd p1 are diagonal, and

product forrrfp 29 p reproduées the ;:orrect marginal den—let th§e|r spectral 'decomposmons be =3, %‘S”lbﬂb.l'

sity operators. ' Consider any unitary operatd/ on AB consistent with
The general problem, posed formally, is this. A quan-Ulb> I1) = 1b}1b). If we chooseX. = [1) (1] and let

tum systemAB is composed of two part#), andB, each ps = U(py, ® U = Z/\Sblb> |bY<bl<bl, (3)

having anN-dimensional Hilbert space. Systeiis se- b

cretly prepared in one state from a st = {po, p1} of  we immediately have thai, and 5, satisfy Eq. (1).

two quantum states. SysteB) slated to receive the un-  The converse of this statement—that 8 can be

known state, is in a standard quantum state The ini-  broadcast,pg and p; commute—is more difficult to

tial state of the composite systefB is the product state prove. Our proof is couched in terms of the concept

ps ® 2, wheres = 0 or 1 specifies which state is to be of fidelity between two density operators. The fidelity

broadcast. We ask whether there is any physical proced’( py, p;) is defined by

E, consistent with the laws of quantum theory, that leads Y RVVRT

to an evolution of the formp, ® 3 — E(p, ® 2) = p,, Fpo.p1) = tr\po " pripo” )

wherep, is anystate on thev2-dimensional Hilbert space where for any positive operatad, i.e., any Hermitian

AB such that operator withnon-negativesigenvalues©'/? denotes its
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unique positive square root. (Note that Ref. [5] defines — mi
fidelity to be the square of the present quantity.) Fidelity Fpo.p) @1?%‘ \/tr(pth)\/tr(plEb)’ ®)

is an analog of the modulus of the inner product for

pure states [5,6] and can be interpreted as a measure where the minimum is taken over all sets of positive op-
distinguishability for quantum states: it ranges between @rators{E,} such thad , E, = 1. This representation of
and 1, reaching 0 if and only if the states are orthogonalidelity has the advantage of being defined operationally in
and reaching 1 if and only ipg = p;. It is invariant terms of measurements. We call a POVM that achieves
under the interchandge— 1 and under the transformation the minimum in Eq. (5) amptimal POVM.

po — UpoUt, py — Up, Ut for any unitary operatot/ One way to see the equivalence of Egs. (5) and (4)
[5,7]. Also, from the properties of the direct product, oneis through the Schwarz inequality for the operator in-
has thatF(py ® oo, p1 ® o1) = F(po, p1)F(oo, o). ner producttr(ABY): tr(4A") tr(BBY) = |tr(AB1)|?, with

Another reasorF( p, p1) defines a good notion of dis- equality if and only ifA = a B for some constark. Go-
tinguishability [8] is that it equals the minimal overlap be- ing through this exercise is useful because it leads directly
tween the probability distributiongy(b) = tr(poEs) and  to the proof of the no-broadcasting theorem. {&j} be
p1(b) = tr(p1Ep) generated by a generalized measureany POVM and let/ be any unitary operator. Using the
ment orpositive operator-valued measu(BOVM) {E,}  cyclic property of the trace and the Schwarz inequality,
[4]. Thatis [7], | we have that

2 2 2 2 2 2
S (oo fiw(piEs) = SNe(Wi*Es 00 "UDN (ol By o1 = S lwwes "B 01 @
b

1/2 1/2
/ /)

1/2 1/2
Evpl™) | = 1tr(Ups 1) (7)

We can use the freedom iy to make the inequality| the eigenvalue ofb). When p, is noninvertible, there
as tight as possible. To do this, we recall [5,9] thatare still optimal POVMs. One can choose the fiEt
max|tr(VO)| = tr~O10, where O is any operator and to be the projector onto the null space pf. In the
the maximum is taken over all unitary operatdts The  support of p; (the orthocomplement of its null space),
maximum is achieved only by thosé such thatVO =  p; is invertible, so we may construct the analog Mf
¢'*/010, ¢ being arbitrary; that there exists at least onerestricted to the support and choose the remaitisig to
such V is ensured by the operator polar decompositiorproject onto its eigenvectors. Note that if bgthand p,
theorem [9]. Therefore, by choosing are invertible M is invertible.

We begin the proof of the no-broadcasting theorem

U 5/2 12 _ ,011/2,00,011/2 , (8) by using Eg. (5) to show that fidelity cannot decrease
under the operation of partial trace; this gives rise to
we get thad ,\/tr(poEp) \/tr(piEp) = F(po, p1)- an elementary constraint on all potential broadcasting
Consulting the conditions for equality in steps (6) andprocesse€. Suppose Eq. (1) is satisfied for the process
(7), we find that a POVM is optimal if and only if E of Eq. (2), and lefE;,} denote an optimal POVM for
Upé/zE},/z — wup 11/2]5;/2 ©) distinguishingpy and p,. Then, for eachs, tr[ p,(E, ®

1)] = tra[trp(py)Ep] = tra(psEp); it follows that
and the terms in the sum (7) have a common phase. By
absorbing this phase inté by virtue of its phase freedom, Fs(po.p1) = Z\/tr[ﬁo(Eb ®1)] \/tr[ﬁl(E,, ®1)]
this second condition becomes b

tr(Upo Eppt’®) = wp tr(prEy) = 0 & pyy = 0. = f{gl? g\/tr(ﬁOEc)\/tr(ﬁlEc)
(10) = F(po, p1) - (13)
Here F(po, p1) denotes the fidelity(po, p1); the sub-

Whenp, is invertible, Eq. (9) becomes

MEY? — E1/2 11 script A emphasizes thak4(po, p1) stands for the par-
b = MeEb A1) ticular representation on the first line. The inequality in
where Eqg. (13) comes from the fact thdE, ® 1} might not
be an optimal POVM for distinguishing, and p1; this
—1/2 1/2 12 [ 12 12 —1)2 ' ial- imi
M = Ups* = p; 01 popi”” pi (12) demonstrates the said partial-trace property. Similarly

is a positive operator Therefore one way to satisfy Fz(po,p1) = Z\/tr[po(ﬂ ® Eb)]\/tr[pl(ﬂ ® Ep)]
Eq. (9) with u, = 0 is to takeE, = |b)(b|, where the
vectors|b) are an orthonormal eigenbasis fr, with w,, = F(po, p1), (14)
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where the subscripgB emphasizes thaliz(pg, p1) stands state to make the probability of a correct inference of its
for the representation on the first line. identity arbitrarily high. That this consistency require-
On the other hand, we can just as easily derive ament, as expressed in Eq. (18), should also exclude more
inequality that is opposite to Egs. (13) and (14). By thegeneral kinds of broadcasting is not immediately obvi-
direct product formula and the invariance of fidelity underous. Nevertheless, this is the content of our claim that

unitary transformations, Eq. (18) generally cannot be satisfied; any broadcasting
process can be viewed as creating distinguishal@hktyi-
F(po,p1)=F(pp®2®Y,p®20Y) hilo with respect to measurements on the larger Hilbert

_ ¥ " spaceAB. Only for commuting density operators does

= F(U(po® 20 Y)ULU(p1®Z ® Y)UT). broadcasting not create any extra distinguishability.

(15) We now show that Eq. (18) implies that and p;
commute. We assume tha§ andp; are invertible. We

Therefore, by the partial-trace property, proceed by studying the conditions necessary for the rep-
resentations4(po, p1) and Fg(po, p1) in Egs. (13) and
F(po, p1) = F(trc[U(po (14) to equalF(po, p1)- Recall that the optimal POVM

{E,} for distinguishingpy and p; can be chosen so that
838 Y)U']uc[U(pie3eY)UT), the POVM elementsE, = |b)(b| are a complete set of
(16) orthogonal one-dimensional projectors onto orthonormal
eigenstates a#/. Then, repeating the steps leading from
or, more succinctly, Egs. (7) to (10), one finds that the necessary conditions for
equality in Eq. (18) are that eadhy, ® 1 = (E, ® 1)/2
F(po,p1) = F(E(po ® 2),E(p1 ® X)) = F(po,p1). and eachl ® E, = (1 ® E,)'/? satisfy

17 N
() Tpy (1 ® Ey) = a, pi (1 ® E,),  (20)
The elementary constraint now follows, for the only -1 12
way to maintain Egs. (13), (14and (17) is with strict Vpo (Ep ® 1) = By p1 (Ep ® 1), (21)

equality. In other words, we have that if the s@t can _ . .
be broadcast, then there are density opergigrand 5, ~ Wherea;, and B, are non-negative numbers aodandV

on AB satisfying Eq. (1and are unitary operators satisfying
~ 12 172 & 1/2_1)2 [L12. 12
Fa(po, p1) = F(po. p1) = Fe(po,p1).  (18) Upo pr~ =Vpo b1 =Np1 popi’ - (22)

. . . __Although py and p; are assumed invertible, one cannot
Let us pause at this point to consider the restricteyamand thap, and 3, be invertible—a glance at Eq. (3)
question of cloning. IfAA is to be clonable, there must g5 that to be too restrictive. This means thiand V
exist a proces such thatp, = ps ® ps for s = 0.1. neeq not be the same. Also we cannot assume that there
But then, by Eq. (18), we must have is any relation between;, and 3, .
5 The remainder of the proof consists in showing that
F(po,p1) = F(po ® po,p1 ® p1) = F(po, p1)°, Egs. (20)-(22), which are necessary (though perhaps not
(19) sufficient) for broadcasting, are nevertheless restrictive
enough to imply thapy andp; commute. The first step is
which means that(pg, p;) = 1 or 0; i.e., po and p; to sum ovem in Egs. (20) and (21). Defining the positive
are identical or orthogonal. There can be no cloning foloperators
density operators with nontrivial fidelity. The converse,
that orthogonal and identical density operators can be G = Zah|b><b| and H = Z,Bblb><b|, (23)
cloned, follows, in the first case, from the fact that they b b
can be distinguished by measurement and, in the second

case, because they need not be distinguished at all. W& obtain

Like the pure-state no-cloning theorem [2,3], this no- _ 12 1 _ 1) 12
cloning result for mixed states is a consistency require-UBo = = p1 (1 ® G) and Vpo ™ = p; " (H @ 1).
ment for the axiom that quantum measurements cannot (24)

distinguish nonorthogonal states with perfect reliability.

If nonorthogonal quantum states could be cloned, there _

would exist a measurement procedure for distinguishing The next step is to demonstrate thatand H are
those states with arbitrarily high reliability: one could Invertible and, in fact, equal to each other. Multiplying
make measurements on enough copies of the quantuthe two equations in Eq. (24) from the left bylg/zfj’f and

2820



VOLUME 76, NUMBER 15 PHYSICAL REVIEW LETTERS 8 ARRIL 1996

50/*7t, respectively, and tracing the first ovarand the  using Eq. (27),

second oveB, we get
12 pipo = M~ ' poM ' py = poM ' poM ™" = popi .

. (32)
(25)

_1/2

Po—trA(Po *0tp’)G  and Po—trB(Po g

Since, by assumptiorpy is invertible, it follows thatG This completes the proof that noncommuting quantum
states cannot be broadcast.

and H are invertible. Retlﬂ?mg to Eq.. (24), multiplying Note that, by the same method as abwg'zlw le) =
both parts from the Ie_ft by, ", and tracing oveA andB, ) \when wy # we. This condition, along with Eq. (30),
respectively, we obtain determines the conceivable broadcasting states, in which
2a 12 2 12 the correlations between the systeandB range from
tra(p1’ " Upo'") = p1G and trp(py’ Vo' ) = piH.  purely classical to purely quantum. For example, since
(26) PO ar_1q p1 commute, the states of Eq. (3) satisfy these
condmons but so do the perfectly entangled pure states

Conjugating the two parts of Eq. (26) and inserting the-» ¥As» 10)1b). Not all such broadcasting states can be
results into the two parts of Eq. (25) yields reallzed by a physical proceds, but sufficient conditions
for realizability are not known.
po=GpG and po= HpH 27) In closing, we mention an application of this result.

In some versions of quantum cryptography [10], the

This shows thaiG = H, because these equations haveleditimate users of a communication channel encode the

a unique positive solution, namely, the operaddr of bits 0 and 1 into nonorthogonal pure states. This.is
Eq. (12). This can be seen by multiplying Eq (27)done to ensure that any gavqsdroppmg is detectable, since

}/ eavesdropping necessarily disturbs the states sent to the
from the left and right bypl to getpl popl =

legitimate receiver [11]. If the channel is noisy, however,

(p1”°Gp1"?. The positive operatop’>Gp,’” is thus causing the bits to evolve to noncommuting mixed states,
the unique positive square rootpf/zpopll/z. the detectability of eavesdropping is no longer a given.
Knowing that G = H = M, we return to Eq. (24). The result presented here shows that there are no means
The two parts, taken together, imply that available for an eavesdropper to obtain the signal, noise
and all, intended for the legitimate receiver without in
VJfUpl/2 = ,bé/z(M’1 ®M). (28) some way changing the states sent to the receiver.
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